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The current-voltage characteristic of the tunnel junction with a localized impurity level in the
dielectric layer is studied. We take into account the fact that the electron tunneling from the level
to the lead is accompanied by the formation of a positively charged hole bound to the impurity.
The Coulomb interaction of electrons with the hole leads to power-law singularities in the transition
rate, analogous to those arising in the problem of x-ray-absorption edges in metals. They manifest
themselves in I-V characteristic as I ~ (V — Vo)~ ®6(V — Vi), the exponent o being small when
the spacing between impurity and junction leads is greater than the Fermi wavelength Ar. Pre-
dicted dependences are most likely to be observed in junctions with leads made of a heavily doped
semiconductor or in GaAs heterostructures, where the spacing may be of the order of Ar.

I. INTRODUCTION

Recently the fabrication of very small tunnel junctions
has become possible. The physics of electronic transport
in these devices has attracted a lot of interest, both the-
oretical and experimental.! One of the peculiarities of
small tunnel junctions is that a single impurity situated
within the tunnel barrier may increase the conductance
dramatically. The influence of the impurity is most sig-
nificant if it forms a localized level with the energy E;
close to the Fermi level Er in the junction leads. As it
was shown in the works by Chaplik and Entin? and Lif-
shits and Kirpichenkov® the presence of a localized level
in the tunnel barrier leads to a resonant rise in tunneling
rate:
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where T, is the amplitude of tunneling from state k
(p) in the left (right) lead of the junction to the localized
level, €; and €, are corresponding energies, and I'z, T'r
are the widths of the localized level due to the tunneling
into the left and right leads correspondingly (see, e.g.,
Ref. 4). The resonance (1) shows up in the tunneling
current which may be determined as

I= eE:(mc — Np ) Wkp, 2
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where ny and n, are the Fermi occupation numbers of
the states in the left and right leads of the junction. In
particular, at small bias V = (EE — EF)/e the current
is linear in V, and the zero temperature conductance
associated with the impurity has the form
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Resonant peaks in the dependence of conductance ver-
sus Er (gate voltage) have been observed in sil-
icon metal-oxide-semiconductor field-effect transistors
(MOSFET’s).58

Another possible way to observe the tunneling via
resonant level is by measuring the current-voltage
characteristic.” In the following we consider the I-V char-
acteristic in a particular case of tunnel junction with sin-
gle impurity situated somewhat closer to the left lead,
I't > I'g, and E; below the Fermi energy: Er — E; >
I'r. Conventional theory based on Egs. (1) and (2) pre-
dicts the steplike dependence

1V) = 200V - Vi, ()

(dashed line in Fig. 1). Here 6(z) is the unit step func-
tion; threshold voltage Vi, may be found from the con-
dition E; = EE(Vi,). Within this approach one also
finds that in fact the step function (4) has finite width
6V ~ I'L /e; we may neglect it as long as the voltage V is
not very close to the threshold value: |V — Vip| > T /e.
Apparently the current-voltage characteristic may be also
measured in two-dimensional (2D) junctions.>® In this
case the threshold voltage Vin determined by the energy
of the localized level E; may be adjusted by changing the
gate voltage.

The expression (4) may be also understood as follows.
The condition I'z, > I'r means that the localized level
occupation number is determined by the Fermi energy in
the left lead; moreover, it equals 1 because E; < Er <
EL. (Throughout this paper the temperature is supposed
to be zero.) So the current in the junction is determined
by the small rate I'p of tunneling between the impurity
and the right lead. The step function 8(V — V;3,) reflects
the fact that at V' < Vi, the energy of the localized state
is lower than the Fermi level in the right lead and the
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FIG. 1. Schematic view of the I-V characteristic of the
tunnel junction with a single impurity. The case of noninter-
acting electrons (dashed line) is described by the steplike func-
tion (4). The solid line corresponds to nonvanishing Coulomb
interaction, Eq. (8). The threshold singularities are smeared
out at |V — Vin| STr/e.

tunneling is forbidden.

The above consideration based on expressions (1) and
(2) is only valid in the absence of the electron-electron
interaction. The aim of this paper is to show that the
Coulomb interaction changes the described I-V charac-
teristic significantly. To begin with we discuss the par-
ticular kind of interaction to be accounted for.

Recently Glazman and Raikh® and Ng and Lee® con-
sidered the strong on-site Coulomb interaction between
the electrons with different spin directions occupying the
impurity level. It was shown that this interaction may
lead to the Kondo anomalies in tunneling amplitude and
increase the linear conductance as compared to the case
of noninteracting electrons (3). The influence of on-site
Coulomb interaction on current-voltage characteristics
was also studied.1911 In particular, at eV > 'y, + T'r
the Kondo resonance is destroyed and the only change in
expression (4) is the additional factor 1. It arises because
strong on-site Coulomb repulsion allows only one of the
two spin-degenerate states to be occupied.

