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Resonances in transmission through an oscillating barrier
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We calculate electron transmission through a point barrier oscillating at frequency cu. Transmission
resonances occur before the first emitted sideband channel opens, that is, for electron energies
E & 4u, and which strongly suggest the formation of quasibound states in the time-dependent
potential. %'e confirm the existence of these quasibound states, obtaining both the binding energy
and electron lifetime, by computing the complex energy poles of the transmission amplitude. The
resulting transmission resonances are analogous to those found in other multiple quantum channel
scattering problems, such as the transmission through a donor impurity in a quasi-one-dimensional
wire.

I. INTRODUCTION

Interest in the electron transmission through a poten-
tial barrier which oscillates in time began as a possible
way to determine the quantum-mechanical "tunneling
time" through the barrier. i s More recently, oscillating
barriers have been used as a model systems is which
permit explicit calculation of inelastic transmission coef-
ficients, in an attempt to simulate electrical conduction
in the presence of phonons, light, or applied ac voltages.
Transmission through such an oscillating potential is a
type of phase-coherent inelastic scattering, and does not
describe either dissipative transport or the loss of elec-
tronic phase coherence in a conductor.

An oscillating barrier functions as a dynamical trap
for electrons having emitted sideband energies below
the continuum. s Electrons trapped as evanescent waves
near discontinuities or defects appear to be a common
feature in multichannel quantum scattering problems.
For an electron scattering from a defect in a quasi-one-
dimensional wire, is s4 electrons in evanescent subbands
above the Fermi energy accumulate around the static de-
fect, and produce transmission resonances analogous to
those created by electrons trapped in evanescent side-
bands below the continuum for transmission through the
oscillating barrier. Thus transmission through the oscil-
lating barrier, which produces multiple energy transmis-
sion channels, is analogous in many respects to transmis-
sion through a static defect in a confined geometry, in
which the multiple spatial transmission channels consist
of the confined electron waveguide modes.

II. OSCILLATING BARRIER
VERSUS ELECTRON WAVEGUIDE

In this paper we study the electron transmission
through a one-dimensional potential V(x, t) oscillating
at frequency cu, similar to that in Ref. 8, where

V(x, t) = [V, + icos(~t)]6'(x) . (1)
A plane wave at energy E incident on this oscillator
will produce transmitted and reflected sidebands at en-

ergies F + nFuu, where n is the sideband "channel in-
dex." The multichannel transmission coefficient T

„

(from channel n to channel m) through this potential
determines the dc conductanceis through the Biittiker-
Landauer formulass ss

Our method to calculate T~„through the oscillating po-
tential is given in Appendix A. For the oscillating barrier
only the n = 0 sideband is incident on the scattering
potential. Therefore T = Q T e in Eq. (2), where
the sum over m runs over all propagating channels. We
grapher the transmission coefficient T through this oscil-
lator in Fig. 1(a).

A difFerent multichannel scattering problem, trans-
mission through a short-ranged impurity in an electron
waveguide, was studied in Refs. 16—22. In Ref. 17 the
potential energy is

V(x y) = V.(y) +»(x)~(y- y')

where the confinement potential V, (y) gives rise to a set
of normal confinement modes, labeled by a channel in-
dex n, at the subband energies E„.The two-terminal
Landauer conductance from Eq. (2) through this scat-
tering potential is shown in Fig. 1(b). (Parameters are
the same as Fig. 6 in Ref. 17.) For conduction through
an impurity in a waveguide, a new input channel is pop-
ulated whenever the Fermi energy crosses a confinement
subband. Therefore both m and n are summed over all
propagating channels to obtain the transmission coefB-
cient in Eq. (2).

The greatest difference between Figs. 1(a) and 1(b)
is simply that the conductance in Fig. 1(b) requires a
sum over incoming channels which is absent in Fig. 1(a).
When only a single channel is incident, transmission
through the oscillating potential in Fig. 1(a) and trans-
mission through the donor impurity (p ( 0) in a wave-
guide in Fig. 1(b) are nearly identical. 2s That is, both
Figs. 1(a) and 1(b) show a sharp "dip" in transmission
just before the first new scattering channel opens. Ref-
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Oscillating Barrier
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FIG. 1. (s) Transmission through an oscillating potential
compared to (b) transmission through s donor impurity in an
electron wsveguide. The sharp drop in transmission before (s)
the first sideband snd (b) the first subbsnd channel opening
indicate the formation of quasibound states in the scattering
potential. ER
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Equation (5) is equivalent to locating either the poles of
the 8 matrix or poles of the Green function.

