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Scattering resonances in ballistic conduction across a quantum dot in a weak magnetic field are

investigated. Due to the special geometry considered, the resonances grow narrower with decreasing

8, until at B = 0 they become bound states in the continuum. Whereas previously treated geome-

tries exhibit at most one bound state with energy in the continuum, the number of such states in

the present case is limited only by the number of transverse modes that the wire leads can sustain.
Furthermore, the present model demonstrates the possibility of quantum-mechanical bound states in

the continuum having a classical analog. The energy shifts of the resonances in a magnetic field show

paramagnetic as well as diamagnetic behavior, which can be understood in terms of the dominant

influence of a particular subband and its distance from the cutoff threshold in the dot region.

I. INTRODUCTION

Advances in nanofabrication technology have made it
possible to build quantum devices that expose the wave
nature of the electron in various ways. This is achieved
because at low temperatures the electrons propagate co-
herently through the sample, the size of which is com-
parable to the de Broglie wavelength in one or more di-

rections. When two degrees of freedom are quantized

by the device geometry, the electronic motion is quasi-
one-dimensional due to the formation of subbands. In
such a structure, a two-terminal conductance experiment
at vanishing bias and temperature reduces to an elastic-
scattering problem whose solution can be related to the
conductance by the Landauer formula, i s

2

G= —) ~T „~', (&)
fA if'

where T „ is the current transmission amplitude from
subband n to rn, and electron spin is not considered. Be-
ing a characteristic manifestation of wave phenomena in a
scattering experiment, resonances have received consid-
erable attention in recent nanostructure transport calcu-
lations. In particular, physical insight has been gained

by establishing a connection between resonances of the
open system on the one hand, and bound states on the
other, typically belonging to some closely related isolated
system. A well-known case in point is the interpretation

by Reed et al. of the fine structure in finite-bias reso-
nant tunneling through vertical quantum dots in terms
of a zero-dimensional density of states. The following list
shows that this point of view has also been adopted in

zero-bias calculations where Eq. (1) applies.
According to Sivan, Imry, and Hartzstein, 5 the

Aharonov-Bohm (AB) effect in a singly connected geom-

etry can be viewed as consecutive scattering resonances
caused by the single-particle levels of the isolated dot
shifting through the Fermi energy as a function of mag-
netic Beld. A similar relationship between conductance

oscillations and resonances due to the discrete spectrum
of an isolated loop in a magnetic field is mentioned by
Ravenhall, Shult, and Wyld. Resonances that occur in

transport through a cavity connected to wire leads have

been related by Peeters~ to the spectrum of the isolated
box without leads. As an example for resonances caused

by an isolated impurity in a quantum wire, Bagwell
shows that an attractive b-function scatterer causes ex-

actly one quasibound state to split off below each wire

subband; in analogy with a donor level in the band gap,
the state splitting off from the lowest subband is truly
bound, but the others lie above the continuum thresh-

old of the wire and thus give rise to resonances. Other
possibilities for resonant behavior occur due to the finite

length of the leads connected to realistic devices, when a
state that would be truly bound only under the assump-

tion of infinite leads acquires a finite lifetime. This is

noted by Exnerg for the curved quantum wire structure
which has a bound state below the propagation thresh-

old of the straight wire segments; if the leads terminate
into reservoirs at a finite distance, electrons may res-

onantly tunnel from one contact to the other via the
bound state and through the effective barriers in the
wires. The multiprobe generalizationio ii of Eq. (1) is

applied in Ref. 12 to the symmetric four-terminal cross

junction. It exhibits resonances which stem from Landau

orbits that get pinned at the junction at high magnetic

fields (Kirczenowi points out that one can view the res-

onances as having split off from a higher-lying subband,

which resembles the argument of Ref. 8), but there is

also a resonance originating from a bound state in the
continuum (which we will refer to as BIC) at 8 = 0;

consequently, the latter resonance becomes wider with

increasing magnetic field whereas the others grow nar-

rower.
Assuming that a resonance is detected in an experi-

ment, the question is how to determine its precise phys-

ical origin. For the loop geometry, it is noted that the
resonances are shifted so far away from the correspond-
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ing bound states of the isolated loop that a one-to-one
identification is impossible. The cross junction treated in
Ref. 12, on the other hand, ofFers a continuous and exper-
imentally controllable parameter, namely, the magnetic
field, that allows to trace the evolution of the resonances
into the corresponding bound states.