The Coulomb interaction between the electrons in the
leads also affects the tunneling, with its influence depend-
ing crucially on the dimensionality of the electron gas. In
the 3D case the interaction gives rise to a small correc-
tion to the tunneling density of states;!? in the following
we neglect it. In the 2D disordered electron gas the first-
order correction to the tunneling density of states with
respect to the magnitude of interaction has a logarithmic
singularity at small energies.}? This correction depends
on the degree of disorder and may also be neglected if
the mean free path is large enough. Finally, in the 1D
case the tunnel density of states is always suppressed at
low energies,!3:14 so in this paper we restrict ourselves to
the two- and three-dimensional cases.

The only remaining kind of interaction is that between
the electron occupying the localized level and conduction
electrons in the leads. In this paper we show that it gives
rise to a new effect, namely, an increase of current I(V)
at small values of V — V;;, qualitatively shown in Fig. 1
(solid line). The reasons for such behavior will be easier
to understand if we suppose that the localized state is
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formed on the impurity with positive charge e (e.g., donor
impurity in a semiconductor barrier).1® In this case the
total charge of the impurity and electron is zero and the
electrons in the leads are not subjected to the external
electric field as long as the localized state is occupied.
However, at the moment when the electron tunnels from
the impurity state to the right lead a positively charged
hole appears on the impurity and produces an attractive
potential U for the conduction electrons. Its influence on
the tunneling process may be qualitatively understood
by a simple calculation of the first-order correction to
the tunneling amplitude with respect to the magnitude
of the hole potential. Apart from the direct tunneling
from the impurity level to the state with momentum k in
the right lead described by the amplitude T}, the electron
can first tunnel into any other empty state ¢ in the lead
and then scatter to the state k by potential U. The total
amplitude of such processes has the form

U,
tk=Tk+ZTq‘E—i—-_ﬂcE+"', (5)

a>kr

where the ellipses signify the higher-order terms propor-
tional to U2, U3, etc. Dropping the unessential depen-
dence of the matrix elements on momenta we find that
the sum over empty states gives rise to a logarithmic di-
vergence in tunneling amplitude:

D
=T({l1—-vwUln——"—5+:-- 6
t ( VUnEi—E§+ ), (6)

where v is the density of states in the vicinity of the
Fermi level in the right lead; D is some characteristic
energy of the order of the bandwidth. Since the attractive
potential created by the hole is described by negative U,
the first-order correction is positive. Thus in formula (4)
the tunneling rate I'r (proportional to the square of the
amplitude t) acquires logarithmic dependence on E; —ER
or, in other terms, on V — Vi

Fr(V) x1+2v|U|In )

D
4.
e(V —Vin)

This change in Eq. (4) qualitatively corresponds to the
solid line in Fig. 1.

It is important to note that the logarithmic correc-
tion appears due to the Coulomb interaction between
the localized electron and conduction electrons. If it
were not for this interaction, the hole potential would not
be screened before the electron leaves the impurity. In
this case we would have to take into account the change
of the wave function of the conduction electrons due to
their scattering on the impurity potential. This scatter-
ing leads to the excitation of virtual electon-hole pairs,
and we would have to add to expression (5) the total
amplitude

Ugk
> gl
¢'<kp Ek - qu

of the processes in which at first the electron is scattered
from any state q’ below the Fermi level to the final state
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k by potential U, and then the electron tunnels from the
impurity level to state ¢’. This sum is negative and has
logarithmic singularity at E; = E; — EF. So if we dis-
regarded the electron-electron interaction, the logarith-
mic correction to the tunneling amplitude would have
canceled. However, the Coulomb interaction of conduc-
tion electrons with the localized electron gives rise to the
compensation of the impurity potential U by the poten-
tial —U created by the localized electon. As a result the
virtual electron-hole pairs are not excited.

In the following we will be mostly interested in the
threshold behavior of the tunnel current I(V), i.e., at
e(V — Vin) € D. [We can simultaneously suppose
e(V — Vin) > T', because the scale 'y, at which the
singularity must be smeared out is exponentially small.]
In the vicinity of the threshold the first-order perturba-
tion theory is not applicable and the higher-order terms
in series (5) must be taken into account.

The simplest way to solve this problem is to use the
analogy with the well-known Mahan-Noziéres—-De Do-
minicis (MND) problem in the theory of x-ray-absorption
edge in metals (for recent reviews see Refs. 16 and 17).
Contrary to our problem, in the MND theory the electron
transition from a deep localized state to the vicinity of
the Fermi level is stimulated by the x-ray photon. How-
ever, in the solution of the problem the photon plays no
role. It only allows to satisfy the energy conservation
law; the form of the matrix elements describing photon-
assisted electron transitions does not affect the threshold
behavior of the transition rate. On the other hand, the
influence of the core-hole potential being switched on at
the moment when the electron abandons the localized
level is accounted for properly. Thus we can find the
threshold behavior of I(V') by applying the results of the
MND theory.

The first result for the MND model was obtained by
Mahan'® who showed that the sum of the most diver-
gent terms in the perturbation series for the transition
rate has a power-law divergence at the threshold point.
Applying this result to our problem we receive the I-V
characteristic of the form

I(V) x (E(V_f)Tth)> G(V = Vin), (8)

where a = 2v|U| and U represents the matrix element
Ui of the hole potential properly averaged over the di-
rections of momenta k, k’.