The energies ER and EI have a simple physical inter-
pretation. The full time-dependent wave function Q(x, t)
can be written

~( t) @( )
Et/ih

@( )
ERt/ih Eyt/5

Thus, ER gives the binding energy of the state and ~EI]/5
its decay rate. If Er = 0 the state is "bound, " while
EI g 0 describes a "quasibound state. " We must have
EI ( 0 for the linear system to be stable.

Figure 2(a) shows the complex energy poles and zeros
of the transmission coefficient TM(E) through the oscil-
lating potential [from Fig. 1(a)], while Fig. 2(b) does the
same thing for Tqi(E) through the donor impurity in an
electron waveguide [from Fig. 1(b)]. (There may be more
transmission zeros off the real energy axis in higher sub-
bands/sidebands which we have not located. ) The close
proximity of the pole and zero pair in Fig. 2 is consistent
with the sharp dip in transmission from Fig. 1. Designing
a linear system with a zero on the real energy axis, and an
adjacent pole slightly off the real energy axis, produces
just such a "narrowband reject" filter. ss

Bound states in the oscillating potential are very leaky,
since the matrix elements for emission and absorption of
oscillator quanta are equal. The corresponding pole in
transmission through the oscillator moves rapidly off the
real energy axis before it moves much below the new
channel threshold, producing a broader "dip" in trans-
mission through the oscillator than for the donor impu-

erence 17 argues the drops in transmission in Fig. 1(b)
correspond to "quasidonor levels" forming in the impu-
rity. A somewhat similarzs type of "quasibound state"
produces the sharp drop in transmission through the os-
cillating potential in Fig. 1(a).

III. QUASIBOUND STATES
IN A TIME-DEPENDENT POTENTIAL
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Linear systems theoryso gives the prescription for find-

ing the natural frequencies (or eigenenergies) of any lin-

ear system. In particular, if a transfer function t „(E)
relates the incoming wave @inc to the scattered wave
@trans by

@trans(E) t (E)@inc(E) (4)

then the natural energies are found by locating the poles
of t „(E),namely

1 =0.
t „(ER+iEI)

The polessi of t~„(E)will occur at a complex energy
E = E~ + iEI At this complex . energy, a scattered
wave can be produced even if no incident wave is present.
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FIG. 2. Transmission coefficient (s) Ta&&(E) through the
oscillator of Figs. 1(s) snd 1(b) Tii(E) through the donor
impurity in s wsveguide of Fig. 1(b) as s function of complex
energy. Pole locations (crosses) define the quasibound states
The adjacent pole snd zero near (s) E = her snd (b) E = E2
produce the sharp resonances in the transmission coefBcient
in Fig. 1.
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rity in a waveguide. In contrast, the quasidonor levels in

a waveguide can have very long lifetimes, and can pro-
duce sharp transmission resonances even well below a
new subband channel opening.

Poles of the transmission coeKcient have a simple
physical interpretation as the natural eigenstates of the
scattering potential. Unfortunately, transmission zeros
have no such simple physical interpretation. However,
transmission zeros and complex energy poles of the trans-
mission coefficient always seem to appear togetherzs z4

in the multichannel scattering from an attractive poten-
tial. For example, the transmission coefficient through an
an acceptor impurity (repulsive potential having p & 0)
in an electron waveguide has no poles and no transmis-
sion resonances. Further, if a strong enough static, re-

pulsive, potential barrier is combined with an oscillat-
ing barrier, the resulting transmission coefBcient has no
poles or transmission resonances. Poles seem to appear
in the multichannel transmission coefFicient only when
attractive potentials are present, and appear with a cor-
responding transmission zero.

IV. TRANSMISSION RESONANCES

Transmission through an oscillating potential nicely
illustrates the large differences between attractive and
repulsive potentials in multichannel quantum scattering
problems. Although we no longer present the structure of
complex poles and zeros corresponding to each transmis-
sion coefficient shown in this section, these quasibound
states and transmission zeros are still present near any
transmission resonances.

