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We study theoretically transport of a one-dimensional single-channel interacting electron gas through

barriers or constrictions. We find that electrons with repulsive interactions, incident upon a single bar-

rier, are completely rejected at zero temperature. At finite temperature (T), the conductance is shown

to vanish as a power of T, and at zero temperature, power-law current-voltage characteristics are pre-

dicted. For attractive interactions, we predict perfect transmission at zero temperature, with similar

power-law corrections. We also study resonant tunneling through a double-barrier structure and related

effects associated with the Coulomb blockade. Resonant peaks in the transmission are possible, provided

the interactions are not too strongly repulsive. However, in contrast to resonant tunneling in a nonin-

teracting electron gas, we find that in the presence of interactions the width of the resonance vanishes, as

a power of temperature, in the zero-temperature limit. Moreover, the resonance line shapes are shown

to be described by a universal scaling function, which has power law, but non-Lorentzian tails. For a

particular choice of interaction strengths, we present an exact solution of our model, which verifies the

scaling assumptions and provides an explicit expression for the scaling function. We also consider the

role played by the electron-spin degree of freedom in modifying the trasnsmission through barriers.

With spin, there are four possible phases corresponding to perfect transmission or perfect reAection of
charge and spin. We present phase diagrams for these different behaviors and analyze the nontrivial

transitions between them. At these transitions we find that the conductance or transmission is

un'iversal —depending only on the dimensionless conductance of the leads and not on the details of the

barriers. In the case of resonant tunneling with spin, we discuss the "Kondo" resonance, which occurs
when there is a spin degeneracy for electrons between the two barriers. Many of the predictions should

be directly testable in gated GaAs wires.

I. INTRODUCTION

Since the discovery of the high-temperature supercon-
ductors' there has been a resurgence of interest in strong-
ly correlated electron systems. Due to the strange
normal-state properties of these materials, much atten-
tion has focused on strongly interacting electron models
with a view to finding some which exhibit non-Fermi-
liquid-like normal phases. A paradigm for such non-
Fermi-liquid behavior can be found in one-dimensional
(1D) interacting electron models, in which the Fermi sur-
face is altered qualitatively even for weak interactions.
Indeed, it is well established theoretically that the
low-temperature properties of such interacting 1D mod-
els are described in terms of a Luttinger liquid, rather
than a Fermi liquid. Despite the firm foundation upon
which the Luttinger liquid rests in 1D, its possible
relevance to 2D or 3D strongly interacting electron sys-
tems remains unclear. In view of this, it seems
worthwhile to first search for Luttinger-liquid behavior
experimentally in electron systems which are one dimen-
sional.

Fortunately, in very recent years it has become possi-

ble, by cleverly gating 2D electron gases in GaAs inver-
sion layers, to make truly one-dimensional "wires. " '

Due to the low carrier concentration these wires can be
made so narrow as to carry only several, or even one,
transverse channel. Moreover, since the mobility in
GaAs can be very large, it is possible that localization
effects, which will eventually dominate in a long enough
wire, can be effectively minimized. In such systems
transport measurements should be possible and might
give evidence for Luttinger-liquid behavior. In view of
this possibility, it is rather surprising how little theoreti-
cal effort has focused on transport properties of Luttinger
liquids.

In this paper we summarize our recent theoretical
work studying transport in an interacting 1D electron
gas. With a view toward possible experiments, we focus
on the case where the transport is through one, or
perhaps two, weak links or constrictions. Such constric-
tions can be fabricated by adding additional gates to the
system. Our underlying physical assumption is that the
rest of the 1D wire is sufficiently clean that the resistance
of the wire is dominated by the transport through the
constrictions. Indeed, we will ignore completely disorder
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in the rest of the wire, and focus exclusively on the
transmissions and reflections from the constrictions. Ex-
perimentally, it may be easiest to eliminate unwanted
scattering from impurities in the one-dimensional chan-
nel by working in a strong magnetic field, which will tend
to spatially separate the right and left moving electrons.
The optimal separation is achieved when the magnetic
length is approximately equal to the width of the "wire"
in which the electrons are confined.

Since any wire will be of finite length, and in a trans-
port experiment one must connect the wire to three-
dimensional leads, care must be taken to ensure that it is
the one-dimensional physics of the wire rather than the
three-dimensional physics of the leads which is being
probed. We shall see that this will be the case provided
the wire is longer than a thermal coherence length
Lr =fivF/kit T, where Uz is the Fermi velocity. Alterna-
tively, for a fixed length wire, one must work at a temper-
ature larger than TL =AU+/k&L. In GaAs with a density
of one electron per 10 nrn, a 1-pm-long wire would corre-
spond to a temperature TL =10mK.