The same is true for the two-terminal geometry to
be introduced here, which consists of an attractive dot
coupled to the reservoirs by quantum wires: it exhibits
bound states in the continuum at I3 = 0 that become res-
onances when a magnetic field is turned on. The BIC can
be located by elementary means because they occur in a
very systematic fashion. The mechanism that causes a
BIC is analogous to the quasibound states in Ref. 8: the
dot potential causes one or more bound states to split
off from each wire subband; due to the special geometry
considered, none of these states can couple to the scat-
tering states that exist at the same energy when B = 0.
Only at B g 0 do they become quasibound states if they
are above the continuum edge.

To elaborate on this phenomenon and show its impli-
cations, the paper is organized as follows. The nature of
the BIC is explained in Sec. II, before we make the dis-
cussion quantitative by specializing to a particular dot
potential in Sec. III. The transition from BIC to reso-
nances upon application of a magnetic Beld is treated in
Sec. IV. Further insight into the physics of the resonant
structure is gained in Sec. V by investigating the current
density patterns that illustrate the electronic motion.

occcurs. Its odd parity efFectively decouptes the bound
state from the continuum, but it acquires a finite lifetime
when parity conservation is broken, e.g. , by imperfections
or a magnetic Beld.

Comparing the potentials that go to zero at infinity
and those that do not, there is one thing they have in
common despite the difFerent mechanisms that inhibit
the decay of a BIC: In all cases, the bound state is unsta
ble under an arbitrarily small deviation of the potential
from the shape or symmetry required by the respective
mechanism.

This observation also applies to the continuum bound
states to be discussed here, which difFer from the pre-
viously cited cases in that they have a classical ana-
log. Being of classical origin, it will be especially inter-
esting to see these bound states evolve into quantum-
mechanical scattering resonances when the instability
mentioned above is induced.

Bound orbits that are degenerate with unbound ones
are common in classical mechanics, a simple example be-
ing the one-dimensional double barrier potential: a par-
ticle confined between the potential barriers can have
the same energy as a free particle on the outside. How-
ever, there is generally no quantum analog because bar-
rier penetration permits the classically bound particle to
escape to infinity.

Now consider the Hamiltonian

(2)

II. BOUND STATES IN THE CONTINUUM

The time-independent single-particle Schrodinger
equation without magnetic field allows for square-
integrable solutions that are degenerate with non-
normalizable stationary states. von Neumann and
Wigner proposed an explicit construction that yields
such a BIC with a potential that is localized, i.e., van-
ishes at infinity. i4 This possibility is of particular interest
in the spectroscopy of autoionizing atomic or molecular
states, but also for tunneling phenomena such as nuclear
decay, is is and its physical origin is the destructive inter-
ference of alternative decay paths for the bound state.

When one investigates nanostructures connected to in-
finite wire leads, new possibilities for the formation of lo-
calized orbits in the continuum of extended states arise. i~

These exotic solutions have been discovered in two of the
model structures described above.

Shult et cl.~~ find that the symmetric cross junction
exhibits exactly one bound state above the zero-point
energy of the leads. Peeters reports one such state for
the symmetric cavity, but only for a single ratio between
cavity length and wire width. In both cases, the physical
reason that prevents the electron from escaping to infinity
is parity conservation. The continuum is made up of
the lowest subband in the wires, which has even parity
while the embedded bound state is odd with respect to
reHection at the wire axes. It is the infinite wire length
that gives rise to a discrete energy spacing between even-
parity ground state and odd-parity first excited subband
in the asymptotic region, between which the bound state

where both V(x) and V'(y) are everywhere attractive,
and V(z) has an upper limit. Since the Hamilton-Jacobi
differential equation is separable, the total energies of the
z and y degrees of freedom, E~*l and E~», are both con-
stants of the motion. The classical motion thus reduces
to two independent one-dimensional problems.