The further investigations of the MND problem!%2!
showed that the threshold behavior of the transition rate
can be found exactly. The exact theory also predicts
the power-law edge singularity (8), with the exponent
a being determined by the scattering phase shifts 4, for
the conduction electrons with energy EFr on the core-hole
potential:

(%) ®

The sum in Eq. (9) must be taken over all the different
scattering channels x (including both spin directions); 8o
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is the maximum phase shift.?? The two terms in Eq. (9)
have different physical sense. The first one, 26y /7, gen-
eralizes Mahan’s original result a = 2v|U| and describes
the increase of the tunneling rate due to the electron
scattering on the core-hole potential. The second term
in Eq. (9) is always negative; it was first predicted in
the well-known work by Nozitres and De Dominicis.!®
It accounts for the fact that the appearance of even
a weak hole potential significantly modifies the many-
particle wave function of the electron gas in the metal,
so that it becomes almost orthogonal to the initial wave
function.?® Corresponding suppression of the transition
rate gives rise to the second term in Eq. (9).

Thus the comparison of the tunneling problem with
the MND problem shows that the I-V characteristic of
the junction with a single impurity must have singular
threshold behavior (8); the exponent a may be found
with the aid of Eq. (9). The scattering problem to be
solved is that for the potential induced in the metal by
the charged impurity situated outside the metal.

We estimate the order of magnitude of the exponent
a in Sec. II. A rigorous calculation of a for some par-
ticular kinds of the junction geometry is carried out in
Secs. III and IV. The possibility of experimental obser-
vation of the increase in tunnel current in the vicinity of
the threshold voltage and the modification of the formula
(8) at 'y ~ ' are discussed in Sec. V.

II. QUALITATIVE ESTIMATES

The value of the exponent « is determined by the ge-
ometry of tunnel junction. In this section we estimate o
in the simplest case when the right lead of the junction is
a 2D electron gas, and the electron localized on a nearby
impurity tunnels into it. Since the hole potential U(p)
is axially symmetric the scattering channels may be la-
beled by an integer quantum number m coinciding with
the z component of the angular momentum (in units of
h). The electrons in channel m move in a potential

h? m?

Mz U(p),
thus the electron with energy Er = hzk%/2M experi-
ences the hole potential U(p) only at p 2 m/kr. The
characteristic size of potential U(p) coincides with the
distance d between the 2D layer and impurity, there-
fore the scattering phase shifts 6,, differ from zero only
for |/m| < kpd. (Throughout this paper we suppose
krd > 1.) The value of phase shifts may be estimated
with the aid of the Friedel sum rule®*19 which reads that
the sum of all phase shifts equals w7 N, where N is the
number of electrons screening the hole potential, N = 1.
In our case

> b~ (kpd)s ~ 1,
m

that is, § ~ (kpd)~!. The second term in expression (9)
may also be estimated,

2
> (‘5?’") ~ (kpd)6% ~ (kpd)~!, (10)
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and has the same order of magnitude. Thus the absolute
value of the exponent « is of the order of (kpd)~! < 1.
An analogous estimation for the 3D case gives |a| ~
(krpd)~2, so at kpd > 1 we always get the power-law
singularity (8) in the I-V characteristic with a small ex-
ponent |a| < 1.

The above estimate does not allow us to predict the
sign of a because both terms in formula (9) have the
same order of magnitude. Nevertheless, if all the phase
shifts are positive [e.g., this is always the case for strictly
attractive potential: U(p) < 0], we find

=) - =)
< (%)2%:% = i—gzx:éx = %" (11)

Here we again use the Friedel sum rule. The substitution
of the last inequality into Eq. (9) gives a > /7 > 0.
Thus we can argue that the exponent a must be positive.

III. INFINITE 2D ELECTRODES

In this section we consider the most simple geometry of
the junction when the exponent «a allows rigorous calcu-
lation. Namely, we suppose that the electrodes are repre-
sented by infinite planes of 2D electron gas. In Sec. IIT A
we take into account only the right electrode. The influ-
ence of the left electrode is considered in Sec. III B.

A. Tunneling into the plane of 2D electron gas

Suppose that the right electrode is a 2D electron gas
situated in the plane z = 0, and impurity has the coor-
dinates z = y = 0, z = —d. The following calculations
are intended to illustrate the qualitative consideration of
Sec. II, so we do not take into account the screening of
the hole potential by the left electrode. The potential in-
duced in a 2D electron gas by a charged impurity may be
calculated in the Thomas-Fermi approximation?® if the
electron concentration is sufficiently high (e?/hvp < 1).
If the distance d is much larger than the Bohr radius ap,
the potential has the form

e — (12
p)= 2M (p2 + d2)3/2’

where p = (z,y) and M is the electronic mass. To get
this result one can calculate the screening charge den-
sity o(p) within the electrostatic approximation, o(p) =
—ed/2m(p? + d?)%/2, and then apply the Thomas-Fermi

approximation
M
U(:I},y) = u2eU(:z:,y) = GWU(l,y) (13)