Even in a wire with no constrictions, the "two-
terminal" conductance for a single-channel interacting
electron gas is not given by e /h as it is in a Fermi liquid
of noninteracting electrons. To see why this is so, recall
the usual argument for quantization of the conductance
of a single-channel wire. ' If the left and right leads of
the wire are in equilibrium with reservoirs at chemical
potentials separated by eV, then there will be an excess of
K eV/2 states carrying current away from the reservoir at
higher chemical potential. Here ~=Bn /Bp is the
compressibility. The current carried by each state is
determined by the velocity eUF. The remarkable quanti-
zation of the conductance, 6 =e /h, then follows from
the special relationship between the Fermi velocity and
the compressibility for 1D noninteracting electron gas,
vUF =1/(M). For interacting electrons, both the
compressibility and the velocity are renormalized, and
this cancellation need no longer precisely occur. There-
fore, if we define g =vrfivU, then the conductance is given

by G =ge /h. The dimensionless parameter g is a mea-
sure of the strength of the interactions and plays a central
role in the theory. For the case of spinless electrons,
relevant to experiments in strong magnetic fields, the
noninteracting value for g is 1, and for repulsive interac-
tions (which decrease the compressibility), g is less than
1 and given roughly by the expression g = (1
+U/2EF) '. Here U is the Coulomb interaction be-

tween neighboring electrons and E„is the Fermi energy.
The ratio U/EF is proportional to r„the electron spac-
ing divided by the Bohr radius, so that g decreases with
decreasing electron density. Thus, in GaAs, where the
carrier concentration is much lower than in a metal, g
can be appreciably smaller than 1, say in the range —,

' ——,'.
This reflects the enhanced role that electron interactions
play at low densities.

For electrons with spin, we denote the dimensionless
(two-terminal) conductance by g . For interacting elec-
trons we have g =2, coming from the spin-up and spin-
down electrons, whereas for repulsive interactions g (2.
In addition, for electrons with spin, one may define a

For electrons with spin, 2/g is replaced by 2/go+2/g
At zero temperature, a similar power-law behavior is
found in the frequency dependence of the conductivity.
Moreover, the dc I-V characteristics are predicted to be
non-Ohmic, and have the form

I( V)= V is (1.2)

At low temperatures and voltages, this power-law behav-
ior will be cut off in a finite length wire by the energy
scale Tt . Thus we only expect (1.1}and (1.2) to be valid

for energy scales larger than Tl . Below that, there will

be Ohmic conductance with T replaced by TL in (1.1).
Physically, we may interpret the insulating behavior of

a single barrier with repulsive interactions in the follow-

ing way. In a Luttinger liquid, there is a tendency to-
wards charge-density-wave (CDW} order. Of course,
there can be no true long-range order in one dimension,
but it is well known that the CDW correlations decay
algebraically in space and time with an exponent which
decreases as g decreases. For g (1,or repulsive interac-
tions, these correlations are long range enough so that an
arbitrarily weak barrier will pin the incipient charge-
density wave at low energies.

For attractive interactions, on the other hand, we pre-
dict perfect transmission through an arbitrarily large bar-
rier at zero temperature with similar power-law correc-
tions at finite T, co, or V. Heuristically, the superconduct-

ing correlations are sufficiently long range, and the phase
difference across the junction is "pinned" by an arbitrari-

"spin conductance" 6 via the spin-current response to a
graded magnetic field. We define a dimensionless "spin
conductance" as G =g e /h. For noninteracting elec-
trons, g =2. Moreover, we shall see that in the absence
of a magnetic field or spin-dependent scattering, g =2
even in the presence of interactions. While the spin con-
ductance is more difficult to measure than the charge
conductance, it also will play a central role in our theory.

The difference between a single-channel interacting
Luttinger liquid and a noninteracting Fermi liquid is far
more spectacular in the presence of a single narrow con-
striction. According to Landauer transport theory, ' the
conductance of a single-channel wire with a barrier is
determined by the transmission probability through the
barrier for a wave incident from one of the leads. The
conductance may vary continuously between 0 and e /h.
The underlying assumption of Landauer theory is that
the electrons in the leads may be adequately described
with noninteracting electrons. This is usually the case for
a Fermi liquid. In one dimension, however, electron-
electron interactions play a crucial role, and the Fermi
surface is destroyed. In a Luttinger liquid, the interac-
tions dramatically alter the effects of barriers on trans-
port. In particular, we show that at T =0, a repulsively
interacting Luttinger liquid is completely reflected from
even the smallest of barriers, and the conductance
through the constriction is zero. At finite temperature
the conductance through the constriction is finite, and is
found to vanish as a power of temperature,

G(T)= T
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ly weak coupling.
Next we consider the problem of resonant tunneling

through a double-barrier structure. This situation is par-
ticularly interesting in light of recent experiments in
which oscillations in the conductance through a double
constriction have been observed as a function of the
chemical potential. These oscillations are believed to
correspond to the addition of single electrons to the "is-
land" between the two constrictions, and to be a result of
the Coulomb blockade, "' which forbids tunneling onto
the island unless the chemical potential is tuned to a
value where another electron can be added with no cost
in energy. ' In this situation electrons may resonantly
tunnel through the island.