Since the total energy E can be distributed arbitrarily
among longitudinal and transverse motion, it is possible
to have E~*l above or below the binding threshold of V(z)
for one and the same value of E, depending only on the
magnitude of E~"~. As is illustrated in Fig. 1, bound
and free solutions coexist at that E as long as E&» stays
in the range of bound orbits of the transverse potential
V'(y). This condition can be satisfied for a large range
of energies if we assume V'(y) to be much deeper than
V(x) (if the reverse holds, the roles of z and y motion
simply interchange).

When the transition is made to quantum mechanics,
the same conservation of E~*l and E&» results since
Eq. (2) leads to a separable Schrodinger equation. The
bound-state energies are now discrete, but the classical
argument above can still be applied because neither V(2:)
nor V'(y) allow tunneling as they are purely attractive.
The discreteness of the spectra for x and y bound orbits
leads to the consequence that a BIC does not exist at
arbitrary values of the total energy E as for the classical
analog, since E& ~ as well as E&&& must coincide with an
allowed energy level, as shown in Fig. 1.

Since parity conservation is not involved, this mech-
anism for obtaining bound states in the continuum also
works with an asymmetric V'(y). In summary, we distin-
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guish BIC that are due to destructive interference, parity-
induced decoupling, and classical decoupling.

III. QUANTUM DOT AT ZERO MAGNETIC
FIELD

sure frequencies in units of cup, energies in Ep = hap,
and lengths in Le = gh/mcus. If the separation of the
Schrodinger equation is carried out using

~(z y) = 4(z) X(y)

the result is
The separable geometry just introduced, with a V'(y)

that always yields a confined y motion, represents a spe-
cial case of a quantum dot connected to infinite quantum
wire leads. As is common practise in modeling narrow
quantum wires, the transverse potential is taken to have
the form

V'(y) = ~i've)i'i y .

and

+V(*) I ~(-) = E'*&~(-)1 a'
28z2 )

(6)

For the additional attractive potential V(z) which de-
fines our quantum dot, there always exists at least one
bound solution, which is the only property of the z poten-
tial we need in order to obtain bound states in the con-
tinuum. To introduce dimensionless variables, we mea-

(a)

The latter is a harmonic-oscillator equation so that

E(» = E E&*) —= n+ i (n = 0 1 ...).

Obviously, conservation of transverse energy E(s) is
equivalent to the conservation of subband index n.

To make quantitative predictions about the continuum
bound states of this geometry, the quantum-dot potential
V(z) is now specified as a finite-depth square well of the
form

E(v)
I

/' v (v)

-Ve (I*I & -', )
(I*I & -', )
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FIG. 1. Example for bound classical orbit degenerate with
unbound solution in two dimensions. The potentials V(x)
and V'(y) in the Hsmiltonisn (2) sre everywhere attractive.
In (s), the total energy E is shared between longitudinal (x)
snd transverse (y) motion in such s wsy that E~*l lies in
the range of free motion under the potential V(x). In (b),
the same total energy is redistributed, bringing E * below
the binding threshold of V(x) snd thus resulting in s bound
motion at the same value of E as in (s). This classical example
has a quantum analog because tunneling cannot take place.
The discrete quantum-mechanical bound states are indicated
by the solid horizontal lines.

For a given Ve and length L, the discrete spectrum
of Eq. (5) contains a finite set of discrete eigenvalues

E,* ( 0(a = 1, 2, . . . , N) that can be found by ele-
VLmentsry methods. rs Their number is N = int (; +i

where int() denotes the integer part, which confirms that
there is at least one bound state. This same set of N
bound solutions exists for each n, so that we obtain in-

finitely many bound states at energies E„,= E~ +n+ z
~ (~)

Also, if the E'*) are numbered in ascending order, the

first eigenvalue satisfies EI*) -+ 0 as VpL2 ~ 0, and
Ei(*) ~ —Vs in the limit VeL' ~ oo. Therefore, the
N bound states that have split off from subband n are
constrained to lie in the interval

n + 2
—Vp & E„&n + q. (9)

1 3
2 2' (10)

Obviously, Eq. (9) implies that all bound states with n =
0 are below the continuum edge. However, there will be
other bound states for n & 1 that are in the energy range
(10). This is illustrated by the solid lines in Fig. 2 for