A. Weak oscillators

When Vg is small, so that the oscillator is weak, Fig. 3
shows that the transmission T drops abruptly when a
new sideband transmission channel opens at E = her.

When an attractive static barrier is combined with the
weak oscillating barrier, there is an interesting "Fano"
resonances4 sr behavior in T well before the first emitted
sideband can propagate, shown also in Fig. 3. Fano reso-

nances have been observed in atomic systems ss and may
also be present in both quasi-one-dimensional wiresis and
semiconductor superlattices. ss sr The spacing from the
Fano resonance to the first sideband channel opening is
just the binding energy in the (static) attractive poten-
tial well. i Appendix B shows that these two types of
resonances exhaust the possibilities for weak oscillating
barriers.

B. Strong oscillators

As the oscillating barrier strength increases, the trans-
mission zero [originally at the first emitted sideband
channel opening (E = hu) in Fig. 1(a)j has moved
halfway to the edge of the continuum in Fig. 4. As
the oscillating barrier strength further increases, this zero
drops below the continuum edge, and a second zero forms
near E = hu (not shown). As Vg continually increases,
this pattern appears to repeat indefinitely. The move-
ment of these transmission zeros to lower energies with
increasing strength of the oscillating barrier is due to an
increased binding energy, analogous to Fig. 7 of Ref. 17.
Transmission through the oscillating barrier is generally
larger than through a static barrier of the same strength.
This is reasonable, since the average barrier strength is
smaller for the oscillating potential.

Figure 5 shows the transmission coefficient when a
strong, static, repulsive potential is combined with the
oscillator. Only small "threshold" features are present in
the transmission coefficient. s Adding the strong, repul-
sive barrier has destroyed the transmission resonances.
However, making the oscillator even stronger recovers the
transmission resonances. A pronounced drop in T de-
velops at the first sideband emission threshold in Fig. 5,
showing that a quasibound state again forms in the time-
dependent potential. Since a quasibound state cannot
gradually form with increasing strength of an attractive
potential (it is either present or not), this result inter-
polates sensibly between the purely dynamical barrier
(where the quasibound state exists) and the static repul-
sive barrier (where no quasibound state exists).
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FIG. 3. Combining the oscillating barrier with an attrac-
tive static potential well (V, = —200, Vq = 50) produces a
"Fano" transmission resonance when the first emitted side-
band becomes bound in the quantum well.

FIG. 4. A strong oscillator (V, = 0, Vq = 1000) pulls the
transmission zero lower in energy as the quasibound states
in the osciQator move lower in energy. Eventually, for strong
enough oscillators, the resonance is pulled below the band
edge and new resonances appear at E = hey (not shown).
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FIG. 5. Adding a strong repulsive potential barrier to the
oscillator destroys the quasibound states (V, = 1000, Vz =
1000). Bound states are recovered (V, = 1000, Vq = 1900) by
increasing the oscillating barrier strength.

If the oscillator frequency is now varied (at a fixed
Fermi energy and oscillator strength), the resulting trans-
mission resonances are shown in Fig. 6. Resonances both
with the edge of the conduction band (i.e., hv 1 meV)
and with our proposed quasibound states (i.e., bc'
2 meV) are visible. Other "multiphonon" transmission
resonances at frequencies ~ & 1 meV are also present.
However, for frequencies fuu ) 2 meV, there are no fur-
ther transmission resonances. Too large of an oscillation
frequency evidently causes the first emitted sideband to
lie lower in energy than a bound state, so that no trans-
mission resonances occur above a certain frequency. Fig-
ure 6 resembles the Shubnikov —de Haas oscillations of the
conductivity o ~ versus magnetic field observed in two-
dimensional electron gases and in metals. The sideband
separation Fuu for transmission through the oscillating
barrier corresponds to the Landau-level separation hu„
where the cyclotron frequency u, is proportional to the
magnetic field. The conductivity o» corresponds to the
transmission coefficient.

The energy dependence of the transmitted fiux through
an oscillating potential illustrates the strong differences
between repulsive versus attractive potentials in multi-
channel scattering problems. As a consequence of leaky
bound states formed in the partially attractive scattering
potential, transmission resonances occur at many difFer-
ent energies, not simply near the propagation threshold
of a new scattering channel. By locating the complex
energy poles of the transmission amplitude, we establish
both the existence and nature of these bound states in
an oscillating potential.