A great deal of attention has been focused lately on the
effects of the Coulomb interactions on the island, which
lead to the Coulomb blockade. '" However, as we show,
in addition, the electron-electron interactions in one-
dimensional leads play a crucial role. Despite the fact
that a single narrow constriction causes total reflection,
we show that a Luttinger liquid incident on a double-
barrier structure can exhibit perfect resonant transmis-
sion. When the barriers are symmetric, this resonance
may be achieved by tuning a single parameter, such as a
gate voltage. More generally, however, for asymmetric
barriers, two parameters must be tuned to achieve reso-
nance. Moreover, when the electron-electron interac-
tions are stronger than a critical value (which could be
the case when the electron density is very low) then even
more parameters need to be tuned in order to achieve res-
onance. In this case, such "higher-order" resonances
would be more difficult to observe.

For a wire modeled by noninteracting electrons, the
shapes of these resonance peaks should be Lorentzian at
low temperatures, with a temperature-independent width.
In contrast, we find that when the electrons in the one-
channel wire are interacting, i.e., in a Luttinger liquid,
the resonance peaks (as a function of gate voltage, for in-
stance) are infinitely sharp at zero temperature. At low
but nonzero temperatures, the resonances develop a
width which vanishes as a power of temperature. If we
denote the "distance" to the resonance in gate voltage by
5, then the conductance through the resonance at low
temperatures is predicted to have a universal shape de-
scribed by a scaling function:

G(T,5)=G(5/T ) . (1.3)

The scaling function G(X) and the exponent A, are univer-
sal in the sense that they depend only on the lead conduc-
tances and not on the details of the barriers. In general
G(X) has power-law but non-Lorentzian tails.

The above results, which are primarily established by
piecing together perturbative calculations with scaling
ideas, are confirmed and strengthened by an exact solu-
tion for the spinless case when g =

—,'. Abridged versions
of some of these results have been reported previously in
Refs. 15 and 16.

In this paper we also generalize our results to include a
spin degree of freedom for the electrons. When there is
an SU(2} spin symmetry, our results for a single barrier
are quite similar to the spinless case. Namely, we expect

a perfectly insulating link for repulsive interactions and a
perfectly conducting link for attractive interactions.
More generally, however, in the presence of spin it is pos-
sible to have two additional phases in which either charge
is perfectly transmitted and spin is refleeted, or spin is
perfectly transmitted and charge is reflected. Under cer-
tain conditions, which we will specify below, these
"mixed phases" will be stable.

Resonant tunneling is also possible with a spin degree
of freedom, and again, at low temperatures, the reso-
nance line shapes will be described by a scaling function
similar to (1.3}. The interpretation of these resonances in
the Coulomb blockade regime is rather difFerent, though.
When the number of electrons on the central island is
given by an odd integer, there is an excess spin on the is-
land. This is rerniniseent of the Kondo problem in which
a spin- —,

' local moment is coupled to conduction electrons.
It has been suggested that for Fermi-liquid leads, there
can be a Kondo effect in which the spin on the island is
compensated by the electrons in the leads by the forma-
tion of a resonant bound state at the Fermi energy. '

In this case, perfect resonant transmission is predicted for
a symmetric barrier. We find that these Kondo-like reso-
nances are also present in the interacting Luttinger
liquid. As in the noninteracting case, we find perfect
transmission on resonance, although with interactions
the resonance becomes infinitely sharp in the zero-
temperature limit. In general, these Kondo resonances
can be achieved by tuning two parameters, but for a sym-
metric (double) barrier, only a single parameter, for ex-
ample, a gate voltage, is needed. It should be emphasized
that these Kondo resonances are qualitatively different
than the resonances that occur in the spinless electron
gas. In the case without spin, the resonance condition
corresponds to tuning to a degenerate charge state on the
island. At the Kondo resonance, by contrast, there is a
degenerate spin state on the island, with only virtual
charge fluctuations allowed.

Our paper is organized as follows. In Sec. II we review
the properties of a pure Luttinger liquid and compute its
two-terminal conductance. In Sec. III we discuss trans-
port through a single barrier for spinless electrons. We
are able to do perturbative calculations in the extreme
limits of very weak barriers and very weak tunneling, and
join these two regimes using renormalization-group argu-
ments. In Sec. IV we perform a similar analysis of reso-
nant tunneling through a double-barrier structure, and
present the phase diagram for transmission precisely on
resonance. In Secs. V and VI we generalize the results of
Secs. III and IV to include a spin degree of freedom. Sec-
tion V is devoted to an analysis of transmission through a
single barrier, whereas resonant transmission through a
double-barrier structure for the spinful case is discussed
in Sec. VI. In Sec. VII we address the resonance line
shapes at finite temperature and argue that their tempera-
ture dependence is described by a universal scaling func-
tion. In Sec. VIII we confirm this explicitly with an exact
solution of our model for the special case g =

—,'. Finally,
Sec. IX is devoted to a discussion of various relevant ex-
perimental and theoretical questions and concluding re-
marks.
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II. THE LUTTINGER LIQUID

[y(x), 8(x')]= —ie(x —x ) . (2.1)

Thus V8(x) may be regarded as the momentum conjugate
to P(x). Alternatively, VP(x) is the conjugate rnomenta
to 0. Expressed in terms of these bosonic fields, the fer-

mion field operator may be written

gt(x)= g exp[in [&m8(x)+kFx)]exp[i&@/(x}] .
n odd

(2.2)

The sum on n enforces the constraint that the particle
density be discrete. By having n odd, the Jordan-Wigner
string is included and Fermi statistics is obeyed. We ig-

The defining feature of a Fermi liquid is the discon-
tinuity at the Fermi surface of the electron momentum
density of states. In one dimension, it has been estab-
lished theoretically that electron-electron interactions
destroy this discontinuity and replace it by a power-law
nonanalyticity at the Fermi surface. The ground state
of the interacting one-dimensional electron gas in the ab-
sence of any scattering potentials is a "Luttinger" liquid.
This state is characterized by a gapless collective sound
mode, and has physical correlation functions which de-

cay algebraically in space and time with exponents which
depend continuously on the interaction strength.