Vp = 2. For a dot of this depth, bound states in the

Since an extended state must have E(*& & 0, Eq. (7)
implies that the continuum edge is E =

2 corresponding
to the n = 0 subband threshold in the leads. In view of
the discussion in Secs. IV and V, attention is restricted
to the case of a single continuum in the leads, i.e., to
the range of energies where only the lowest subband is

populated in the wire connected to the dot. Since the
propagation threshold for n = 1 in the leads is E = &,
the energy interval to be considered is thus
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FIG. 2. Solid lines: level diagram of the bound states in
the continuum occurring at ~, = 0 as a function of dot length
I, for a Gxed dot depth of Vo = 2 Ep. Bound states with
transverse quantum number n = 1 give rise to the curves
that extend below E = 0.5 Eo, whereas all n = 2 levels lie
above that energy and approach it asymptotically for I ~ oo.
Squares: points of zero transmission, indicating the presence
of a resonance. A magnetic Geld of ~, = 0.1uo is applied to
transform the bound states into metastable states.

continuum interval (10) can be obtained with n = 1,2,
corresponding to the two distinct groups of curves in Fig.
2. The higher subbands n & 3 do not yield states in the
range (10) because Eq. (9) leads to s2 (E„~ in that case.
The lower bound in Eq. (9) is approached asymptotically
for L ~ oo. For the levels belonging to n = 1, this
asymptote is E = —si and thus lies outside the boundary
of Fig. 2, while the L -+ oo asymptote of the n = 2 curves
at E =

2 is clearly discernible in the figure At a fix. ed
energy, the appearance of a new bound state with index
n is approximately periodic in L because it occurs close
to a value of L that permits the addition of another half
wavelength to the dot. This L periodicity is difFerent for
n = 1, 2 since by virtue of Eqs. (5) and (6) each subband
has its own specific wavelength in the potential well. It
is given at energy E by

IV. QUANTUM DOT IN A MAGNETIC FIELD

As has been mentioned in Sec. II, one way to destabi-
lize the parity-induced bound states in the continuum of
Refs. 12 and 7 is to apply a magnetic field. This is done
in Ref. 12 to the effect that a resonance appears which
grows broader with increasing magnetic field B.

The same happens to the classically decoupled bound
states of the geometry considered here, because subband
index is not conserved at B P 0. Classically, this results
from the fact that the magnetic field couples x and y
motion so that transverse energy E~") is no longer a con-
stant in the parabolic wire. If Ef» gets small enough just
as the originally bound particle approaches a wall of the
potential V(x) definin the dot, it may possess sufficient
longitudinal energy E *& to escape to infinity.

Quantum mechanically, the explanation is somewhat
diFerent because transverse energy remains a conserved
quantity for the perfect quantum wire in Landau gauge.
If the additional potential V(x) varies rapidly on the scale
of the magnetic length, this subband conservation breaks
down because the assumption of adiabatic transport is
then invalid. is*2P Since the magnetic length diverges at
B ~ 0, the abrupt rectangular well V(x) of Eq. (8) be-
comes an increasingly realistic model for transport across
a quantum dot at u)eak magnetic fields. This is precisely
the regime of interest as far as the transition from con-
tinuum bound states to resonances is concerned. In Sec.
V we will return to the question of where the resonances
go at high magnetic fields.

The way in which a weak magnetic field causes sub-
band mixing can be easily understood with the idealized
potential of Eq. (8). In the Landau gauge A = Bye~-
the Hamiltonian is

1
H = (p, —nuu, y) +p„+ sruti/py + V(x), (13)

where ~, = '+ is the cyclotron frequency. The
Schrodinger equation can be solved separately in the wire
and dot regions where V(x) is constant. There, the eigen-
funtions of Eq. (13) have the product form (4) with a
transverse part that is given in the reduced units of Sec.
II y

A„(E) =
/2(E+ Vp —n) —1 y(y) = u„~ 1+(u, y — '

k (14)

4k IC

~
(ks + )(;2) sin +L + 2i) k cos eL ~s

'

with k = /2(E —ri) —1 and ~ = +2(E+ Vp ri)

(12)

which compares well to the values of 2iA„(E) obtained
from the spacings in Fig. 2. In particular, A„(E) di-
verges at the energy of the L ) oo asymptote, cf. Eq.
(9). These observations will prove helpful in understand-
ing the efFect of a magnetic field on the position of the
resonances in Sec. IV.