Transmission resonances occur when the incident elec-
tron energy is a multiple of the oscillator frequency from
the edge of the continuum or from a bound state formed
in the oscillator. Combining the oscillating barrier with a
static, attractive, potential well produces "Fano" trans-
mission resonances, while combining the oscillator with
a strong enough static, repulsive, potential barrier elimi-
nates the transmission resonances. Poles in the transmis-
sion amplitude appear together with these transmission
resonances.

Transmission through an oscillating potential barrier
shares many common features with the scattering from
a donor impurity in an electron waveguide. The pole
and zero structure of the transmission amplitude in both
problems is similar. A finite sized donor impurity in an
electron waveguide can even produce transmission reso-
nances with the characteristic "Fano" line shape. The
important feature which these two diferent scattering
potentials have in common is that they both trap elec-
trons in cutofF channels near the defect.
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0.8
APPENDIX A: SCATTERING

FROM AN OSCILLATING POINT BARRIER

To obtain the transmission coefficient through the scat-
tering potential V(z, t) from Eq. (1), we solve the one-
dimensional time-dependent Schrodinger equation fol-
lowing Eqs. (3.8)—(3.17) of Ref. 5. This is equivalent to
inverting a matrix equation for the scattered wave am-
plitudes A„,

0.0
0

1

2 3 4
Frequency co (meV)

—2ik„b„p= (I', —2ik„)A„+I g(A„+g+A„g), (Al)

where I', = 2mV, /h and I'g = mVg/5 . To obtain the
wave vector k„wetake the positive square root of

FIG. 6. Total transmission T vs oscillating barrier fre-
quency. The graph is reminiscent of the Shubnikov —de Haas
oscillations in the conductivity a vs magnetic field for a
two-dimensional electron gas.

h k~ 5 k2E„=E+ nh(u = + nh(u =
2m 2m

so that

(A2)
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( nfuu) '/'
k„=+kp

~

1+

t p=A (A4)

Equation (Al) is obtained from the scattering solutions
of the time-dependent Schrodinger equations with the
potential in Eq. (1). The appropriate scattering wave
function for z & 0 is the sum of the incident wave plus
reflected waves in all possible sidebands

with n = 0, +1,+2, ... . Choosing a large enough matrix
in Eq. (Al) to diagonalize fulfills current conservation,
ensures proper "normalization of the wave function, " and
encompasses the "feedback between elastic and inelastic
scattering" emphasized in Ref. 8.

Since n in Eq. (A2) can be negative, we will have imag-
inary k„'s.To be consistent with Eqs. (3.12) and (3.13)
of Ref. 5 we require that k„=iK„,where tt„)0 for
the evanescent sidebands. These imaginary wave vectors
represent evanescent states trapped around the oscillat-
ing barrier. If the current incident on the oscillating bar-
rier is turned off, electrons trapped in these evanescent
states will eventually leak away from the oscillator. The
wave-function transmission amplitude t „andtransmis-
sion coefficient T „areobtained from

Ap

(Ai)

( —rg
r, —2ik g

1
-r&

& r, -2ik, )
(-2tk. ) (r, —2ik, ) (r, —2ik, )

D (82)

where the determinant D is

D = (I', —2ik ) (I', —2ik ) (I', —2tk )
-2r„'[r,-i(k, +k, )] . (83)

We have numerically verified that Eq. (81) well describes
the transmission coefficient shown in Fig. 3.

1. Transmission resonances

The interesting factor from Eq. (82) for transmission
resonances (zeros) in the lowest sideband is

r, +2]c g ——0, (84)

where k i = itt i. Equation (84) can be satisfied for
0 & E & hu only if the static barrier is attractive (V, &
0). Equation (84) predicts a transmission zero at the
"Fano" resonance condition

eikoze-iEot/tt ~ ~ g e ik„z iE„—t/k— mV,2E —h~ =—
2Q2

(BS)

(~ t) ) A eik ze iE t/tt— (A6)

(A5)

while the transmitted wave for z ) 0 is also a sum over
all possible sidebands

that is, where the electron in the first emitted sideband
aligns with the bound state in the attractive potential
well. m For a purely oscillating potential, Eq. (84) shows
the resonance condition is E = hw, at the first sideband
opening.

