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Evidence of a pseudo-mobility-edge for electrons in disordered layers
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We report results of transmittance calculations for current carriers in disordered layers using the
block recursion method. This technique transforms a model of an elastic two-dimensional (2D) scatter-

ing potential to an "effective quantum circuit" whose transmittance can be readily found. We observe
evidence of a "pseudo-mobility-edge": a kink in the inverse localization length as a function of energy.
The energy at which this feature occurs is well separated from the band edge, and is observed to depend
on the disorder, but not the sample size or geometry. The 2D system's behavior is intermediate between
the 3D system's behavior, which is expected to display a true mobility edge, and 1D system s behavior,
where localization lengths vary smoothly with energy.

I. INTRODUCTION

The mobility of charge carriers trapped in a disordered
layer, and hence the electrical conductance of that layer,
depend on the length scale of Anderson localization' near
the Fermi energy. Since this energy can be varied by
doping or gating, it is important to understand how local-
ization lengths vary as a function of carrier energy. Ac-
cordingly, localization in eigenstates of a disordered po-
tential is a problem of great interest.

The theory of electron motion in disordered layers un-

derwent a major revision a decade ago. Previously, it was
thought that mobility edges, separating extended from lo-
calized states, could exist in two-dimensional (2D) poten-
tials. Subsequently, a consensus emerged that all eigen-
states of a 2D disordered potential have unit probability
of displaying some form of localization. Since then, it has
been widely believed that 2D systems display behavior
similar to 1D systems, where universal exponential locali-
zation, and a smooth variation of localization length with

energy, have been proven rigorously.
The more recent view of 2D localization arose in part

from single-parameter scaling theory and effective field-

theoretical models. These predicted universal exponen-
tial localization in 2D systems. Other theories predicted
different regimes of exponential and power-law localiza-
tion for sufficiently weak disorder, ' indicating a transi-
tion between weakly and strongly insulative states.

The latter two references, based on perturbative analyt-
ic calculations using the recursion method, predicted en-
ergies at which such a weak-disorder transition would
occur, along with effective carrier masses near the transi-
tion. A kink in the inverse localization length as a func-
tion of energy was predicted at the same energy, similar
to the behavior of tunneling current at energies in a band

gap. Such a singularity could occur even if the more
weakly insulative states were exponentially localized.
These results were not consistent with a single scaling pa-
rameter.

Because of the complexity of disordered potentials, an-
alytic work is difficult. Numerical work has therefore
been heavily relied upon, despite the difBculty in extrapo-
lating results for finite samples to infinite systems.

In a recent Letter' we reported results of calculations
of electronic transmittance in elastic, disordered 2D po-
tentials using the block recursion method. "' The re-
sults showed evidence of a kink in the inverse localization
length as a function of energy, supporting a key result of
the analytic recursion work. In finite-sized samples this
"pseudo-mobility-edge, " a boundary between strongly
and weakly localized states, caused a transmittance de-
crease comparable to that at the band edge of a similar-
sized crystalline sample. This behavior is not analogous
to either a 3D mobility edge or the smooth variation of
localization length in the 1D system. In a sense, howev-

er, the behavior of these 2D systems is intermediate be-
tween the 1D and 3D cases.

Here, we present these results in more detail, and
quantify the properties of this apparent feature.

II. RESULTS OF ANALYTIC RECURSION THEORY

The motion of electrons in the low-temperature, low-
current limit can be modeled as single particles acting un-

der the inhuence of a Hamiltonian operator H which con-
tains an elastic scattering potential. It is often convenient
to represent H as a matrix operating on a tight-binding
basis of local orbitals. Here, we represent the operator
and matrix with the same symbol.

The recursion theory of localization proceeds by
changing the basis of H, so that in the acquired basis the
matrix is tridiagonal. The transformed matrix thus
defines an effective 1D chain model with nearest-neighbor
interactions. The eigenstates of the 1D chain are then
found and expanded in the original basis vectors. The
spatially asymptotic properties of these states can then be
studied. This method is exact in principle, although the
complexity of disordered systems makes analytic calcula-
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tions difficult. Use of a perturbative method allowed cal-
culations valid for weak disorder.

