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Binding energies of excitons and donors in a double quantum well in a magnetic field
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We study binding energies of both excitons and donors in a symmetric double quantum well in the

presence of a magnetic field applied parallel to the growth direction. We express wave functions as com-
binations of Gaussian-type orbitals and subband wave functions of even and odd parities, with variation-

ally determined expansion parameters. By varying the interwell barrier width and well sizes (hence vary-

ing the interwell coupling), we obtain binding energies ranging in character from that for a strongly cou-

pled double well to that for a system of two isolated single wells. The behavior of the binding energies as

function of the interwell coupling, well sizes, and the magnetic field, as well as the donor position is con-
sistently described with our formalism with naturally included subband mixing effects. The magnetic
field leads to stronger confinement of the wave functions and enhances binding energies.

I. INTRODUCTION

Double quantum-well structures have attracted a good
deal of attention, both experimentally and theoretical-
ly. ' A double quantum well (DQW) is a semiconductor
structure in which two single quantum wells are separat-
ed by only a thin potential barrier, across which electrons
and holes from one we11 can tunnel into the other. As in
single quantum wells, the electrons and holes confined in
a DQW can form excitons due to their mutual Coulomb
attraction. The electro-optical properties of such exci-
tons promise applications in high-speed spatial-light
modulators and switches. One advantage that a DQW
structure offers over the single quantum wells is the
enhanced exciton electro-optic response.

A magnetic field applied parallel to the growth direc-
tion has an additional confining effect on electrons and
holes in the quantum wells, and is expected to modify ex-
citon binding energies in the DQW. ' ' Together with
effects of the confinement and interwell coupling (through
tunneling across the potential barrier) provided by a
DQW, we have an interesting physical system in which
these competing factors influence those exciton charac-
teristics determining the exciton electro-optical proper-
ties of the DQW. Although several authors have done a
considerable amount of work on the properties of exci-
tons in DQW's, ' ' to our knowledge the eff'ects of a
magnetic field on DQW's have not been theoretically
studied. In addition, there are some conflicting results
obtained by these various authors as to how interwell

coupling would qualitatively affect exciton binding ener-

gies in a DQW in the weak and strong interwell coupling
limits. A qualitative and quantitative study is desired to
gain knowledge of these aspects and to clear up ambigui-
ties about the role played by interwell coupling in

affecting exciton binding energies in a double quantum
well.

In the presence of a hydrogenic donor impurity, the
Coulomb interaction of the donor with an electron in the
DQW leads to the formation of hydrogenic bound states
and the removal of the reflection symmetry. Optical

transitions involving donor states in quantum-well struc-
tures have attracted interest for some years. ' ' The
binding energies of hydrogenic donors in quantum-well
structures have been calculated by various au-
thors. ' ' ' Because a symmetric DQW with a varying
center potential barrier thickness (or height) can range in
character from a double-width well to a pair of decoupled
single wells, a potentially rich spectrum of physics can
arise from the competing effects of quantum confinement
and tunneling in this structure. Such a DQW structure
with wide-ranging characteristics, however, also demands
a more careful approach for one to describe consistently
the physical processes taking place in it. Electron wave
function tends to pile up around a positively charged
donor atom due to the Coulomb attraction. Depending
on the donor location, electron wave function in the sym-
metric quantum-well structure can be highly asymmetri-
cal. A single-subband treatment using a definite parity
subband wave function can be inadequate in such in-
stances to describe the electron charge distribution
around the donor, and can lead to a lower estimate of the
binding energy even for thin barrier thicknesses. In-
clusion of such mixing plays an important role in correct-
ly determining donor binding energies in a symmetric
quantum-well structure.

Subband mixing is ignored in the few treatments in the
present literature dealing with donor binding energies in
symmetric DQW structures. Chen and Zhou considered
the problem of donor binding energy in a symmetric dou-
ble quantum mell with the donor atom located within the
center barrier. Product of the lowest (even-parity) sub-

band wave function and a variational hydrogenic wave
function was used to obtain the donor binding energies
for various symmetric DQW structures. These authors,
however, are unable to recover the corresponding single-
well limits when the center potential barrier becomes
very thick.

It is now clear that such a single-subband approach
cannot recover the single-well limit as barrier thickness
increases. The basic reason is simply as follows. Tunnel-

ing across the potential barrier becomes increasingly less
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probable as the barrier thickness increases. Not able to
penetrate the potential barrier, an electron will be essen-
tially confined in one single well. Ignoring subband mix-
ing, however unrealistically, forces the electron wave
function to spread throughout DQW structure, which
reduces the probability of finding an electron in the vicin-
ity of the donor, and therefore reduces the donor binding
energy.