2. Poles of the transmission amplitude

Enforcing continuity of the wave function for all time t,
together with the derivative jump condition at x = 0
obtained by integrating the time-dependent Schrodinger
equation across the 6 function in Eq. (1), directly yields
Eq. (Al).

APPENDIX B:WEAK OSCILLATORS

( o ) (r, -2ik, r&
—2iko = rg r, —2ik

o ) ( o r,
r„

r. —2ik, )

If the oscillator strength rg is weak, only the lowest-
order sidebands are significant. We therefore regard the
n = +1 sidebands as small compared to the incident wave

(~A~i~ (& 1), and the second-order sidebands as being
approximately zero (~A~i~ )) ~Ayz~ 0). Hence,

We find the poles of the transmission amplitide tpp
through a weak oscillator by setting D = 0 in Eq. (83).
For a pure oscillator (V, = 0) operating at high frequency,
we find its "quasibound" states at the complex energy

ER - nhcu,
1 mV~2

85td
(86)

so that lower frequencies or stronger oscillators increase
the escape rate. Setting D = 0 from Eq. (83) gives only
E~ = 0, but since the determinant of any 3x3 subma-
trix of Eq. (Al) would give the same result for EI with
ER offset by hu, we obtain Eq. (86) in general. Equa-
tion (86) correctly predicts the imaginary part of the
pole in Fig. 2(a), but fails to give the small, yet finite,
binding energy of this pole.

If the high-frequency, weak oscillator is combined with
a large, static, attractive, potential well (V, & 0), we
again set D = 0 in Eq. (83) and obtain

(A i)
xi Ap

(Ai)
(81)

- 2

mV, 1 5 fmVg t

2m fp 4 2m(he@) ( 2gz p

Direct diagonalization of Eq. (Bl) gives = 7l54) —Eg (87)
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and
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Leaky Bound States

Donor in a Waveguide (Long Lived)

Both the binding energy and leakage rate increase with
the oscillator strength Vg. Reference ll studied how
the "Fano" transmission resonance through this poten-
tial shifts lower in energy and broadens "due to interac-
tions" as the oscillating barrier is made stronger. The
movement of these complex energy poles, i.e. , the forma-
tion of quasibound states in the oscillator, is consistent
with this trend. If the weak oscillator is combined with a
large, static, repulsive, potential barrier, we do not find
any complex energy poles of the transmission amplitude,
as expected.

(b)
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= N)(E)
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APPENDIX C: FORMATION
OF C}UASIBOUND STATES

1. Donor impurity in an electron waveguide

The transmission coefficients through the potential
in Eq. (3) can be calculated analytically for a simple
two-subband model of a waveguide. i7 The exact cur-
rent transmission amplitude tii in this model, where
T,z ——t,zt,*, is

FIG. 7. The quasibound state for (a) the donor impurity
in a waveguide is long lived, since the density of states in the
decay channel Ni (solid) is smaller than the evanescent den-
sity of states N2 (dashed) responsible for the binding. The
opposite situation holds for (b) the oscillating potential, mak-
ing the quasibound state very leaky.

EB) —/Egg/QEs —Ei, greatly suppressing the leakage
rate out of the quasidonor level.

1+ (mv»/r'~, )
1+ (mV22/h les) + i (mVii/5 ki)

(C1) 2. Oscillating barrier

Equation (B6) shows that an electron never really
binds to the oscillator if the oscillator is weak. Instead,
the pole moves out along the imaginary energy axis as the
oscillator strength V~ increases, producing a very leaky
quasibound state. Stronger oscillators do eventually pro-
duce the small but finite binding energy seen in Fig. 2(a).
We can partially understand this because the electron
couples with equal strength to adjacent sidebands, one
of which is evanescent and the other propagating. But at
the bound-state energy, occurring just slightly below the
new channel threshold at E & hu, the density of states in
the decay channel (propagating states) is actually larger
than the density of states in the binding channel (evanes-
cent states from the second emitted sideband channel re-
sponsible for the binding). As a result, quasibound states
in the oscillator are very leaky. The opposite situation
holds for the donor impurity in a waveguide, where the
density of states of the decay channel is small compared
to the number of available states in the binding channel,
and the quasibound states are therefore long lived. This
is shown schematically in Fig. 7.