To complete the discussion of the B = 0 case, the
result for positive E&~& in Eq. (5) can be used to find
the transmission probability per unit time for electrons
incident from infinity in the nth subband: j.s

k = @1+w' /2[E —V(z)] —Ql+ ~~ (2n+ 1). (15)

The latter implies a different shift of the transverse wave
functions in the interval x 6 [ 2, s j and outside. This
mismatch necessitates the presence of other subbands,
including evanescent states, to obtain a continuously dif-
ferentiable wave function at the interfaces between dot
and wire leads. Consequently, the B = 0 bound states in
the continuum become metastable due to their coupling
to the subbands which propagate in the leads. There

The u„are harmonic-oscillator wave functions, and the
vive number is different in the respective x intervals of
Eq (8):
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(16)

for all n.
The resonant behavior will be most pronounced if the

only propagating subband in the leads is n = 0, because
the presence of more than one populated subband can
lead to cooperative effects that mask or smooth the reso-
nant structure (see also Ref. 23). This is the reason why
we focus on the energy window (10). However, a mag-
netic field shifts the propagation thresholds upward and
thus modifies the relevant interval to

2@1+4)2(E ( 2/1+~2 (17)

In this energy range, only the n = 0 subband propagates
in the wire, which means that only m = n = 0 survives
in Eq. (16), and the resonances will appear as rapid vari-
ations in ~Top~ as a function of E.

In Fig. 3, the transmission at two values of the mag-

(d G)p

0.1

are two ways to observe the finite lifetime at B g 0: if
an electron is optically excited from a bound state be-
low the propagation threshold to one of the metastable
states, the absorption spectrum will exhibit a character-
istically asymmetric Fano resonance. Here, we want to
focus on the transport properties of the dot structure:
if electrons are scattered elastically by the dot, a reso-
nance will appear whenever the energy approaches that
of a metastable state. 22

To solve the scattering problem in a magnetic field, the
wave-function matching of Ref. 23 will be employed. The
calculation yields the current transmission and reflection
probabilities ~T „~z and ~R „~z between subbands n and
m, satisfying the conservation lawz4

netic field is shown for the parameters Vp = 2Ep and
L = 3.5 Lp. A remarkable feature that holds for all the
observed resonances as long as they are well-separated in
energy is that in the neighborhood of the resonance, both
~Topaz = 0 and ~Tpp)2 = 1 occur, leading to an asymmet-
ric shape. zs As expected, the resonance width decreases
as B ~ 0, since it is the magnetic field that causes the
coupling between continuum and bound state. Our main
task is to explain the shifts in position that these reso-
nances obviously undergo.

But first, the effects of exceeding the upper limit of the
interval (17) deserve comment. The rightmost resonance
in Fig. 3 crosses the n = 1 subband threshold when cu, is
raised from 0.1 up to 0.2 up and promptly loses its points
of zero and unit transmission. In Fig. 4, a cusp in ~Topaz

and an infinite slope in the conductance G are resolved
exactly at the onset of subband n = 1 for the parameters
of the u, = 0.lap curve in Fig. 3. A singularity of the
same type occurs for w, = 0.2 up, where it coincides with
the depressed transmission maximum. The shape of this
threshold singularity has been discussed by Baranger. zs

To illustrate the one-to-one relationship between the
resonances at cu, P 0 and bound states at u, = 0, the res-
onance energies at a small but nonzero magnetic field of
u, = 0.1 up have been superimposed on the bound-state
curves in Fig. 2. Here, we have identified the resonance
energy with the position of ~TM~z = 0, which is accurate
for the rather sharp resonances at small u, . Still, there
are systematic deviations between resonance and bound-
state curves in Fig. 2 which are due to the fact that the
resonances do not only change in width as u, is varied,
but also in position.