In this paper we develop a formalism to calculate the
binding energies of excitons and donors in DQW struc-
tures, with effects of subband mixing included, in the
presence of a magnetic field directed along the growth
axis. The formalism is applied to a GaAs-A1„Ga, „As
DQW for various physical parameters. The preliminary
results in the case of the exciton binding energies were
first presented at the 1991 March Meeting of the Ameri-
can Physical Society. In Sec. II, we describe this for-
malisrn, in which we solve for electron and hole wave
functions in the double-well potential profile; take mixing
of electron and hole wave functions of neighboring sub-
bands into account; express the electron-hole and
electron-donor internal-state wave function in terms of
Gaussian-type orbitals and determine expansion parame-
ters and exciton binding energies variationally. In Sec.
III we show that our formalism correctly describes exci-
ton and donor binding energies for all interwell coupling
strengths, and discuss the binding energies as a function
of the quantum confinement, the magnetic field, and the
interwell coupling.

mass, m, is the effective electron mass, and y, and y2 are
the Kohn-Luttinger band parameters, the + sign corre-
sponds to the heavy-hole exciton, and the —sign to the
light-hole exciton. We then scale all lengths in the exci-
ton Bohr radius az =Kpfi /Pe, and energies in the exci-
ton Rydberg R =e /2Kpaz, to obtain the dirnensionless
form of the Hamiltonian

pH,'(z, ) = — + V, (z, ),
77l Qz

(3a)

p
H/, (z/, ) —— + V„(z/, ),

mh azh
(3b)
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where p= +(x,—x„) +(y, —y„) is the in-plane dis-
tance between a pair of electron and hole, z =z, —zz, L,
is the z component of the angular rnomenturn, and y is
the first Landau level expressed in R, y=eAB!2pcR.
The Hamiltonian H above is grouped into three terms,
namely the electron part H,', the hole part H&, and the
exciton part H,„,H =H,'+ H& +H,„,where

II. FORMALISM 2

+yL, + p (3c)
We consider a DQW consisting of two identical GaAs

layers sandwiched between two semi-infinite
Al„Ga1 „As slabs, with a thin layer of Al .Ga, As be-
tween them. A uniform magnetic field B is applied per-
pendicular to the layers (in the growth direction).

The Hamiltonian of the electron-hole system is

H =H, —ikey+ —A —H~ iAV+ —A
e e
c C

e+ V, (z, ) + V/, (z/, )—
Kp~r r

where V, (z) and V/, (z) are, respectively, the potential
profiles for the electrons and holes, A=(BXr)/2 is the
vector potential of the magnetic field B, Kp is the dielec-
tric constant of the layers (assumed to be uniform here),
r, and rl, are the electron and hole positions. The elec-
tron Harniltonian H, is adequately described by an
effective-mass approximation, using parabolic bands.
The hole Hamiltonian H& is the 4X4 Kohn-Luttinger
Hamiltonian. To gain physical insight with a tractable
model, we assume parabolic hole bands in the x-y plane
and in the z direction and retain only the diagonal terms
in H&, thereby ignoring coupling between the heavy-hole
and light-hole bands. Following standard procedure to
separate the constant center-of-mass motion of an
electron-hole pair in the x -y plane, we define the
reduced mass of an electron-hole pair p with
/M '=m, '+(y, y~)mo ', where mo is the free-electron

and m/, is the heavy- (light-) hole mass defined in

mh '=(yi+2yz)mo '. The Hamiltonian in Eq. (2)
reduces to that for an electron bound to an immobile
donor if we replace r& with position of the donor rd and
set V/, (z/, ), y„and yz equal to zero (which corresponds
to infinite hole masses).

Wave function f(r„r/, ) of the electron-hole system is
solved from the Schrodinger equation

(4)

where E is the total energy. We write g(r„r/, ) in the fol-
lowing form to express the explicit dependence on z„z&
and on the relative distance r =r, —r&.

q(r„r/, )=/t(r) y ~/, F,"(z, ) y b/Fh(z/, ),
k=1 1=1

where P(r) is the wave function describing the internal
state of an exciton, F,"(z,) is the kth electron subband
wave function, and F/', (z„) the 1th hole subband wave
function, aI, and bl are the expansion coefficients to be
determined, both F, (z, ) and F/', (z/, ) are normalized. In
the calculation of the donor binding energies
IFh(zz ) I ~5(zh —zd). Equation (5) is a good approxima-
tion to the exciton wave function, as long as the
difference between the subband levels that are included in
the summation and those that are not is larger than the
exciton binding energies. The two wave functions in the z
direction are determined by the following two equations:
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H,'F,"(z, ) =E,"F,"(z, ),

HbF/ (zb ) E—bF/, (z„),

(6a)

(6b)

V. , lzl&z,
V(z)=.0, z, &lzl&z,

vb Izl &zi,
in which E, and Eh are the electron and hole subband
energies.