The electron-electron interactions in one dimension
may be treated using perturbative renormalization-group
methods, which leads to the so-called "g-ology" theory.
It is found that in the absence of backward scattering a
system of spinless electrons can be described at low ener-
gies and long length scales by a line of (renormalization-
group) fixed points characterized by a single parameter g.
This parameter depends continuously on the strength of
the electron-electron interaction (which has been as-
sumed to be of short range). Depending on g, backwards
scattering (via umklapp or impurity scattering) may or
may not be relevant perturbation on these Luttinger-
liquid fixed points. In this paper, we confine our interest
to the case of electrons off lattice, or when on lattice well

away from half-filling, so that umklapp scattering is not
important. Furthermore, when considering an electron
gas with spin, we assume the system is well away from
spin-density-wave and superconducting instabilities.

A particularly simple way of describing the low-energy
physics of a Luttinger liquid is via the method of "bosoni-

zation. " Although this is a standard method which has
been well studied, for completeness we briefly review its
ingredients following a procedure originally due to Hal-
dane. For spinless electrons, we perform a Jordan-
Wigner transformation, which represents the fermion
creation operator in terms of a hard-core boson,

c; ~exp(i~ QJ &, n; )b; . The interacting bosons are then

re resented in the number-phase representation

u; = Qn;exp(ig; ). In the continuum limit, we define bo-

sonic fields 8 and P such that n;~p +V 8( x) /&~ and

y; ~&ir{f(x) (p =kF /nis the mean .density). It then fol-

lows from the canonical commutation relation between
number and phase that 8 and P satisfy

nore the VO terms which arise from expanding &n, since
they will be irrelevant at long wavelengths. In other for-
mulations of bosonization ' only the n =+1 and —1

terms in the sum are included, corresponding to right and
left moving pieces of the electron. In general, though,
higher-order terms in the sum are allowed by the symme-
try 8~8+&m. (which represents the discrete particle na-
ture of the electrons), and if not included explicitly in
(2.2) must be included (whenever important) in the
efFective Lagrangian (see Sec. III).

The interactions between these bosons result from a
combination of the hard-core constraint and the
electron-electron interactions in the original fermion
problem. Provided these interactions are short ranged,
the effective Hamiltonian at long wavelengths may be
written in the generic form

H =u L(VP)'+ (V8)'1

2 2g
(2.3)

Here v is the sound velocity, and the parameter g de-
creases with increasing repulsion, but depends in a com-
plicated way on the microscopic parameters of the prob-
lem. However, as we shall see, it is directly related to the
compressibility of the system, and g =1 describes the
noninteracting Fermi gas.

By passing from Hamiltonian to Lagrangian in either P
or 0 we may obtain two equivalent descriptions of the
Luttinger liquid. These may be expressed in terms of the
Euclidean action

S= '

f d d (V8) + (&„8)
2g v

1 d d (V(t )'+, (&,P)'

(2.4a)

(2.4b)

We refer to these dual representations as the 0 represen-
tation and the P representation.

Equations (2.4a) and (2.4b) may be understood more

physically with the following heuristic description. In
one dimension, the fluctuations about a Wigner crystal
state may be described using a set of phonon coordinates
which represent the displacement of the electrons from
their lattice positions. If we denote this displacement by
8a /&m (a is the mean electron separation), then the den-

sity (fluctuations) and the current will be given by &m V8
and &nB,8, respectively. Equation (2.4a) then simply de-

scribes the long-wavelength phonon fluctuations. In one

dimension, the quantum fluctuations of these modes des-

troy the long-ranged crystalline order, and one is left

with algebraically decaying positional correlations even

at T =0. This is manifested in a logarithmic divergence
in the Debye-Wailer factor. It is clear that the parame-
ters u and g in (2.4a) depend only on m (the effective

electron mass), a, and the compressibility

g =vrh&a /ma, u =&1/mrna . In particular, the relation

g =tv alluded to in the Introduction is satisfied. For
noninteracting electrons, we thus have g = 1 ~

The dual P representation (2.4b) can be understood

heuristically in terms of the phase of the boson field (b)
introduced in the Jordan-Wigner transformation.
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Specifically, (2.4b) describes the phonon modes of the bo-
son superfluid phase. Again, the quantum fluctuations in
one dimension destroy the long-range order, leaving alge-
braically decaying superfluid correlations at T =0.
While heuristic in nature, these two pictures do provide a
useful guide in understanding the effects of scattering po-
tentials studied below.