(Here vy = M/7h? is the density of states in a 2D elec-
tron gas.) As we have seen in Sec. II, the scattering phase
shifts may be labeled by the integer quantum number m
and all of them are small: 6,, < 1. This allows us to
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calculate the phase shifts in the Born approximation

b= =M [ U k)0 (14)

where Jp,(2) is the conventional Bessel function. Upon
the substitution of potential (12) into the integral (14)
the latter may be calculated at krd > 1 and the phase
shifts have the form

. l krd
" 2 m2+ (kpd)?’
In correspondence with the estimates of Sec. II both

terms in the right-hand side of formula (9) have the same
order of magnitude:

+o0 2
a=2_60__2 Z Sm =_1___1_
T T nkrpd 4mkpd

m=—00

Sm (15)

- %(kpd)'l. (16)

Here the factor 2 preceding the sum over m accounts for
the spins of electrons.

B. The influence of the left electrode

So far we neglected the influence of the left electrode
on the electron tunneling from impurity to the right elec-
trode. This is a good approximation only if the distance
d;, between the impurity and the left electrode is much
larger than the distance dg from the impurity to the right
electrode. In the opposite case d;, S dr the presence of
the left electrode is essential and leads to the decrease of
the exponent a. For example, at d; < dg the charge of
the impurity is almost completely screened by the elec-
trons of the left electrode and the potential induced in
the right one is strongly suppressed. Thus the first term
in the expression (9) is much less than our estimate of
Sec. IV, i.e., 260/m < (krdg)~!. On the other hand, the
sum over the scattering channels in the second term in
Eq. (9) includes the scattering phase shifts in both elec-
trodes and, corresponding to Eq. (10), may be estimated
as (kpdr)~™! > 260/m. Thus at d, < dg the exponent o
must be negative.26

To illustrate the above arguments we calculate o for
the tunnel junction of a particular geometry: the two
leads are represented by the planes of 2D electron gas,
z = —d;, and z = dg, and the impurity is situated at
point z = y = z = 0. The potential induced in the leads
by the charged impurity is calculated in the Thomas-
Fermi approximation in Appendix A. At dr,dr > ap
the potential in the right electrode has the form

h2 oo
T2M J,

sinh qd,

Ur(p) = sinhq(dz + dr)

qJo(gp)dg. (17)

This potential scatters the electrons in the right lead; cor-
responding phase shifts may be calculated in the Born ap-
proximation by the substitution of Eq. (17) into Eq. (14).
The result is
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o sin 7288 v
mR = .
4kp(dL + dR) cosh gm0 — cos 7745 X
(18) ——
Il
The first term in the expression (9) for the exponent o m ?r//// I 2
is determined by the maximum of é,,g, e %
"llh

—_— = . 19
T 2kF(dL +dg) cot 2(dy + dg) (19)

The second term in Eq. (9) is calculated by summing up
the squares of the phase shifts in both electrodes, with
émr being obtained by replacement L « R in Eq. (18),

> (%) ez {(%) + (=)}

X
1 dr —dgr
= 2
Arkp(dr + dR) { + 7IrdL +dr
7l'dR
— 3. (20
XCOtdL+dR} (20)

Subtracting Eq. (20) from Eq. (19) we find the depen-
dence of the exponent o on the distances between impu-
rity and electrodes:

o= ! { cot mdr - —1-
- 2kp(dr + dr) 2(dL + dR) s

d R — d L wd R }

cot . 21
(de +dg) ~ dp+dr (21)
In correspondence with our estimates, « is negative if the

impurity is close to the left electrode d; < Bdg, where
B = 0.40, and positive otherwise.

*3

IV. TUNNELING INTO THE CONFINED
ELECTRODE

The case of tunneling into the infinite 2D electron gas
considered in Sec. III may probably be realized in GaAs
heterostructures. However the existing experiments®7
do not correspond to this geometry.

The experiments®® were performed on silicon MOS-
FET’s. The electodes were represented by the confined
2D electron gas, and contrary to the case of Sec. III the
electrons tunnel from the impurity to the edge of the
electrode, Fig. 2. To calculate the scattering potential

FIG. 2. The geometry of the 2D junction considered in
Sec. IVB. The right electrode occupies the half-plane y > 0;

impurity is situated at point (O, —d). The left electrode is not
shown.

|
|

d

FIG. 3. The geometry of the 3D junction considered in
Sec. IV C. The right electrode occupies the half-space z > 0,
impurity is situated at point (0,0, —d). The left electrode is
not shown.

for the electrons in the lead produced by charged impu-
rity one can use the Thomas-Fermi approximation (13);
the necessary density of screening charge may be found
from the well-known solution of the electrostatic problem
of a charge in the vicinity of a metal half-plane.2” The
resulting potential is

R [d 1

Ulw,y) = oM\ yz? + (d +y)?’ (22)
Unlike the potential (12) for the case of infinite 2D elec-
tron gas, this potential depends explicitly on the co-
ordinates ,y and is not a function of single variable
p = /x? + y2. Therefore the angular momentum m is
no longer a quantum number and the evaluation of the
phase shifts becomes more difficult.