We first solve for the subband envelope functions
F,(z, ) and Fb (zb). Since H,', and Hb have the same form,
we can solve the general double-well problem for the fol-
lowing profile V(z);

where z& =Lb/2, z2=z&+L, LI, is the width of the
center potential barrier, L is the width of a single quan-
tum well, Vb is the center barrier height, V is outer po-
tential wall height. We write F(z} in the following form
to reflect the symmetry of V(z):

T

D exp[ —P2(z —z2)], z &z2

A sin[a(z —z, }]+Bcos[a(z —z, }], z, &z &z2

F(z}= 2Cy+(P, z) lzl &z,

+ A sin[a(z+z, })+Bcos[a(z+z, )] —z2 &z & —z,
+D exp[Pi(z+z2)], z & —zz,

where + indicates the wave function F(z) as being of
even parity, —as being of odd parity, a, P„and P2 are
the parameters determined by the subband

energy E„, a= +m „E Ip, 13,=Qm l Vb E
l lp, —

P2=+m (V E)lp, (—cr=e, h), and

coshP, z (+ )

sinhp, z ( —), Vb & E
cosP,z (+ )

sinp, z (
—}, Vb &E .

By requiring the continuity of F (z) and BF(z)IBz at in-
terfaces z =+z& and z =+z2, we obtain the secular equa-
tion for the subband energy E,[h],

a~.(p... )

13~
—a y+(P, z, ) sinaL

z]

aq, (P,z, )+a +P2X+(P,z, ) cosaL =0 . (10)
z]

After the subband energy is obtained, coefficients A, B,
C, and D for the wave function F(z) are then determined
by the continuity and normalization conditions. The
wave function of the lowest subband is of even parity,
that of the second subband is of odd parity.

Next we express the exciton internal-state wave func-
tion P(r) in terms of Gaussian-type orbitals and use a
variational calculation to determine the expansion pa-
rameters and the exciton binding energy.

eim ~f(' 2
n

P(p, p;z)= p 'e ~~ g c,exp[ —a, (p'+z }]
&2m

(m =0,+1,+2, . . . ),
where P is the variational parameter, c are the expansion
coefFicients, a- are sets of constants. ' m is the azimu-
thal quantum number; for the 1s state, m =0; for the 2p+

states, m =+1; and so on. For excitons in the double
quantuin well, P is varied to adjust these Gaussian-type
basis functions to minimize the total energy E.

For DQW's consisting of narrow wells with strong in-

terwell couplings (for center barriers of small widths or
low heights), effects of the coupling between neighboring
subbands on exciton binding energies are shown to be
small; therefore it is sufficient to assume the exciton to be
associated with a single electron subband and a single
hole subband. ' In general, however, the single-subband
description of an exciton in a double quantum well is
inadequate and can lead to qualitatively misleading re-
sults. When two single quantum wells are separated by a
potential barrier, the wave functions in these wells are
scrambled to form a "bonding" (even-parity) and an "an-
tibonding" (odd-parity) combination (total) wave func-
tion. If the barrier is thin and the wells are narrow, the
single-well wave functions are strongly modified by the
presence of the neighboring well because of the tunneling
of the electron (hole) across the potential barrier. As a
result, the bonding and antibonding total wave functions
have significantly different subband levels. In other
words, subband levels in such a thin-barrier, narrow-well
DQW are nondegenerate. When the barrier is thicker or
the wells are wider, single-well wave functions are essen-
tially confined to one single well and are therefore dimin-

ishingly affected by the presence of its neighboring we11.

Bonding and antibonding combinations would yield simi-
lar subband levels, with one slightly lower and one slight-

ly higher than the isolated single-well subband levels. All
subband levels are almost doubly degenerate. A con-
sistent description of exciton in DQW structures should
therefore include pairs of subband levels to properly ac-
count for contributions to exciton binding energies from
both the even-parity and odd-parity subband wave func-
tions. In the case of an electron bound to the donor, the
electron system no longer has a definite symmetry, and
neither the even- nor the odd-parity wave function alone
can be the true wave function. We take a linear combina-
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tion of the wave functions of different subbands as the en-
velope function.