This previous analytic work produced several key re-
sults, which we review in this section. In both two and
three dimensions, both the diagonal and hopping ele-
ments of the chain model converged to stable values as
successive acquired basis vectors were generated. In 3D
systems, the diagonal elements converged rapidly enough
to give extended states (in this weakly disordered regime).
However, in 2D systems convergence was slow enough to
give power-law localization near the band center. In both
cases, the hopping elements converged to a value which
gave the chain model an effective band edge, located at an
energy different from the band edge of the actual 2D or
3D sample. Carrier transmittance outside the effective
band edge would thus behave like tunneling outside the
crystalline band, with exponential localization whose
length scale L varied as an inverse square root of energy

Z
—x/L

1/L —1/L, =a~E E,~'~—
where T is transmittance, x is the sample length, a is con-
stant for a particular disorder strength, E, is the effective
band-edge energy, and I., is the localization length at E,.
a can be thought of as the square root of an "effective
mass" in the strongly localized region. Values for E, and
a as a function of disorder strength were found.

In 3D systems, a metal-insulator transition occurs at
E, . In 2D systems, a transition between exponential and
power-law localization was indicated for sufficiently weak
disorder. In both cases, for finite-sized samples (lb) indi-
cates a change in transmittance at E, similar to that in a
crystal at the band edge; however, there is no similar
singularity in the density of states near E, .

III. TRANSMITTANCE CALCULATIONS
USING THE BLOCK RECURSION METHOD

(la)

(lb)

We now turn to the main topic of this paper; that is, a
numerical examination of the issues raised by the earlier
weak-disorder analytic theory described in the previous
section. A detailed description of transmittance calcula-
tions using the block recursion method, as well as exam-
ple listings of the computer source code, is contained in
Refs. 10-12. The features of such a calculation, as well
as the model of disordered 2D potentials used, are briefly
described below.

We use the Anderson model' of an elastic, disordered
single-carrier potential. A single basis orbital is localized
on each of a set of N=n sites arranged in an n X n 2D
square lattice. The orbitals have constant nearest-
neighbor hopping integrals U, and energies which are ran-
domly and evenly distributed between +tv/2 and —tv/2.
The dimensionless parameter w/U thus describes the dis-
order strength.

Orbitals localized on sites at opposite corners of the
sample are coupled via hopping integrals v' to orbitals lo-
calized at the ends of semi-infinite 1D periodic leads (Fig.
1). One lead supports an incident and reflected Bloch
wave; the other supports a transmitted wave. (v' is usual-
ly set to make the bandwidth of the leads larger than that

FIG. 1. Lead-sample geometry used. Opposite corners of a
square lattice are coupled to semi-infinite 1D leads, through
which incident, rejected, and transmitted waves (symbolized
here by arrows showing the direction of propagation) can pass.

of the sample, so that the entire sample band may be ex-
amined. ) The projections of these waves on the basis
states at the ends of the leads and sample corners provide
boundary conditions for a solution of the time-
independent Schrodinger equation

Hf=Eg (2)
within the sample. Here E is the carrier energy, f is an
unknown vector, and H is the Hamiltonian operator
which describes the model. The block recursion method
is an efficient, stable algorithm which can find the relative
amplitudes of the transmitted and incident waves for a
solution of (2), and hence the transmittance.

The calculation proceeds as follows. Let u& be an
XX2 matrix whose two columns are vectors represent-
ing, respectively, the basis orbitals at the sample corners.
Similarly, let uo be an NX2 matrix whose columns
represent the orbitals at the lead ends. We first generate
from these a set of N X 2 matrices I u 0, u &, u 2, . . . , uz&2 J

which satisfy the recurrence

Hu;=u; IB; +u;3;+u;+iB;+I, (3)

where B;~, A;, and B;+I are 2 X2 matrices. We start with
uo, u I, and the initial condition

BI =uoHu), A) =utHuI (4)

By applying H to each u; and subtracting the u; and u;
components from this product, u;+IB;+I is generated
and then factored by requiring the columns of Q. + I to be
mutually orthonormal. A,.+, is given by u;~+&Hu;+I', the
process is repeated by applying H to u;+, and so on.