The same difficulty arises in considering the case of 3D
leads, Fig. 3, corresponding to the experiment in Ref. 7.
The Thomas-Fermi calculation of the screened impurity
potential inside the 3D metal is quite analogous to the
two-dimensional case.?5 If the distance d between the im-
purity and metal surface is large as compared to the De-
bye radius K71, the potential takes the form

2e2d 1
5 (02 +d2)e2
Since U(p, z) is not a central potential, the scattering

problem may not be reduced to a one-dimensional one
by using spherical coordinates.

U(p,2) = — k2, (23)

A. Born approximation for the phase shifts
in scattering on arbitrary potential

In this section we present a method of calculating the
scattering phase shifts for a general potential. Let us re-
formulate our two- or three-dimensional problem in terms
of a set of one-dimensional channels labeled by index q,
e.g., the channels with definite components of angular
momentum or the channels classified by the component
g of momentum parallel to the edge of the lead. Suppose
an electron in channel g with the energy F is scattered by
the potential U. In general it may scatter to the states
with energy E in all the channels ¢/, and corresponding
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amplitudes Sgq/(E) constitute a unitary scattering ma-
trix. In a special case of symmetric potential and prop-
erly chosen set of channels x (e.g., central potential and
the channels labeled by the components of angular mo-
mentum) the scattering matrix is diagonal:

Sxx (E) = bxxs exp|2iby (E)], (24)

where 6, (E) is a scattering phase shift in channel x, and
Oxx' is the Kronecker delta. In a general case of nonsym-
metric potential we can diagonalize the scattering ma-
trix by a unitary transformation, that is, to redefine the
scattering channels in such a way that the electron with
energy F in each of the channels yx is being scattered by
potential U only to the same channel. Consider now a
Hermitian matrix

By = 5[0 S(B)gq (25)

Matrix Agqy may be diagonalized by the same unitary
transformation. The substitution of the diagonal scatter-
ing matrix (24) into definition (25) shows that the phase
shifts 6, coincide with the eigenvalues of matrix Agq .
We can now rewrite the expression (9) for the expo-
nent o in terms of matrix Agq. The first term 26/ is
expressed via the maximum eigenvalue of Agy/,

6o = maximum eigenvalue of Ay, (26)

while the second one is proportional to the trace of A2,

6,.\2 1 1
§ — 2 _ § : 2
(_X_) = F Ir A = ;2' < |Aq‘1/| . (27)

X

The scattering phase shifts and, consequently, matrix
A,y must be calculated for energy E = EF.

Rigorous calculation of matrix Agy is hardly possible,
but, as we have seen in Sec. II, at kpd > 1 the scatter-
ing phase shifts are small and may be found in the Born
approximation. Thus we can restrict ourselves to the cal-
culation of matrix Agg in the first order of the perturba-
tion theory with respect to the magnitude of scattering
potential U. This calculation is straightforward, and the
result is

Dgg = —T\/VqVq Ugq'- (28)

Here v, = y4(E) is the one-dimensional density of states
in channel g; the matrix element U,,s must be calculated
for the states with energy E in channels ¢ and ¢’.

To our knowledge, the possibility of obtaining the
threshold behavior of the transition rate in case of a
general nonseparable potential with the aid of scatter-
ing matrix, Eqs. (25)-(27), has not been proven so far.28
However, one can show (see Appendix B) that in the limit
(28) of small phase shifts the formulas (9), (26), and (27)
do give the correct result for the exponent a.

In Secs. IVB and IV C we apply the Born approxima-
tion (28) to the calculation of the exponent o for tunnel-
ing into confined electrodes, Figs. 2 and 3.
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B. Two-dimensional electrode

Consider the case of tunneling into a 2D confined elec-
trode, Fig. 2, corresponding to the experiments.5:¢ To cal-
culate the exponent a in the Born approximation (26)-
(28) we have to define a set of one-dimensional channels.
It is convenient to choose the channels with definite z
components of momentum fiq. The wave function of an
electron in channel g with the energy Er > h%¢2/2M has
the form

Ye(x,y) = V29 sinp,y, (29)

where p; = 1/k%Z — ¢2. The one-dimensional density of
states v, is inversely proportional to p,:
M 1
Vg = —5 — B(kp — . 30
LAp— Pa (kr —lql) (30)
The matrix element of potential (22) calculated with the
wave functions 1, and 1, has the form

1/2 2 ,
7") / E_e—-lq-—q |d

Ugg = = (271 M

x ! S T . (31)
Vipe—pgl  VPaF Py

(In fact, the square-root divergencies within the large
parentheses disappear at small |p; + py| S d=!. How-
ever, this will not affect the further calculations.) Now
we are in a position to calculate the maximum phase shift
6o in the Born approximation (26) and (28). The phase
shifts 6 coincide with the eigenvalues of matrix (28); the
corresponding integral equation may be written as fol-

lows:
e—la—d'ld

1 ke
1) = ———/ df ———
1@ 2vV2nd J—kr ? v/PqPq'

X<Imim4
1
)@@

Due to the exponential factor the kernel of Eq. (32) has a
sharp maximum at ¢ = ¢’. Since it also increases at |g| —
kr, we can find the maximum phase shift §y by expanding
the kernel over (kr —|g|)/kr. After some algebra we find
that the maximum phase shift has the form

60 = 275/ 4x~ 12Ny (kpd) =34, (33)

where Ag is the maximum eigenvalue of the dimensionless
integral equation

© z?—y? 1 1
Aw(z)=/o dye” v‘(\ﬂx_y[—\/ﬂ_y)w(y).