In what follows, we calculate the binding energies of
the 1s exciton state associated with the first two electron
and hole subbands and binding energies of the 1s and 2p
donor states associated with the first two electron sub-
bands. In a system with thin barrier and narrow wells,
the separation between the adjacent subband levels are
large compared with the expected exciton binding ener-
gies and there is little intersubband coupling, i.e.,
a, b, =1 and akb&~0(k +1 )2). As Lb —+ ~, these sub-
band levels become degenerate and coupling between
them becomes important, i.e., all ak and bI ~ould play
comparable roles. In the absence of the Coulomb interac-
tion and without mixing of the even-parity and odd-
parity subbands, the total energy E is just the sum of first
electron and hole subband energies E,'", Ez" and the
Landau-level energy y. The Coulomb interaction be-
tween the electron and hole lowers the total energy and
leads to the formation of the exciton. The binding energy
of the lowest-lying exciton E~ is defined in

Ez =E,'"+E&"+y —E. Similarly, binding energies of
the 1s and 2p donor states is Ez =E,"'+y —E. Binding
energies of the 2p+ state can be obtained by simply add-
ing 2y to the 2p state values.

The total energy E is obtained by expressing the
Schrodinger equation (4) as an eigensystem problem with
the nonorthogonal Gaussian-type orbitals as basis func-
tions, which is then solved by a generalized Rayleigh quo-
tient iteration method. By choosing the appropriate ei-
genvalue A, and minimizing it as a function of the varia-
tional parameter, we obtain the total energy E of a given
exciton/donor state and its binding energy Ez.

III. RESULTS AND DISCUSSION

A. Kxciton binding energies

We have calculated the binding energies of the heavy-
hole exciton and the light-hole exciton as functions of the
magnetic field, the well width L, and the center barrier
thickness LI, of a symmetric GaAs-Al Ga& As double
quantum well. The values of physical parameters per-
taining to GaAs used in our calculations are
m, =0.067mo, so=12.5, y) =7.36, y2=2. 57. The
values for the heavy-hole (J, =+—', ) exciton are

0

mI, =0 45mo p=004mo a 165 A R =3 49 eV
those for the light-hole (J, =+—,') exciton are

m& =0.08mo, p=0.05mo, a&=131 A, R =4.39 meV.
We use an empirical formula AEs =(1.36+0.22x)x (eV)
to determine the band-gap discontinuity, with 60% of
hE contributing to the conduction-band discontinuity
hE, and 40% to the valence-band discontinuity hE„.
Mole fraction x =0.3 is used for all Al concentrations.
Differences between other material parameters of GaAs
and those of Al Ga, As are not included in the calcula-
tions (see Fig. 1).

In Fig. 2, we compare the binding energies of the
heavy-hole exciton in a DQW calculated by us, with
those obtained by Kamizato and Matsuura (KM hereaf-
ter)' with and without subband mixing, and those by
Dignam and Sipe (DS hereafter)' with subband mixing,
as a function of the barrier thickness Lb. It is evident
that the two-subband treatment by DS underestimates
the binding energy in the strongly interwell coupling lim-
it (Lz ~0.2as) and cannot reconcile with the fact that, at
Lb=0, the DQW is simply a single well of width 2L

AN&a 1-.As c'.Anh»r. tinn-
band edge

GaAs

Veb

GaAs

L

Ve

AMsal-xAs Anal-xAs
W

p Zl Z2

Vel

I I~V~ valent. e-
band edge

FIG. 1. Schematic band diagram of a symmetric GaAs-Al„Ga, As double quantum well and the applied magnetic field B in the
growth direction.
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On the other hand, the two-subband DS result in the
weak interwell coupling limit approaches that obtained
by KM without subband mixing, which cannot recover
the single-well result at large barrier thicknesses either.
It appears that although the DS two-subband treatment
works at the intermediate interwell coupling strengths, it
overestimates the strength of the interwell coupling in
both the strong and weak interwell coupling limits. Our
result agrees with that of KM, including subband mixing
at both strong and weak interwell coupling limits. It is
also evident that our formalism gives higher binding en-
ergies for all interwell coupling strengths. Furthermore
our formalism correctly describes exciton binding ener-
gies when the additional confining effect of the magnetic
field is also included.