The columns of the u; are vectors which form a new
basis for H. In this basis the matrix representation of H
is block tridiagonal; the A; are the diagonal blocks, the
B; and B; are, respectively, the subdiagonal and superdi-
agonal blocks, and all other elements are zero. This ma-
trix also has the feature that the orbitals to which the
boundary conditions are applied (those contained in uo
and u&) are included in the basis. By applying these
boundary conditions, the transmittance T of a solution to
(2) is given by the matrix continued fraction

T(E)=4sin 8~[e' I—v'G(E)]oD~

0 is the change in phase angle of the transmitted wave be-
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FIG. 2. Overlap of transformed basis vector u„with starting
vector uo for the sample calculation described in the text. In an
exact calculation, the vectors would be orthogonal; in this
finite-precision calculation orthogonality breaks down.

tween a corner site and site at the end of a lead, G is the
2 X 2 submatrix of the resolvent of H spanned by the two
corner site orbitals, I is the 2 X 2 identity matrix and the
subscript OD means the off-diagonal element. With the
matrix representation of K in block-tridiagonal form,
G(E) is found using the matrix continued fraction

G(E}=[EI—A) B2—(EI—A2 — . ) '82] ' . (6}

In practice, near the band edge (where the results de-
scribed here were obtained) the number of levels needed
for the continued fraction to converge is much smaller
than the number of degrees of freedom in the sample
model.

In the new basis, the block-tridiagonal matrix H is an
"effective quantum circuit": a Hamiltonian which
represents a simpler model, but one which has the same
transmittance at energy E as the original, untransformed
matrix.

This method is related to the scalar recursion method.
The stability and accuracy of this family of techniques is
well understood, ' and described in detail in Refs. 10 and
12. Briefly, rounding error in the recursion (3) causes a
loss of orthogonality in the basis states; however, the
nonorthogonal vectors are still a valid basis for the Ham-
iltonian matrix. This effect thus does not contribute to
error in the calculated transmittance. The continued
fraction (6) may be evaluated with great numerical stabil-
ity.

The accuracy can be confirmed by applying the
method to an exactly soluble Hamiltonian. For example,
the resolvent of a diagonal Hamiltonian matrix can be
calculated directly with a spectral formula. However, ap-
plication of the block recursion transformation to such a
matrix involves about as many operations, and as much
rounding error, as any sparse matrix. Figures 2 and 3
show results of a block recursion calculation on a diago-
nal matrix of dimension 1000X1000 at two different en-
ergies. The diagonal elements randomly vary between 1.0
and —1.0; two orthogonal vectors (not eigenvectors) were
chosen for u&, the states coupled to leads. Figure 2

shows the inner product of the first columns of u„and
uo. In an exact calculation, this should equal one for
n =0, and zero otherwise. However, in the finite-
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precision calculation this overlap is substantial long be-
fore the degrees of freedom have been exhausted. Figure
3 compares an essentially exact calculation of the
transmittance using a spectral formula for G to the block
recursion result. When a sufficient number of levels are
included in the continued fraction, the transmittance
sharply converges to within rnachine precision of the
correct value. Note that fewer levels are required further
from the band center. This is consistent with experience
with the scalar recursion method.

IV. TRANSMITTANCE OF DISORDERED
2D POTENTIALS

This section describes an effect we have observed in
disordered 2D potentials, which we ca11 a pseudo-
mobility-edge. By that we mean a feature at a particular
energy, well separated from the sample band edge and
determined only by the sample disorder, at which a
finite-sized sample displays a falloff in transmittance sirni-

lar in appearance to that at a crystal band edge or 3D
mobility edge. However, states on both sides are believed
to be 1ocalized, so that an infinite sample would insulate
in both regimes (hence the prefix "pseudo").

We have examined the natural logarithm of transmit-

FIG. 3. Comparison of the calculated transmittance to an
essentially exact value for sample calculation described in the
text. (a) Despite the breakdown in orthogonality of the basis
vectors, the transmittance sharply converges to within rnachine
precision of the correct value when a sui5cient number of levels

are included in the continued fraction. This number is smaller
at the energy used in (b), which is further from the band center.
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tance as a function of energy for samples with a wide
range of sizes (measured by number of sites n per edge}
and disorder strength (measured by the disorder parame-
ter w/v). The behavior shown in Fig. 4, which displays
results for several 180X 180 site samples of varying disor-
der, is typical.