2

Eg Eg- mVj q

2h
(C2)EI =0,

and the "quasidonor level" pole at the complex energy

mV22
2

E~ E
A/2

= E2 —EI3

(C3)

Eq and E2 are the first and second confinement subband
energies, the wave vector ki is determined from E E—

2 2
1 =

h ki/2m, and the evanescent wave vector zs is found
from E2 —E = 5 zz/2m. The coupling constants are2 2

V2g = p~y2(y, )~ and Vii ——p~yi(y, )~, where yi(y;) and
ys(y;) are the normal mode wave functions evaluated at
the lateral impurity position y, . We locate the poles of
the transmission amplitude by setting 0 = 1/tii.

Expanding the square roots in ~s and ki, which is valid
if the real part of the pole (ER) is not too near a subband
edge and the imaginary part of the pole (EI) is not too
large, one finds the "donor level" pole at a purely real
energy

mV&z 4Ea
2h

- Z/2
APPENDIX D: SIDEBAND

ASYMMETRY (TUNNELING TIME)

where Viz ——ViiVqq. The imaginary part (EI) of the2

"quasidonor level" pole is proportional to the coupling
strength VPz between the lowest two subbands as ex-
pected. The expression for EI from Eq. (C3) contains the
ratio of the two state densities, Ni(E2 —E~)/Nq(E2—

Transmission through a weak oscillator is of interest
in the study of tunneling times. Reference 1 defines
a function which measures the relative strength of the
transmitted sideband currents
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FIG. 8. For weak oscillators, the "crossover frequency"
for tunneling through a point barrier occurs when the first
emitted sideband aligns with the band edge, and does not
depend on the properties of the barrier.

cillation frequency when V~ is small. We see first that
the change in T with frequency is small compared to
T itself, confirming that the oscillating barrier is weak.
Second, there is a qualitative change in the frequency de-
pendence of T when E = hei. Therefore, E = fur is the
crossover frequency for the point barrier. Figure 8 is for
an opaque barrier which has E (( m(V, /h) 2, but we have
checked that the frequency dependence of T also changes
abruptly at E = h,u if the barrier is transparent. Again,
the "crossover frequency" in this problem occurs when
the transmitted electrons interact with the band edge,
rather than because transmission is limited by the static
barrier itself.

We can also construct an analytical proof which sug-
gests the crossover frequency is the Fermi energy. Start-
ing from Eqs. (Dl) and (B2), we expand the wave vectors
kgb to lowest order in the small parameter It~/E, such
that kgb kp(1 6 h~/2E), to obtain

( ) = kllA1I' k-1IA-ll' = Tlp -T-lp
( )kgiAgi2+k giA giz Tgp+T gp

'

which is given by I'(u) = tanh(ur~L, ) for a rectangu-
lar barrier subject to a small modulation at frequency
~. If we plot F(u) versus u, there will be a "crossover
frequency" at u = 1/r~i. For a point barrier, one can
easily show r~i, = 0. That is, it takes "no time" to tun-
nel through the point barrier. F(u1) found in Ref. 1 holds
provided EF » 5/rgb, .

However, if the barrier itself plays no role in limiting
the tunneling time, the only other energy scale left in the
problem is the Fermi energy. We indeed find that the
Fermi energy is the crossover frequency for transmission
through the point barrier of Eq. (1). That is, a resonance
of the incident electron with the edge of the continuum
makes F(u) "cross over. " This is in contrast to the con-
clusion of Refs. 4 and 5 for transmission through this
same potential as discussed below.

Figure 8 shows the transmission coefficient versus os-

-m —E
F(~) =12E I-/5~AD

'
—,m~' —"~ +E - ~'"'~(r.)i2E&

(D2)

On the other hand, if we neglect the difference between
ki and& i, whichone might thinkis valid if E » M, we
recover the result (3.25) of Stovneng and Hauges directly
from Eqs. (Dl) and (B2). Reference 5 obtains their (3.25)
using the calculus of residues, but simply diagonalizing
a 3x3 matrix gives the same result. We see that Ref. 5
calculates the ratio of probability densities instead of the
ratio of transmitted currents F(u) Equatio. n (D2) gives
F(ur) = h~/2E for opaque barriers and F(~) = hu/2E—
for transparent barriers. This supports our numerical
result that the crossover frequency in this problem is the
Fermi energy.
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