The resonances in Fig. 3 are characteristic of the dif-
ferent types of magnetic-field dependence seen in Fig. 2:
resonances originating from n = 2 bound states are al-
ways shifted to higher energies when u, increases, i.e. ,

they behave diamagnetically. Resonances belonging to
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FIG. 3. Current transmission as a function of energy, for
dot length L = 3.5Lp and potential Vp = 2Ep, exhibiting
asymmetric resonances that broaden and shift with increasing
magnetic field. Comparison between the solid curve and Fig.
2 at L = 3.5 Lp identifies the transverse modes from which
the resonances originate. The resonance which shifts to the
left as u, is increased to 0.2~p is seen to originate from an
n = 1 bound state, while the others belong to n = 2. Addi-
tional effects arise for E & 1.5 Ep because a second subband
is populated in the leads, cf. Fig. 4.

1.505 1.510
Eq/Ep

FIG. 4. Enlarged plot of the threshold singularity occur-
ring in Fig. 3 for u, = 0.1up at EF ——1.507Ep. Not shown
is the similar behavior for ~ = 0.2u)p at EF = 1.530Ep.
As in Fig. 3, the parameters are L = 3.5Lp and V = 2 Ep.
The curves for ~Tpp~ and the dimensionless conductance G in

units of —coincide to the left of the singularity.
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n = 1 show diamagnetic behavior near the bottom of
the energy window, but have a paramagnetic character
at higher energies. We will now give an explanation for
these different tendencies.

Consider first the diamagnetic resonances originating
from the n = 2 bound states. In spite of the admixture
of di6'erent subbands by the magnetic field, the dominant
contribution to the metastable states will continue to be
n = 2. The effect of ac g 0 is to raise the n = 2 subband
bottom in the dot above the original value of E = s,
lifting with it the L ~ oo asymptote in Fig. 2, and thus
raising the n = 2 curves. This can be seen clearly in the
divergence of the subband-specific wavelength, which is
given for vc P 0 by

C)

c
rC

3

Subband Index:

n=2

0.4 0.8 1.2
M Qp

gl + wi /2(E+ Vp) —gl + wi (2n + I)

(18)

instead of Eq. (11). Obviously, the wavelength of the
dominant subband n in a metastable state diverges at
E = gl + ass (n+ 2) —V(), hence the diamegnetic shifts
of the n = 2 resonances. We cannot predict the exact
resonance energies with this simple argument because an-
ticrossings between the n = 1 and 2 resonances lead to
additional complications. In Fig. 2, a conspicuous exam-
ple for an avoided crossing can be seen for the first n = 2
level and the second n = 1 level. Other anticrossings are
not as clear because our method of identifying the res-
onance position with ~T()o~ = 0 fails when two of them
occur close together. In that case, energies of zero and
unit transmission no longer occur in pairs that can be
attributed uniquely to one resonance.

The resonances belonging to n = 1 show paramag-
netic behavior toward the top of the energy window of
Fig. 2, i.e., they shift in the direction opposite to that
of the n = 2 resonances. The exact shifts are influ-
enced by avoided crossings, but the paramagnetic ten-
dency can again be understood under the assumption
that the metastable state consists mainly of the original
n = 1 bound state. To show this, A„ from Eq. (18) is plot-
ted in Fig. 5 as a function of magnetic field for V() = 2
and E = s, i.e., E + Vo ——3.5. If we choose a fixed
energy near E = I and increase the dot length L, we
can expect the average spacing between new resonances
to be roughly 2Ai, in analogy with the bound states of
Sec. II. Since Ai decreases with w„resonances shift to
lower L at fixed E. The correct overall behavior in Fig.
2 is thereby obtained. In the same way, the fact that Az
grows with cuc because of the proximity to the subband
bottom in the dot region is found to be in accordance
with the diamagnetic behavior of the n = 2 resonances
discussed above. Unlike for n = 2, the bottom of the
n = 1 subband in the dot is still far enough below E to
allow a decrease in wavelength Ai as uc is increased from
zero. The possibility of a decreasing A„as a function of
u„or equivalenty an increasing wave number A:, can be
identified as purely quantum mechanical by noting that
the group velocity always decreases monotonically with
growing cu, . The physical reason for the increasing k at

FIG. 5. Subband-specific wavelength A„ from Eq. (18),
plotted as a function of magnetic field at Ez + Vp = 3.5 Ep
which corresponds to E~ ——1.5Ep in Fig. 2. To raise the
n = 1 subband bottom to this energy and thus force Aq to
diverge, a magnetic field of u, 2.1 up is required.