The above considerations may be generalized to in-
clude a spin degree of freedom by defining a boson field

O„and P„for each species of electron, p= 1, $. The fer-
mion field operators g„(x)may be expressed in terms of
O„and P„asin (2.2}. It is convenient to introduce new
boson fields for the charge and spin degrees of freedom,
denoted by subscripts p and cr, for both 8 and P:

and

8 =0)+Op,

8 =8)—8),
(2.5a)

(2.5b)

P =(Pt+Pi)/2,

0.=(0t-0i)/2 ~

(2.6a)

(2.6b)

In terms of these fields, the Euclidean action describing
the Luttinger liquid will have the generic form

V 1S= fdxdr (VO ) + (88 )z

For spinless electrons, we find

G (x,0) =sin(k~x)x (2.8)

where we have retained only the leading long-distance be-
havior which is dominated by the n =+1 terms in (2.2).
For electrons with spin, the exponent is replaced by
(gz+g )/8+(gz '+g ' )/2. For a one-dimensional
Fermi liquid we expect G(x, 0)=l/x. We can thus
confirm that g = 1 corresponds to the case of noninteract-
ing electrons (or g =g =2 with spin). For g A 1, a
larger power is found, which implies that the Fermi sur-
face discontinuity is reduced to a power-law nonanalytici-
ty. It follows that the tunneling density of states p(e)
vanishes upon approaching the Fermi energy as
p(e) =e' +' ' ' for spinless electrons.

It is well known that for noninteracting electrons the
two-terminal conductance of a 1D wire with no elastic
scattering is e /h per channel. In the Introduction we
argued that for interacting electrons, this should be re-
placed by ge /h. This may be confirmed by an explicit
calculation of the two-terminal conductance. We follow
the procedure implemented by Fisher and Lee, ' which
involves calculating the current in linear response to an
electric field E = V/L applied to a finite region of length
L of an infinitely long wire. At zero temperature this is
accomplished by computing the current-current correla-
tion function:

+ (VO )+ (BO )
2g~ V

Similarly, in the P representation,

(2.7a)

G =lim fdx dre' '(T, J( xr)J( 0, 0)),1

co~0 flLco
(2.9)

where the current J(x,r)=ieB,O(x, r)/v'm and the in-
tegration over x is restricted to the region of length L.
Evaluating (2.9) using (2.4) we find that for a pure I.ut-
tinger liquid

S= f dxdr ', '
(Vy, P+, (a,y, )'

P

2

6=g
h

(2.10)

+ (vp )+, (&,p )'
V~

(2.7b)

With spin, noninteracting electrons correspond to
g =g =2. Moreover, in the absence of a magnetic field
or any spin-dependent interactions, one must take g =2
in order to respect the underlying SU(2) spin symmetry.
More generally, an additional magnetic interaction term
of the form uS;+S; ~u cos(2&m 8 ) is allowed. Howev-
er, for repulsive electron-electron interactions the "bare"
value of g &2, so that this term is irrelevant at long
wavelengths, and the system flows to the fixed point de-
scribed by (2.7) with renormalized values u =0 and
g =2. For attractive electron interactions, however,
this term is relevant, reflecting the instability towards s-
wave singlet superconductivity, and opens up a gap in the
spin part of (2.7), rendering 8 massive. In this paper we
will focus primarily on the case with the g =2 case, but
our results will also be valid when g & 2 provided the pa-
rameters are such that u flows to zero.

The single-electron Green's function G (x, r)= ( T,f (x,r)g(0, 0})may be evaluated using (2.2)—(2.4).

As was originally shown by Apel and Rice, we see that
the "rule" of e /h conductance per channel is modified in
the presence of interactions. For electrons with spin, g is
replaced by g . Thus, we may interpret g and g to be di-
mensionless measures of the conductance of the pure Lut-
tinger liquid. An identical calculation for the spin "con-
ductance" reveals that G =g e /R.

While it is difticult to determine precise values of g or
g for a given microscopic model, they may be estimated
by "correcting" the compressibility of the noninteracting
electron gas to account for interactions. Specifically, we
can add a Coulomb interaction U to the inverse compres-
sibility, which leads to

g= 1+ U

2E~

' —1/2

(2.11)

Here U is of order e /ea, where a is the average spacing
between electrons and e is an appropriate dielectric con-
stant. The ratio U/2E~ is proportional to r, =a/ao,
where ao is an appropriate Bohr radius, and hence in-
creases with decreasing density. Glazman, Ruzin, and
Shklovskii have made a more detailed estimate of
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U/2EF in the situation where the long-range Coulomb
interaction between the electrons is screened by a con-
ducting plane a distance D away from the
one-dimensional wire. They find U/2EF
=(2/m. )ln(8. 0D/a)a /ao.