The last equation may be solved numerically, Ag ~ 1.66.

Note, that contrary to the case of infinite 2D elec-
trodes, we found here that & ~ (krd)~3/* instead of
8o ~ (krd)~!. This difference appears due to the square-
root singularity of the potential (22) in the vicinity of
sample edge. The electrons with the momenta almost
parallel to the edge experience greater value of the po-
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tential and acquire greater phase shift. On the contrary,
as we can see from Eq. (27) the second term in expression
(9) for the exponent a is determined by all the possible
directions of momentum, and the qualitative estimates
of Sec. IV may be valid. The rigorous calculation of the
sum (27) with the substitution of Eqgs. (28), (30), and
(31) confirms that the second term in Eq. (9) is of the
order of (krpd)~!. Thus at krd > 1 the second term is
negligible and

a =2"Y47=3/2 Ay (kpd)~3/* ~ 0.25(kpd)~%/4. (34)

The combination of formulas (8) and (34) describes
|

PqDy’

2
~16me P2 VZIIRE + (Pg + Py V7]

qul =

[x? + (pg —

e—la—d'ld,
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the current-voltage characteristic of the two-dimensional
junctions.

C. Three-dimensional electrode

The case of the 3D electrode, Fig. 3, may be considered
in a similar way. We define the set of one-dimensional
channels with definite components %q of momentum par-
allel to the electrode boundary. The wave functions of the
electrons with energy Er have the form

Yq(p, 2) = V26'9P sin p,z. (35)

The one-dimensional density of states in channel q is de-
fined by the formula (30), matrix elements Uqq: of po-
tential (23) have the form

(36)

The substitution of Eqgs. (30) and (36) into the Born approximation formula (28) gives the following integral equation

for the scattering phase shifts:

_ 4Mé / / PPy €xp(—|q — q'|d)
T rh? [ﬂz +

Similar to the integral equation (32) for the 2D case, the
kernel of Eq. (37) has a sharp exponential dependence on
la — q'|. However, contrary to Eq. (32), the kernel has
the maximum at ¢’ = \/k,;.z — k2/4 < kp, and this allows
us to find the maximum eigenvalue in the limit of large
d by replacement

8(a - q).

In this approximation the eigenfunctions have the form
f(a) = 6(q — qo), the maximum phase shift &, corre-

sponds to gg = \/k:F2 — k?2/4 and equals

oMe? 7 (nhop\Y/? _
whop = 5 () e

where we substituted (4e?/rhvp)}/2kp for the inverse
Debye radius «.

We can also find the second term in expression (9) for
the exponent o by substitution of Eqs. (28), (30), and
(36) into Eq. (27). Corresponding calculation is straight-
forward and gives the result

ORNCT

The comparison with the first term 26y/7 shows that
the latter is much greater because of the parameter
hvr/e? > 1 and the numeric coefficient. Thus in the
3D case we find the following value of the exponent:

1/2
- (%E) " e (39)

in the expression (8) describing the threshold behavior of
the current-voltage characteristic.

2T
exp(—|q —q'|d) — z

& = (38)

(pq — Pg')?][K% + (Pg + Py )?]

f(d')d*q'. 37)

V. CONCLUSION

We considered the current-voltage characteristic of a
tunnel junction with a single impurity situated inside
the dielectric layer. The main result of the paper is the
power-law threshold behavior (8), with the exponent
determined by Egs. (16), (21), (34), or (39) depending
on the junction geometry. The exponent o is small at
krd > 1, therefore experimentally the most favorable
situation corresponds to the leads fabricated of a mate-
rial with small Fermi energy, e.g., heavily doped semicon-
ductor. Another way to increase parameter krd is to use
dielectric layer with a wide forbidden gap, so that one
could make small distance d between the impurity and
the right lead. Note that at positive o the dependence
(8) corresponds to negative differential conductance and
may lead to a hysteresis of the current-voltage character-
istic measured at fixed current.

In Sec. IV we neglected the influence of the left elec-
trode on the tunneling into the right electrode. As we
have seen in Sec. III, the left electrode screens the hole
potential and reduces exponent a. The influence of the
left electrode would weaken, if the impurity was situ-
ated closer to the right electrode; in this case to sat-
isfy the condition I'r >> I'r one has to fabricate lower
tunnel barrier on the left of the impurity. These condi-
tions can be met in the experiments with scanning tunnel
microscope,?3° where a small metal grain is separated
from the substrate by an oxide layer, and there is a vac-
uum gap between the grain and microscope tip. In these
experiments the exponent o must be very small because
the characteristic size of the potential induced in the tip
by a charged grain is of the order of grain size r 2 100 A,
i.e., kpr > 1. However one would expect greater value
of a if smaller grains were used.