V. CURRENT DENSITY PATTERNS

In the preceding section, we have succeeded in under-
standing how the magnetic-field dependence of the res-
onances follows from the influence of the "parent" sub-
band. But other subbands, including evanescent states,
are also present in the metastable state. In fact, they
are indispensable for obtaining the coupling between the
n = 0 subband in the wire and the transverse wave func-
tion of the continuum bound state which has n ) 1.

The electronic motion is therefore no longer genuinely
one dimensional as in the cases B = 0 or V() = 0. This
dimensionality crossover is evident in the current density.
For one-dimensional propagation, the wave function has
the product form of Eq. (4) which leads to a current
density j = j(x, y) e~ because y is real. Flux conservation
then requires j(z, y) to be independent of x, i.e.,

J = j(y) e*. (19)

When subband mixing is present, it is clear that such
a simple expression cannot hold since interference terms
and evanescent states give rise to nonzero j„.

A special case exists at a resonance minimum where
~Too~ = 0. The probability flux must vanish at any cross
section through the wire because n = 0 is the only sub-
band propagating to infinity. To the right of the dot,
the wave function has the asymptotic form (4) where
the transverse part is now the shifted harmonic-oscillator
ground-state function from Eq. (14),

(20)

fixed E is a flattening of the dispersion relation E vs k as
its parabolic branches evolve into degenerate Landau lev-

els with growing uc. When E is close to subband cutoff
in the dot, as for n = 2 in Fig. 5, this effect is outweighed

by the simultaneous depopulation of the respective level.
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This implies that j must vanish identically for 2: —+ oo. To
the left, the asymptotic wave function contains a reflected
wave whose transverse part is shifted by the same amount
as that of the incident wave, but in the opposite direction:

(21)

The transverse shift being due to the Lorentz force, we
can achieve y~o —y A,o ~ 0 by choosing Id, sufficiently
small. In that limit, 4'(x, y) in Eq. (21) attains the prod-
uct form (4) and j must hence vanish for x ~ —oo.

We are then left with a current density that van-
ishes everywhere except for the vicinity of the dot.
This reflects the motion of an electron captured in the
metastable state for the limiting case of small coupling
to the continuum. The current density patterns shown in
Fig. 6 were calculated at ~, = 0.1 coo close to the energies
of zero transmission in Fig. 3. These plots shed new light
on the magnetic-field dependence of the resonances which
we termed paramagnetic and diamagnetic in Sec. IV: the
metastable electronic orbits take on the shape of vortices
with a dominant sense of rotation that corresponds to
a positive or negative magnetic dipole moment. Com-
parison with Fig. 3 shows that diamagnetic behavior is
matched by a counterclockwise rotation, while paramag-
netism comes with clockwise vorticity. This can be called
a normal Zeeman effect of the metastable state.

At first sight, one might expect that the area covered
by individual vortices is determined by the requirement
of an integer multiple of flux quanta per vortex, as in
Landau diamagnetism. But we are dealing with the limit
~, ~ 0, where the cyclotron radius is much larger than
the dot dimensions. Consequently, the electronic motion
is dominated by the dot geometry, which means the vor-
tices are simply the result of interferences between the
subbands that make up the quasibound state. The pri-
mary effect of the magnetic field is to trigger vortex for-
mation by causing the subband mixing in the first place.
Flux quantization is not obeyed by the vortices because
they, like the whole system, are not completely closed as
long as ~, g 0.