To illustrate the properties of the disordered samples,
it is first instructive to examine the transmittance of a
crystal (w/v =0) [Fig. 4(a)]. In this single-band model, a
crystal has extended states at energies between the band
edges at +4U and —4v. In this region, the transmittance
is large. It is not unity, however, and it is important to
distinguish the reflective features at work here from those
caused by localization. The 1D leads act as point sources

and receivers of waves, causing a power-law decay of the
transmittance with sample size. Reflection occurs at the
sample edges. The boundary conditions at the edges also
constrain the transverse wave vector; this limits the avail-
able phase space for transmission from the 1D leads,
which have no similar constraints. This latter
"mismatch" between lead and sample causes sharp reso-
nances where an incident wave is close in energy to an al-
lowed sample state. All of these effects exist, of course, in
the disordered samples as well; for finite samples with rel-
atively weak localization they are likely to be more im-
portant than localization effects.

Conversely, the transmitted intensity is relatively small
outside the band. Incident states with energies outside
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FIG. 4. ln transmittance of single 2D samples with w/U equal to (a) 0.0 (a crystal); (b) 0.5; (c) 1.0; (d) 2.0; and (e) 4.0. The crystal
band edge in (a) is marked with a dashed line. Note the feature [marked with dashed lines in (b)-(d)] that appears similar to the crys-
talline band edge and shows up distinctly in the lower-disorder samples. This feature is, however, well separated from the true band
edge. When the disorder increases [as in (e)] the feature becomes less distinct in single samples.
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the band evanescently decay with a length scale propor-
tional to the square root of the difference in energy from
the band-edge energy. The transmittance thus does not
fall sharply to zero, but displays a singularity (kink) at
the band edge. These are all, of course, results of elemen-
tary band theory.

Figure 4(b) shows a similar-sized sample with some dis-
order (w /U =0.5) introduced. Now at E=4.02U, a fallofF
of transmittance, similar in appearance to that at the
crystal band edge, occurs. We denote this energy as E, .
The band edge of this sample, however, is given by Lifs-
chitz' as EL =4v+ w/2, or 4.25v. There is no singulari-

ty similar to the band edge in the density of states at E„
nor is there any singularity in the transmittance at the
band-edge energy EL A.s the disorder increases [Figs.
4(c) and 4(d)], the transmittance near the band center de-
creases, but a similar steep falloff occurs. Finally, for
sufficient disorder [Fig. 4(e)] the feature is no longer obvi-
ous (but reappears when results from many samples are
averaged, as described below}.

The location of E, appears to depend only on the dis-
order strength. For different samples of the same size
and disorder, the observed E, varies only by an amount
comparable to the root-mean-square deviation of the site
energy, divided by the number of sites in the sample. Be-
cause of statistical fiuctuations in the random sets of site
energies, this is the minimum variation that can be ex-
pected. Furthermore, the location of E, is not observed
to depend on sample size or geometry, or alternate lead
arrangements (such as variation of v' or connecting leads
to edge midpoints). When these are varied, details of the
transmittance (such as the locations of the lead-sample
"mismatch" resonances} change; however, E, remains
the same (in the sense defined above).

These results appear qualitatively consistent with the
prediction of an effective band edge from analytic recur-
sion theory. Quantitative agreement can be tested by
fitting the data in Figs. 4(a) and 4(b) to Eq. (1). If we
presume that the states decay exponentially, then

lnT(E) = —x /L(E),
where x is a distance between leads. Substituting into (1)
leads to the equation
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if E, is the effective band-edge energy.
Figure 5 shows the same data as Figs. 4(a) and 4(b)

scaled in this fashion. For the crystal, E, is taken to be
the band-edge energy. Note that in both cases, there are
two regimes: roughly constant transmittance below E„
and an excellent agreement with square-root behavior
above. Note again, however, that in the disordered case
this feature is well separated from the band edge. There
are plenty of allowed states above E, ; they are simply far
more insulative than those below.

At higher disorders (e.g. , w/v=4) there is a similar
changeover to such a square-root dependence. This can
be seen by a more rigorous measurement of the localiza-
tion length by finding the scaling of the transmittance
averaged over many samples. Figure 6(a) shows data for
samples ranging in size from 20 to 180 sites square at two
energies. The scaling variables are designed to separate
exponential decay from the power-law decay caused by
the 1D lead arrangement. The slopes of the lines equal
the exponential localization length. (Larger abscissas
correspond to larger samples, larger ordinates to larger
transmittances. x is the distance between leads, mea-
sured in lattice spacings. ) Data points represent the
mean, and error bars the standard errors, of the scaling
variables. The results for many different energies at
w/U =4 are shown in Fig. 6(b).