Throughout this paper we supposed I'y, > I'g, i.e., the
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rate 2I'L, /h of the electron tunneling from the left lead to
the impurity is much larger then the rate 2I'p /% of tun-
neling from the impurity to the right lead. In this case
the localized level is almost always filled and the expres-
sion for the current (8) describes the renormalization of
I'r due to the scattering of conduction electrons by the
charged hole. If ', and I'p are comparable, the filling
factor of the localized level I', /(T'L, + T'r) will no longer
be equal to 1. Corresponding decrease of the current is
described by formula

L' Tr(V)
el vrn o LA C
(40)
0 D “
Ir(V)=T% (———-—-——e(V — Vth)) .

Note, for example, that at ', < T'g the current is mostly
determined by ' and any increase of I'r due to the
Coulomb interaction leads to a small correction to the
tunnel current.

The expressions (8) and (40) for the tunnel current are
valid for the voltage not too close to the threshold value:
|V = Vin| > T +Tr. I T > Tg,itis possible also
to find I(V) for |V — Vin| ~ 'L + Tr. In this case one
has to take into account the finite lifetime of the hole due
to the electron tunneling from the left lead. To do this
we must add the imaginary part —il'L to the energy E;
of the localized electron in formulas (B3) and (B13) of
Appendix B. The I-V characteristic for small o <« 1 has
the form

Ix D __ (E + arctan _]::,_) , (41)
VEZ+TZ 2 ry

J

d? 2 4me 4Me?
d—z§¢(q’ Z) —q ¢(q’ Z) = ——g_é(z) + eh2

6(z +dr)o(q, —dr) +
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where the energy of the impurity E; (counted from Ef)
depends on the voltage: E; = Ae(V — Vin), the numeric
factor A being determined by the geometry of the junc-
tion.
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APPENDIX A: POTENTIAL INDUCED
BY AN IMPURITY IN TWO
PARALLEL 2D ELECTRODES

Suppose the two layers of 2D electron gas are situated
in planes z = —dy, z = dg, and a charged impurity has
the coordinates £ = y = z = 0. Following the review
by Ando, Fowler, and Stern,?® we find the electrostatic
potential ¢(p, z) from Poisson’s equation

eA¢ = — 4meb(p)6(z) — 4mor(p)6(z +dL)
—4nor(p)é(z — dr), (A1)
where € is the dielectric constant; the charge density
or(r)(p) induced by the impurity in the left (right) elec-

trode in the Thomas-Fermi approximation is connected
with the potential

2 2
71(p) = ~ 2 6(p,~dr), or(p) = - b, dn).
(A2)

After the substitution of Eq. (A2) into Eq. (Al) and a
Fourier transformation of ¢(p, 2) over the transverse co-
ordinate p, we obtain a simple differential equation

4Me?

eh? (A3)

6(z — dr)¢(q,dr)-

The solution of this equation allows us to determine the potential Ur(p) = —ed(p,dr) induced by the impurity in

the right electrode

R sinh gdy, + fqape?®’

Ur(p) =

where we introduced the Bohr radius ap = eh®>/Me?. At
dr,dr > ap the parameter gap ~ ap/dp(r) is small,
and we obtain the expression (17). The potential in the
left electrode coincides with Eq. (A4) after the replace-
ment L « R.

APPENDIX B: LEADING LOGARITHM
APPROXIMATION FOR TUNNELING RATE

The expression (9) for the exponent o in formula (8)
for the tunnel current is obtained as a result of the MND
theory in the case of a separable potential. Here we cal-
culate « in the first nonvanishing order of the perturba-
tion theory with respect to the magnitude of an arbitrary

"2M J, sinhq(dr +dg) + (1 + 1qap)igapes

(dL+dR) qJO(qp)dQ7 (A4)

f
nonseparable potential.

We describe the tunneling of electron from impurity to
the right electrode by the Hamiltonian

H=Hy+ Hr,
Ho=Y exalax + Eb'b+ Y Urwalawbb',
k kk'
Hr =) (Tkajb+ Tyiblax).
k

Here ek, aL are energy and creation operator of electron
in the right lead, b' is the creation operator of the elec-
tron occupying impurity level, and Ukks is the matrix
element of the potential induced in the right lead by the
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charged impurity. Hamiltonian Hr describes the tunnel-
ing of electrons between impurity and electrode; T} is
corresponding matrix element. Due to the presence of
the left electrode and the condition I'y, > I'r the occu-
pation number of the impurity level is determined by the
Fermi level E% in the left electrode. Thus the impurity
level is filled at E; > O (the energy origin is chosen at
Fermi level EE), and we can calculate the current in the
junction as

d . .
I=—e <E¥b'fb> = ie([b'b, Hr]) = —2eIm zk;:rk, (blag).

We now calculate the average (b'ay/) in the first-order
perturbation theory with respect to the matrix element
Tk and find

=2eRe / > Tk Ty Fiw (t)dt, (B1)
oo kk’
Fow (t) = (OIT {al £b(&) 0)aw (0} 10).  (B2)

Here T is the time ordering operator; ai(t),b(t) are
Heisenberg operators corresponding to Hamiltonian Hy;
the averaging in Eq. (B2) is performed over the initial
state with occupied impurity level and filled Fermi sur-
face.