It seems contradictory that the current density pattern
of a resonance should simply be due to geometry-related
interferences and thus be constant in shape for small m„
whereas none of the vortices can exist at all in the ab-
sence of a magnetic field. This unphysical singularity of
the current density pattern for u, ~ 0 results from the
failure of the independent electron approximation when
the resonance width goes to zero. As the lifetime of the
metastable state diverges, so does the number of elec-
trons in the dot region, because in the absence of in-
terparticle scattering each injected electron stays in the
quasibound orbit for an arbitrarily long time. An in-
crease of the charge in a metastable state is predicted
in Ref. 27 for the rectangular cavity at B = 0, but the
importance of the eEect is described as secondary. The
situation is diferent here because only the inclusion of
electron-electron scattering will render the dimensional-
ity crossover continuous. Both the positions and shapes
of the resonances will thus start to deviate from our pre-
dictions when the independent-particle model, on which
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all the literature cited in the Introduction is based, breaks
down in the vicinity of ~, = 0. To create V'(y) and V(x),
respectively, we suggest the combined use of in-plane and
surface gating. zs Exact separability of the Schrodinger
equation at B = 0, just like the conservation of parity
required for the BIC in Refs. 7 and 12, will be impossible
to realize experimentally, due to inaccurate alignment of
the gates and the presence of disorder. zs These devia-
tions from separability were not considered here because
the magnetic field serves the same purpose, namely, to
destabilize the BIC and thus create resonances. If, there-
fore, the resonances retain a finite width at B = 0, the
B -+ 0 singularity in current density and charge does not
occur.

Summarizing the independent-particle results of this
and the preceding section, we obtain the following pic-
ture: even at arbitrarily small magnetic fields, the elec-
trons captured in the metastable state move in vortices
that have a net magnetic moment. Since a resonance
originating from subband n behaves diamagnetically or
paramagnetically depending on the energetic distance to
the bottom of subband n in the dot region, it can be
concluded that the sense of rotation is clockwise when
subband n is still far from being cut off in the dot at the
resonance energy, and counterclockwise if that is not the
case.

This relationship is not obvious from analogies with
transport at higher magnetic fields. It must be kept in
mind that the vortices form only near the resonances,
whereas the current density is more or less of the laminar
form (19) otherwise. This distinguishes our resonances
from the AB effect in a singly connected geometry as re-
ported in Ref. 30. There, the formation of edge channels
at high magnetic fields is essential. Our paramagnetic
resonances have a current density profile reminiscent of
such edge channels, but they are not involved in the high-
field AB effect. This can be seen by following the upward
shift of the subband thresholds in the dot as ~, grows.
Generalizing Eq. (9) to u, g 0, we note that resonances
splitting off from subbands n ) 1 cannot occur below the
energy Ei = Igl + cu, —Vs, which is the n = 1 subband
bottom in the dot region. This approaches the n = 1
subband bottom of the wire leads in the limit cu, ~ oo.
As a result, the resonances are pushed out of the energy
window (17) and thus cannot affect transmission in the
single-subband regime. This is consistent with the high-
field formula

where R~y~, T~f~ are phenomenologically or experimen-
tally determined reflection and transmission probabili-
ties of left and right interfaces between dot and wire

leads, and 4 is the magnetic flux enclosed by the one-
dimensional edge channels encircling the dot. The AB
oscillations described by Eq. (22) as a function of C' do
not go through zero because the resonant structure due
to interferences within the n = 0 level itself is weaker
than that caused by the BIC. Another expression for the
high-field limit of ~TM ~2 has been given in Ref. 31 for our
model potential, but it is of very limited validity. sz Still
it agrees with the above argument because it is precisely
of the one-dimensional form (12), with k and z given by
Eq. (15), which means that ~TM ~z has no zeros above the
continuum threshold.

VI. CONCLUSION

We have investigated transport in a model geometry
consisting of straight wire and dot potential, which is
separable in the absence of a magnetic field and exhibits
bound states in the continuum that split off from each
wire subband. Their existence can be understood classi-
cally, which is due to the fact that quantum-mechanical
tunneling does not make the classically bound states
metastable, as is usually the case. Upon application
of a weak magnetic field, sharp and asymmetric reso-
nances develop out of the bound states. Their energy
shift can be upward or downward with increasing mag-
netic field, depending on the change in wavelength of
the "parent" subband from which they split off. The
difFerent magnetic-field dependences are clearly reflected
in the current densities associated with the respective
metastable states. This allows us to conclude that the
electronic orbit of a metastable state possesses a para-
magnetic dipole moment when the "parent" subband is
far from cutoff, whereas the quasi-bound state has a dia-
magnetic vorticity if it has split off from a subband close
to threshold. The highly systematic behavior of the reso-
nances, which is insensitive to deviations of V(x) or V'(y)
from the shape assumed in this paper, leads to the ex-
pectation that the present geometry is suitable for an
experimental study.
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