In Fig. 3(a), we show variation of the binding energy
Ez of the heavy-hole exciton as a function of well widths
L„ for several different combinations of the barrier thick-
ness Lb and the magnetic field B. The results of E~ for
Lb =0 have been compared with those of Greene and Ba-
jaj for exciton binding energies in a single quantum well
in a magnetic field, ' based on the expansion of the exci-
ton wave function into Gaussian basis orbitals. These for
zero magnetic field (B =0}and Lb «a~ have been com-
pared with the results obtained by KM for the exciton
binding energies in a symmetric double quantum well,
with material parameters roughly corresponding to those
of heavy-hole excitons in GaAs-Al Ga, As quantum
wells. ' The agreement in both cases is excellent, as ex-
pected.

For Lb=0, as well width L decreases, electron and
hole wave functions first become compressed in the nar-

25-'

20--

)
15-

X

10--

50 100

L (A)

150 2()0

rowing wells and the exciton binding energy E~ climbs
up due to the decreasing average distance between the
electron and the hole, which is mainly determined by the
well size L and barrier thickness Lb in a given magnetic
field, until E~ reaches a maximum. As L further de-
creases, subband energies are pushed up and leakage of
the wave functions into the barrier regions becomes
significant, and E~ begins to fall off rather rapidly as the
exciton assumes more of a 3D-like nature.

For LbWO, the binding energy is lower for small L
and higher for large L, in comparison to that in the
DQW with Lb=0. For narrow wells, the electron and
hole wave functions spread throughout the DQW struc-

25 ~(

(b)

/ g+ A

20--

)
15—

(~F

10 j

6

0 50 100 150 200 250 300 350

Lb (A)

5 t

0 50

!

100 150 200

L (A)
FIG. 2. Comparison of binding energies of the heavy-hole ex-

citon, calculated with and without subband mixing, as a func-
tion of the barrier thickness Lb. The well width is fixed at
L =0.6a~. The solid line ( } is our result with subband
mixing included; the dotted line (- -) is by Dignam and Sipe
(Ref. 16) with subband mixing; the short-dashed line (

———
) is

by Kamizato and Matsuura (Ref. 14) without subband mixing;
the long-dashed line (——) is by Kamizato and Matsuura with
subband mixing. The material parameters are as in Ref. 14.

FIG. 3. (a) The binding energy of the heavy-hole exciton as a
function of the well width L„,. (b) The binding energy of the
light-hole exciton as a function of the well width L„„with mag-
netic field B and barrier thickness Lb as the two other parame-
ters. Material parameters are noted in text. The solid lines

( } stand for Lb =0 (corresponding to that in a single quan-

tum well of width 2L„,); the dotted lines (. . . -) stand for
L~ =25 A.



46 BINDING ENERGIES OF EXCITONS AND DONORS IN A. . . 15 285

ture, and the presence of the barrier merely increases the
average distance between the electron and hole, leading
to a lower binding energy. As the wells become wider,
however, the wave functions become more and more
confined in one single well due to the presence of the bar-
rier, and the average distance between the electron and
hole decreases, leading to a higher binding energy. At a
well width L', the Es curves in the DQW with L„WO
will cross over with that in the DQW with Lb =0. Since
a magnetic field provides an extra confinement of the
wave function in the quantum well, such a crossover will

occur at a smaller L' at higher field strengths. Also no-
tice that a shoulder develops in the binding-energy
curves. As Lb increases, this shoulder will become more
evident and appears at smaller well widths L . At the
limit Lb ~~, it merges with the maximum that is caused

by the leakage of lowest subband wave functions into the
barrier regions. This shoulder is attributed to the mixing
of wave functions of the odd-parity second subbands with
those of the even-parity first subbands. For small Lb,
E'" and E' ' are significantly different, and wave func-
tions of the second subbands are more spread out due to
their higher energies. The binding energy influenced by
the second subbands would reach its maximum at the
large well width L . As Lb increases, the second sub-
band lowers down and eventually becomes degenerate
with the first subband, and the maximum in E~ caused by
it coincides with that of the first subband.