The quantity Fii (t) may be studied by expanding
Eq. (B2) in diagrammatic series over the interaction Uy .
Some general properties of this series have been estabJ—

1 — eiler—epr)t
- vevg U, de / dewr e —(lexl+lesl)/D 2 "~ "
qul qq[/ k k T
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lished by Noziéres and De Dominicis!® who showed that

Fy,» may be written in the form

Fkk’ (t) = e—-iE.'thk, (t)ec(t) (B3)

Here Ly (t) is the open line contribution!® describing
the scattering of the electron tunneled from the impu-
rity; C(t) is the sum of all single loops and describes the
adjustment of the Fermi sea to the hole potential. These
two factors give rise to the two terms in Eq. (9). Be-
low we calculate both contributions in Eq. (9) in the first
nonvanishing order with respect to Uy .

The first nontrivial contribution to C(t) is due
to the two-vertex loop diagram. Its calculation is
straightforward!® and gives

1-— ez(ek —€x)t

Cy(t) =iAE;t — Z |Ukkl}29(€k)9("'5k’) (ex — €xr)?

Kk
(B4)

After the substitution into Eq. (B3) the first term gives
only an unessential renormalization of energy E;, while
the second one is proportional to Int and gives rise to
the power law in Eq. (B3). It is shown in Ref. 19 that
this power-law dependence is responsible for the second
term in Eq. (9). To evaluate it we suppose that each
state k is characterized by the channel index ¢ and one-
dimensional momentum p. Then at ¢t — —oo the second
term in Eq. (B4) has the form

1 :
= —FI&AZ In(—iDt), (B5)

where we introduced a cutoff D of the order of the bandwidth; matrix A is defined by Eq. (28). As we expected, the
factor preceding In(—iDt) coincides with the second term in Eq. (9) obtained by the substitution of approximation

(28) into expression (27).

The first term in Eq. (9) originates from the open line contribution Lgk (). To determine it we have to find the

asymptotic behavior at ¢ — —oo of the quantity

ZTka'ka’ (t)= Z Ln(t),

kk’

(B6)

where L, (t) is the contribution of the open line diagram with n vertices,

La(t)=i) TkTe Y. Uk Ukyky -+
kk’ k1 kn-1

Uk,_1k

0 0
X / / dty - dtnGr/(—t1)Gr, (t1 — t2) - - - Gk, (tn—1 — tn)Gi(tn — t).
t t

Here Gi(t) is a conventional unperturbed Green’s function. We now again substitute k =

(g,p). Att — —oo only the

electronic states with energies €, = €5, — 0 contribute to L, (t), hence within the leading logarithm approximation

we can neglect the dependence of matrix elements on p and substitute Ugg/

Ln(t) = ZTqT; Z YmUq'q1Ugrgs *++

qq’ q1°*qn-1

U(In—lq1

= Uy and Ty = T,. After this we find
(B7)
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Tn = ’L/ / dtl dtnG ( tl)qu(tl —-tz)

Here we introduced the Green’s functions summed over

D,
Z Gop(t) =

G,(t) = Dt — —o0.

= zD lsgnt
At t — —oo the integral (B8) diverges logarithmically.
The leading term of its asymptotics has the form
VgV (—it)-lﬂ In™(—iDt)
qn-1"9q n! *

TYn = Vg'Vgq, **

(B9)
The substitution of Eq. (B9) into Eq. (B7) gives

o - e (28))

x In"™(—iDt),

where the matrix Ay, is defined by formula Eq. (28).
Now we can rewrite the sum over n in Eq. (B6) as

L(t) = T,Ty /vy (—it)™*
qq’

x {exp [%Aln(—iDt)] }qq, :

In principle, one can find the set of eigenvalues 6, and
corresponding eigenvectors f, (g) of the Hermitian matrix

(B10)
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Ggp_1(tn—1 — tn)Gq(tn — t). (B8)
f
Agq. Then the expression Eq. (B10) takes the form
2
= 2(—it)~t z -, B11
L(t) ; | |*(—it) " exp [ﬂ_éx In( th)] , (B11)
(B12)

Tx = Z Ve Tafx(9)-

Finally, we can use Egs. (B11) and (B5) to calculate the
current (B1) in the junction

0
I=2e Re/ e Bt L(t) eC gt
o0

0
=2GZ|TX|2 Re/ e Bt (—jp)~1
X —00

x (—iDt) 2o/ "=/ gy
(B13)

If the scattering phase shifts 6, are small, the calculation
of the integral in Eq. (B13) gives

26, /7 —TrA?/x?
I= 27reZ|‘rx|2 (EB,) .
X

At E; x e(V — V;) — 0 the leading contribution to the
current is associated with the channel xy = 0 providing
the maximum phase shift §,. Neglecting the contribu-
tions of other channels, we receive the threshold behavior
(8) with the exponent o determined by Eq. (9).

(B14)
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