III. TRANSPORT OF SPINLESS ELECTRONS
THROUGH A SINGLE BARRIER

tegrate out fluctuations in 0(x) for all x away from zero.
This is possible due to the quadratic nature of the pure
Luttinger-liquid action (2.4). If we specify
0(x =O, r) =8(r), then the action (2.4) is minimized when

0(x,co„)=0(co„)exp(—leo„xl
/v ), and the resulting

effective action is

(3.3)

In this section we discuss the effects of a single barrier
on a gas of spinless electrons. As is well known, for the
noninteracting electron gas an incident electron will be
partially transmitted and partially reflected, with the rel-
ative amounts determined by the strength of the barrier.
The conductance is given by the transmission probability
times e /h. In this section we demonstrate that the pres-
ence of the electron-electron interaction has a profound
and qualitative effect on such scattering. In the presence
of interactions we can approach this problem perturba-
tively in two limits: A very weak barrier and a very large
barrier (or equivalently weak tunneling), which we dis-

cuss below in Secs. III A and III B, respectively.

A. Weak barrier

ei2nv ns(x =O, v)
2 un (3.2)

Here the coefficients u„=v'„,are proportional to the
Fourier transform of V(x) at momenta given by n times
2kF .. v„=P(2nk F)

'When t.he potential barrier has an in-

version symmetry, V(x) = V( —x), it follows that the v„
are real. Physically, this interaction corresponds to pro-
cesses where n electrons are backscattered, each by a mo-
menta 2kF, from one Fermi point to the other. Alterna-
tively, (3.2) can be viewed as an effective potential
V ff [8(x =0 ) ], which is invariant under the transforma-
tion 0~0+&m.. Since 8/&m is the number of particles
to the left of x =0, V,z may be regarded as a weak pin-

ning potential in the Wigner crystal picture.
As we shall now see, for weak backscattering, the

single-electron process, i.e., the 2kF backscattering term

u, , is the most important. Since the perturbation term
above only acts at the origin, x =0, it is convenient to
perform a partial trace in the partition function, and in-

Consider first the scattering of a pure Luttinger liquid
from a small barrier. Specifically, we consider a potential
scatterer V(x) which is nonzero only for x near zero, and
whose maximum amplitude, taken to be at x =0, is small
with respect to the Fermi energy. In terms of the elec-
tron field operator g(x), the additional term we add to
the electron Hamiltonian is simply,

5H = f dx V(x)f (x)P(x) . (3.1)

This can be expressed in terms of the boson field 0 by
simply inserting the expression (2.2) into the above equa-
tion. Upon performing a gradient expansion in 8(x)
about x =0, performing the x integration and retaining
only the most important terms we find a contribution to
the Luttinger liquid action of the form

Notice the singular dependence on the Matsubara fre-
quency co„.If we Fourier transformed back to imaginary
time ~, this would correspond to a nonlocal interaction
falling off as I/r . This interaction arises from the low-

lying modes in the Luttinger liquid, and the coefficient is
given by the inverse lead conductance g.

We are now in a position to perform a perturbative
analysis to study the effect of the backscattering terms.
Before undertaking a straightforward perturbation calcu-
lation for the conductance, we consider first a
renormalization-group transformation. Specifically, after
introducing a high-frequency cutoff, A in (3.3), which is

roughly the Fermi energy, we imagine performing a par-
tial trace over 8(co) with co in the shell between A and
A/b, with b & 1. The renormalization-group (RG) trans-
formation is completed, as usual, by rescaling ~'=~/b.
We choose not to rescale the field 0(7), since then the
quadratic action in (3.3) above is a fixed point of the RG
transformation (i.e., the renormalized action is equivalent
to the initial action with g unchanged). To leading order
in the backscattering, the differential RG flow equations
are determined by computing the dimension of the opera-
tor cos2n &m.8 and are

dv„/dl = (1—n g)v„, (3.4)

where b = 1+dl. The conductance g is not renormalized,
to any order, since it is a coefficient of a singular operator
(l~l).

Notice that for attractive electron-electron interac-
tions, where g ) 1, all backscattering terms flow to zero
(for any n). For noninteracting electrons with g =1, the
2kF backscattering is marginal, whereas all higher-order
processes, 4kF, 6kF, flow to zero. For repulsive interac-
tions, though, the 2kF backscattering is always a relevant
perturbation. That is, as one goes to lower energies un-

der successive RG transformations, an initially weak 2kF
backscattering grows stronger and stronger. As we will

establish in Secs. III B and VIII below, this corresponds
to total reflection at zero energy. A weak barrier is com-
pletely insulating for repulsive interactions. For attrac-
tive interactions, on the other hand, at low energies the
barrier scales to zero and perfect transmission is expect-
ed.

It follows from the flow equations (3.4) that if we cut
off the renormalization-group flows at some finite energy
scale E (which could correspond to temperature, frequen-

cy, or voltage), then the effective barrier strength at that
n —1

energy will be proportional to u„E" '. We thus antici-

pate power-law corrections to the conductance at finite

temperature, frequency, or voltage. This can be
confirmed by performing an explicit calculation of the
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G(T)=e /h g —g a„rIu„IT
n=1

(3.5a)

conductance perturbatively in V(2nkF ). Some details of
this calculation are outlined in Appendix A. At finite
temperature T, we find to leading order in v„that