In Fig. 3(b), we show values of the binding energy Es
of the light-hole exciton as a function of L . Qualitative-

ly E~ behaves similar to the binding-energy of the
heavy-hole exciton. However, it is larger and reaches the
maximum for larger L compared to that of the heavy-
hole exciton. "' Also, the values of light-hole exciton
binding energy are higher than those obtained by Greene
and Bajaj, who used 85—15 % conduction-valence band
offsets in their calculations, ' as light holes are now more
severely confined in the quantum wells by higher poten-
tial barriers. The binding energies of the heavy-hole exci-
ton associated with the lowest subband are not as sensi-
tive to the change of band offsets used in the calculations,
since the heavier longitudinal mass results in stronger
confinement of the heavy-hole wave function in the quan-
tum wells. However, for excitons associated with higher
subbands, higher valence-band offsets are expected to
affect binding energies more significantly for both the
light-hole and heavy-hole excitons. In all instances, the
presence of a magnetic field in the growth direction leads
to higher exciton binding energies. Our results on the
heavy-hole exciton fit rather well with those measured by
Perry et al. ,

' when appropriate material parameters are
used in the calculations.

In Fig. 4(a), we show the binding energies of the
heavy-hole exciton as functions of barrier thickness LI,
for several different values of (L,y). Similar results for
the light-hole exciton are displayed in Fig. 4(b). At
Lb =0, results for single quantum wells of width 2L are
recovered, as we have noted earlier. The average dis-
tance between the pair of electron and hole forming the
exciton increases as Lb increases from zero, and as a re-

suit the binding energy Ez drops down first. For small
barrier thicknesses, a significant portion of wave func-
tions is present in the barrier regions. However, this
leakage decreases sharply as well size increases. There-
fore for wider wells the rate at which the binding energy
drops down as Lb increases is higher, as it is easier to
separate the wave function in the two neighboring wells
when the center barrier size Lb increases.

As Lb further increases, coupling between the well di-
minishes, and the binding energies will eventually climb
up and approach the isolated single-well values Es(L ).
The E~ curves will bottom out at barrier thickness Lb
and then rise up. Again for wider wells, this minimum in

E& will occur at smaller barrier thickness Lb. Notice
also that as the magnetic field increases, the exciton wave
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FIG. 4. (a) The binding energy of the heavy-hole exciton as a
function of the barrier thickness Lb. (b) The binding energy of
the light-hole exciton as a function of the barrier thickness Lb.
The other two parameters are the magnetic field 8 and the well

width L . Solid lines ( ) stand for L =100 A; dotted lines
0

(- - -) for L =10 A.
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function spread is reduced, and as a result the interweH
coupling decreases faster as the barrier thickness in-
creases. The minimum of the binding energy occurs at
smaller Lb.

It is worth pointing out that so fax only our approach,
to our knowledge, has produced consistent results for all
barrier sizes. Although we have calculated only the bind-
ing energies of excitons associated with the first electron
and hole subbands, our formalism here can be applied to
excitons associated with other subbands.

B. Donor binding energies

We have also calculated the binding energies of the 1s
and 2p+ donor states in symmetric double GaAs-

35-
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FIG. 5. The binding energy of the 1s donor state E~ as a
0

function of well size L„„for a fixed barrier thickness Lb =50 A,
for several values of magnetic field B (kG). (a) The solid lines

( ) stand for a well-center donor, the dotted lines (. - . ~ )

for a barrier-center donor. (b) The long-dashed lines (——)

stand for a barrier-edge donor, the short-dashed lines (————)

for an outer-well-edge donor.

Al Ga, As quantum-well structures in a magnetic field.
0

The effective Bohr radius a~ =99.5 A, and effective Ryd-
berg R =5.79 meV. Using only the lowest subband in
our calculations, we easily recover for the 1s donor state
in the case of zero magnetic field the results of Chen and
Zou, who used the even-parity lowest subband in their
calculations of donor binding energies in a symmetric
double quantum well.

In Fig. 5, we show the binding energy of the 1s state as
a function of well size L . Four different cases are con-
sidered: (l) a barrier-center donor, (2) a barrier-edge
(inner-well-edge) donor, (3) a well-center donor, and (4)
an outer-well-edge donor. The center barrier thickness is

0
fixed at L& =50 A. The well size is varied from L =10
to 200 A. All four donor locations yield similar binding
energies at small well widths. This is due to the fact that,
since the electron wave function is spread throughout a
narrow-well DQW structure, the probability of finding an
electron in the vicinity of a randomly distributed donor is
almost independent of the donor location. As well size
increases, the binding energy of the barrier-center donor
monotonically decreases, as the wave function becomes
more and more concentrated inside the quantum well, in-

creasing the average electron-donor distance. For the
barrier-edge donor, however, it is possible that there ex-
ists a favorable probability of an electron being in the vi-