[1/lnT(E, )
—1/lnT(E)] =const X ~IE, E~—
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FIG. 6. (a) Variation of transmittance with sample size for
w /u =4.0. The scaling variables are designed to remove
power-law decay arising from the sample geometry; the slopes
of the lines equal exponential localization lengths (see text). (b)
Localization lengths from scaling graphs at various energies for
w/v=4. 0. The results are scaled to test square-root depen-
dence on energy as described in text.
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in Fig. 7 was obtained from a graph of sample-averaged
localization lengths like Fig. 6. It should be noted that
the analytic results were valid in the asymptotic limit of
weak disorder. All disorder strengths used in this study
are substantial by comparison. However, we observe
agreement with these results, particularly for the lower
disorders used (w /v (3).

The analytic recursion theory also predicted that states
on the less insulative side of E, would be power-law local-
ized for sufficiently weak disorder. We are unable at this
time to examine samples of sufficient size to make accu-
rate measurements of scaling in such a weakly localized
regime, and are thus unable to test this claim.

V. CONCLUSION
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FIG. 7. Comparison of numerically observed values of (a) E,
and (b) carrier efFective mass compared to results of analytic re-
cusion theory.

Note again the characteristic changeover in behavior,
despite the fact that states on both sides of E, clearly
display exponential localization. This is strong evidence
that the feature is not a true metal-insulator transition,
which is expected in 3D systems but not in 2D systems.
Rather, this is a change from weakly to strongly insula-
tive states.

In Fig. 6(b), the feature appears rounded. This is
caused by the aforementioned statistical fluctuations be-
tween samples. Because of the unavoidable variation in
E, from one sample to another, at energies near the
feature each average will include some data from samples
for which E is slightly less than, and some slightly greater
than, E,. These statistical fluctuations are also apparent
in the error bars on the scaling graph. At energies
greater than E, the standard error is much larger, even
though the averages show negligible deviation from a
straight line. This is because a fluctuation in the location
of E, will cause a much greater transmittance change in
this region, where T depends so critically on the distance
in energy from E,.

For highly disordered samples, the part of Fig. 6(b)
above E, (where the localization length varies as a square
root) provides a means of measuring the location of E,
(the intercept of the line) and the effective mass of car-
riers (the slope of the line) in this regime. These are com-
pared to the predictions of the analytic recursion model
with no adjustable parameters (Fig. 7). Each data point

We have found evidence that an effective band edge,
predicted by analytic recursion results, exists in 2D disor-
dered potentials. This is characterized by a falloff in the
transmittance at an energy E„whose location depends
only on the disorder strength. Unlike a crystal, however,
this does not signify a change from metallic to insulating
behavior, since states on both sides of the feature are ob-
served to be exponentially localized. Also, the apparent
kink in the transmittance does not occur at the band edge
as in the crystal. The far weaker transmittance on one
side of E, thus is not caused by evanescent decay in a for-
bidden region, but a much higher degree of Anderson lo-
calization in a region where the density of states is still
substantial.

For finite samples, this "pseudo-mobility-edge"
behaves similarly to a mobility edge. It is clearly a quali-
tatively different feature, however, since it is a transition
between localized regimes. It is also distinct from the 1D
case, in which universal exponential localization and a
smooth variation of localization length with energy have
been proven. In a sense, then, the behavior of the 2D
system is intermediate between the 1D and 3D cases.

Lower-resolution studies have indicated a similar func-
tional falloff in 1/L near the crystal band edge in disor-
dered systems. ' However, we are not aware of any pre-
vious numerical evidence for such a kink in 1/L in 2D
systems. Other studies have examined much higher dis-
order strengths, or have not extended sufficiently into the
band tails, or have not been sufficiently energy resolved.
In appropriate regimes of energy and disorder, we obtain
results consistent with those of these authors. A detailed
description of previous studies and their relation to the
block recursion approach is provided in the references. "
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