5[0(x =O, r)]. Since 8(x =O, r) is essentially the number
of particles to the left of x =0, this term effectively
disconnects the two sides. For the purposes of this sec-
tion, however, it is more convenient to work in the P rep-
resentation, and in this case, it is equivalent to write the
action for each side as

where a„&is a dimensionful nonuniversal constant which
depends, e.g., on the Fermi energy. At low temperatures
the dominant correction will come from the term with
n =1. Notice that for attractive interactions, where
g)1, as the temperature approaches zero the back-
scattering corrections to the conductance vanish. Al-
though this has only been confirmed explicitly to second
order in v„,from the above RG analysis we expect it to
hold even for large barriers (also see Sec. IIIB). For
repulsive electron interactions the perturbation expansion
breaks down as the temperature tends to zero, since the
coefficient of the 2k+ backscattering term (n =1 term)
diverges. This could have been anticipated from the RG
approach. In Sec. IIIB we argue that in this case the
electrons are completely reflected at T=O, even for a
very weak barrier. For the special case of noninteracting
electrons (g =1) a nonzero backscattering reduction to
the conductance survives down to T=O, as we know it
must from a scattering analysis of the one-body
Schrodinger equation in which part of the wave is
transmitted and part is reflected.

Similarly, we may calculate corrections to the conduc-
tance at finite frequency and T =0,

00
2

G(tu)=e /h g —y a (3.5b)

It is also possible to calculate the current-voltage charac-
teristics as a perturbation expansion in the backscattering
v„.As shown in Appendix A, at T =0 we find

I = Ve /h g —g a„~Iu„IV '"
n=1

(3.5c)

B. Transport through a weak link

We now consider the opposite limit of a large barrier
or equivalently a weak link (or tunnel junction). The
zeroth-order problem in this limit is two completely
disconnected semi-infinite leads. Here we analyze the
effects of adding a small hopping matrix element t con-
necting the two leads. As in the previous section, we ana-
lyze the problem using a perturbative renormalization
group.

A pair of disconnected semi-infinite Luttinger liquids
may be described by inserting into the partition function,
in the 8 representation (2.4a), a term of the form

Once again, for repulsive interactions the 2k~ back-
scattering contribution diverges in the small-voltage lim-
it, vanishes for attractive interactions, and renormalizes
the linear conductance for the noninteracting case.
While the coeScients a are nonuniversal and depend on
the form of the high-energy cutoff, their ratios are univer-
sal and are tabulated in Appendix A.

S, =f "d fd ug (V((, )'+ ', (aP, )'
v

(3.6)

where i refers to the + or —side of the barrier. Since
the electron hopping term [(3.9) below] depends only on
P(~):—[P+(x =O, r) —P (x =O, r)]/2, it is again con-
venient to integrate out all of the remaining quadratic de-
grees of freedom, namely P+(x) for x not equal to zero.
As in the previous section, we thereby arrive at an
effective action for the weak link (or junction) of the form

~.s.=g g Itu. ll@(oi. )I' (3.7)

This action is precisely the dual of (3.3). It describes a
fixed point under a renormalization-group transforma-
tion, and corresponds physically to a completely insulat-
ing tunnel junction.

A term which hops electrons across the weak link can
be included in the original electron Hamiltonian by add-
ing

5H= t[p+(x—=0)hatt (x =0)+H.c.], (3.8)

where t is an overlap matrix element. This may be simply
expressed in terms of the field P by using (2.2):

5S = t fdrcos2—&ng(r) . (3.9)

As in the previous section, we analyze the action (3.7)
plus (3.9) with a renormalization-group analysis. In gen-
eral, perturbations involving multiple electron hops will
be generated, which take the form t„cos2n&ng. (Note
that from time-reversal invariance, it follows that a rela-
tive phase factor in the cosine term between the difFerent
n's is not needed. ) To leading order in t„the RG fiow
equations are

dt„/dl =(1 n /g)t—„. (3.10)

For repulsive electron-electron interactions (g ( I) all of
the t„'sflow to zero, indicating that at low energies the
junction is insulating. For attractive interactions, t,
grows under renormalization, and as we shall argue in the
next section, ultimately flows to the pure Luttinger-liquid
fixed point (with no backscattering) described in the pre-
vious section.

Some intuition for the fiow equations (3.10) can be ob-
tained by mapping the problem onto a 1D plasma of log-
arithmically interacting charges. This can be accom-
plished by formally expanding the exponential of the ac-
tion (3.9) in the partition function in powers of t, and for
each term integrating out P(r). The resulting partition
function is identical to that of a classical 1D statistical
mechanics problem,

Z =g t " $ f d~z„.. f d~,exp g V~
', (3.11a)

q,.=*i i(j
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where

=2
V,, =—

q,.q, ln(r, —r, )/r, (3.11b)

G(7.)= y b, t'Z. "" «
n=1

Consistent with the RG fiows (3.10), we find that for

for r, —r &P. The interacting charges (q, =+1) have a
simple physical interpretation: They are hopping events
in which at time ~, an electron hops to the left or right
across the junction.