cinity of the donor at some small L„, since the electron
wave function tends to pile up around a positive charge.
A maximum in the binding energy exists at some small
well sizes. As well size further increases, the elctron
wave function is increasingly confined inside the well, and
the binding energy then decreases due to the larger aver-
age electron-donor distance. For the well-center donor,
the confinement of the electron wave function inside the
well at increasing L strongly favors a larger binding en-

ergy. As well size further increases, the spread of the
wave function in the well and surrounding regions
reduces the probability of the electron staying close to
the donor, and the binding energy decreases. For the
outer-well-edge donor, the increasing confinement of the
electron wave function to the inside of the well as L„, in-

creases leads to higher binding energies at small well

sizes, but eventually leads to a larger average electron-
donor distance and hence to lower binding energies. No-
tice that the maximum binding energies of the donor at
the outer-well edge are higher than those at the well

center. This is attributed to a stronger mixing of the
even- and off-parity DQW wave functions in the vicinity
of the donor.

In Fig. 6, we show the 2p -state binding energies as a
function of well size L„ for a fixed barrier size L~ =50 A.
For the 2p state, donors at all locations have lower

binding energies than those of the 1s state because of the
larger wave-function spread. The barrier-center and
barrier-edge donor binding energies behave in a qualita-
tively similar way with their 1s counterparts. The behav-
ior of the well-center and outer-well-edge binding ener-

gies of the 2p states, however, is qualitatively different
from that of the 1s state for the following reason. In nar-
row quantum-well structures, the 2p -state wave func-

tion is highly compressed, much more so than that of the
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ls state. As well size increases, the 2p -state wave func-
tion is allowed to relax in the structure, both in the
growth direction and in the x-y plane. For the well-
center donor, such an expansion of the electron wave
function reduces the probability of finding the electron in
its vicinity, therefore its binding energy decreases. After
the expansion is largely accomodated by even wider
wells, the electron wave function tends to pile up around
the donor and the binding energy will first increase to
reach a maximum and then behave like that of the 1s
state. For the outer-well-edge donor, the binding energy
will initially also decrease. Since it is more sensitively
affected by the spatial extent of the electron wave func-
tion, it recovers to a maximum at smaller well sizes and
then drops down at a steeper rate as well size further in-
creases.

Both 1s- and 2p -state binding energies in a magnetic
field behave qualitatively like zero-field counterparts. In
addition to giving higher binding energies, the stronger
quantum confinement by the magnetic field also increases
the rate at which the binding energies change at increas-
ing well sizes.

In Fig. 7, we show binding energies of the 1s state as a
function of barrier thickness Lb for a fixed well size
L =50 A. As the barrier thickness increases, the
barrier-center donor binding energy monotonically de-
creases, as the probability of finding the electron in its vi-
cinity can only become more remote. The barrier-edge
donor binding energy initially also decreases when L in-b

creases from zero, as the single-well (of width 2L ) wave
function begins to separate and the probability of finding
the electron in its vicinity decreases. As Lb further in-
creases, however, the DQW wave function gradually be-
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comes an efFectively single-well wave function (with sub-
band mixing), and the binding energy quickly recovers its
value in a single quantum well of width L . It should be
pointed out that a single-subband treatment will always
assume comparable portions of the electron wave func-
tion in both wells, no matter how thick the barrier has
become, and will therefore always underestimate donor
binding energies in the symmetric DQW structure. The
well-center donor starts out with roughly the same bind-
ing energies as the barrier-center and barrier-edge donors
at small barrier thicknesses, since the binding energy is
not very sensitive to changes in location for a donor not
close to the surrounding potential walls in a single quan-
tum well (size -2L ). This situation quickly changes as
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FIG. 6. The binding energy of the 2p donor state E as a
function of well size L, for a fixed barrier thickness Lb =50 A 7

for several values of magnetic field B (kG). The solid lines
( ) stand for the well-center donor, the dotted lines (. ~ - ~ )
for the barrier-center donor, the long-dashed lines (——) for
the barrier-edge donor, and the short-dashed lines (————) for
the outer-well-edge donor.

FIG. 7. The binding energy of the 1s donor state Ez as a
function of barrier thickness Lb, for a fixed well size L =50 AW 7

for several values of magnetic field B (kG). (a) The solid lines
( ) stand for the well-center donor and the dotted lines
(. - . .) for the barrier-center donor. (b) The long-dashed lines
(——) stand for the barrier-edge donor and the short-dashed
lines (————) for the outer-well-edge donor.
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FIG. 8. The binding energy of the 2p donor state E~ as a
function of barrier thickness Lb, for a fixed well size L =50 A,
for several values of magnetic field B (kG). The solid lines

( ) stand for the well-center donor, the dotted lines (- . . -)

for the barrier-center donor, the long-dashed lines (——) for
the barrier-edge donor, and the short-dahsed lines (————) for
the outer-well-edge donor.

Lb increases and the wave function in the double-width
well begins to separate into single-well wave functions.
The well-center donor is in a favorable position to have a
greater probability of finding the electron in its vicinity;
its binding energy quickly recovers the single-well limit.
Again, only inclusion of subband mixing allows one to
correctly describe the realistic situation. The outer-well-
edge donor always benefits from evolution of the DQW
wave function into the single-well wave function. Its
binding energy monotonically increases with increasing
L&, and eventually flattens out as the average electron-
donor distance becomes a constant for a fixed well size.

In Fig. 8, we display the binding energies of the 2p
state as a function of LI, . The 2p donor state, due to
compression of its large natural wave-function spread in
the DQW structure, behaves quite differently with in-
creasing barrier thickness Lb. All donor locations start
out with roughly the same binding energies, because the
highly spread out electron wave function is not sensitive
to the donor location in the DQW of L&=0. The
barrier-center donor binding energy monotonically de-
creases as Lb increases, for the same reason as in the case
of the 1s state. In contrast to their 1s counterparts,
donors outside the barrier first see their binding energies
decrease with increasing barrier thicknesses. The
reason is as follows. The 2p -state wave function is

highly compressed in the DQW of total width
2L +L~ (100 A+L& here), so the wave function will

first expand to occupy the extra space provided by the in-
creasing Lb, thereby reducing the probability of finding
the electron in the vicinity of the donor; and the binding

energies will first decrease. After this initial expansion
stage, the DQW wave function begins to pile up around
the donor and gradually becomes effectively a single-well
wave function, and the binding energies then quickly ap-
proach the single-well limit. As expected, extra
confinement by the magnetic field compresses the wave
function in the structure or around a donor, and there-
fore increases binding energies and increases the pace at
which the binding energies change with increasing bar-
rier thickness.

IV. SUMMARY AND CONCLUSIONS

In summary, we have developed a formalism to calcu-
late the binding energies of excitons and donors in a sym-
metric double quantum well in the presence of a magnetic
field applied parallel to the growth axis. The extra quan-
tum confinement by the magnetic field increases the bind-
ing energies. Effects of interwell (intersubband) coupling
on the light-hole and heavy-hole exciton binding energies
in the double quantum well are consistently included in
our calculation. In the limit of thick potential barriers,
the even-parity and odd-parity subband wave functions
have degenerate energy levels; mixing of electron and
hole subband wave functions strongly modifies the exci-
tonic wave function and consequently lets one recover re-
sults for excitons in decoupled single quantum wells. We
have shown that ignoring such subband mixing is a good
approximation only for narrow wells and thin-barrier
double quantum-well structures, and that such a single-
subband approach can lead to qualitatively misleading
conclusions when applied in wide wells or thick barrier
DQW's.

The presence of the donor atom breaks the reflection
symmetry along the growth axis, and leads to strong mix-

ing of electron subband wave functions of even and odd
parities. We have shown that inclusion of such mixing is
crucial for a correct description of the donor binding en-

ergies in DQW structures with wide-ranging characteris-
tics, and that a single-subband treatment would underes-
timate the binding energy in a symmetric double quan-
tum well except in the thin-barrier and narrow-well
structures. Using our formalism, we have correctly de-
scribed the donor binding energies in DQW structures
with Lb ranging from zero to several effective Bohr radii,
and recovered the corresponding single-well limits in

both extremes. Effects of quantum confinement provided

by the magnetic field and the potential wells, and that of
tunneling across the center potential barrier on the exci-
ton binding energies, are discussed.

We have used the first two single electron and hole sub-

bands in calculations of the exciton binding energies, and
our results cover most cases one would encounter in ex-

periments. While we have not included differences in the
effective masses and dielectric constants across the
GaAs-Al„Ga& As interfaces in our calculations, they
have been shown by various authors to lead only to small

increases in the binding energies, and would not alter the
conclusions here. After the original manuscripts were
submitted, Ranganathan et al. also reported their work
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on the donor binding energies in double quantum wells,
with the inclusion of subband mixing effects. Our gen-
eralized formalism, when applied to the case of donor
binding energies for the specific parameters, obtained re-
sults which are in agreement with the results of their cal-
culation and experiment.
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