The charges are positive (negative) for a hop to the
right (left). The parameter t is essentially the fugacity of
these charges, and the strength of their logarithmic in-
teraction is 2/g. This model is similar to that studied by
Anderson, Yuval, and Hamman in their study of the
Kondo problem, however here there is no restriction on
the sign of successive charges. For g (g, = 1, the charges
are bound, so that if an electron hops across the junction,
it must eventually hop back, and the junction is insulat-
ing at long times or low energies. For g ) 1, the interac-
tion is effectively screened and free charges will be
present, so that electrons are free to hop across the junc-
tion, and the junction conducts. The critical value g, =1
may be deduced from the usual argument comparing the
logarithmic cost in action of an isolated charge to the en-

tropy gained. A real-space RG procedure similar to
that devised by Anderson, Yuval, and Hamann, which
will be used in Sec. IV, leads precisely to (3.10). It should
be emphasized, though, that in contrast to the Kondo
case, the coefficient of the logarithmic interaction g is not
renormalized, which can be traced to the absence of a
constraint on the sign of successive charges in (3.11).

The Coulomb gas model (3.11) is identical to an "in-
stanton" representation of the partition function in the 9
representation (3.2) and (3.3), which is valid in the large-

v„limit. To see this, note that for large v„,there will be
deep minima in the effective potential V~(8) which are
related by the symmetry under 8 +8+&@—At low e.n. er-

gies, the partition function will be dominated by tunnel-

ing events (of 8 by &m. ) between these minima (i.e., in-

stantons). If we identify t with the fugacity of these in-

stantons, then they will be described precisely by (3.11).
It is in this sense that the 8 representation (3.2) and (3.3)
is dual to the P representation, (3.7) and (3.9). This duali-

ty, which has been studied in detail in connection with
the Caldeira-Leggett model of a resistively shunted
Josephson junction, ' will prove very useful in under-

standing the relationship between the small-tunneling
(small-t) and small-backscattering (small-U) limits in the
more complicated situation of resonant tunneling, which
we treat in Sec. IV.

Finite temperature, frequency, or voltage will serve as
a cutoff for the renormalization-group flows, and, as in

the preceding section, we anticipate power-law correc-
tions to the conductance. This may again be explicitly
confirmed by a perturbative calculation to lowest order in

the hopping strength t. As shown in Appendix A, the
conductance at finite temperature may be written to lead-

ing order in small t as

repulsive interactions (g & 1), the conductance vanishes
as a power of the temperature. At low temperatures the
term with n =1 will clearly dominate. For attractive in-

teractions the perturbation theory breaks down in the
zero-temperature limit, as could have been anticipated
from the fiow equation (3.10) in which t, is a relevant
perturbation for g ) 1. At finite frequency and T =0, we

may derive a similar expression,
00

2
G (~) ~ b t2 2(n /g —I)

neo n~
n=1

(3.12b)

Finally, we can evaluate the dc current-voltage charac-
teristics at T =0 perturbatively in the hopping strength:

00
2

I(V)—y b t2V2n /g —i

n =1
(3.12c)

While the coefficients b„in (3.12) above are nonuniversal
and depend on the high-frequency cutoff, their ratios are
universal. They are tabulated in the Appendix. In a 1D
wire of finite length L, the expressions (3.12) will be valid
only on temperature, frequency, or voltage scales larger
than TI.

The above result that for repulsive interactions the
conductance is zero at zero temperature can be traced to
the fact that the tunneling density of states vanishes at
zero energy in a Luttinger liquid. Specifically, the density
of states for tunneling into the end of a semi-infinite Lut-
tinger liquid is

( ) el /g i (3.13)

C. Phase diagram

Upon combining, the results for the scattering from a

single barrier in the limit of a small barrier, from Sec.
IIIA, and the limit of large barrier, or weak link, from

Sec. III 8, enables us to construct the full phase diagram.

To be explicit, we consider a tight-binding model with

nearest-neighbor hopping of electrons, in which one hop-

ping matrix element (the "weak link" ) is reduced by a

Given this tunneling density of states, the conductance
may be deduced from a simple argument based on
Fermi's "golden rule. " For instance, (3.12c) follows from

the expression I=t J odep, „d(e)p,„d(V—e) for the tun-

neling current. It should be emphasized that p,„d(e)has

a different energy dependence that the tunneling density

of states into the middle of an infinite Luttinger liquid,
which vanishes as p(e)=e' +' ' '. Although these

are both constant for noninteracting electrons, g =1,
with interactions they will be general be different.

Similar power-law behavior of the conductance and
I-V characteristics has been found in studies of the effects

of a series resistance on the single-junction Coulomb

blockade. ' In this case, the Caldeira-Leggett oscilla-

tors, which are used to phenomenologically model the

series resistance, play a role analogous to the modes of
the Luttinger liquid. In contrast, however, these models

predict Ohmic resistance when the series resistance is

zero. We predict Ohmic resistance when the series resis-

tance of the one-dimensional leads is e /h.
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U iF

G=O e2G=g—

fraction t with respect to all the other hopping strengths.
When t is very close to one, it will induce some 2kF back-
scattering with strength, U&=1 —t. As we saw in Sec.
III B, in the limit of small backscattering the 2kF contri-
bution was a relevant perturbation for repulsively in-
teracting electrons, g & 1. As one scales to lower energies
or temperatures, the backscattering grows and scales out
of the small-barrier perturbative regime. In Sec. IIIB,
though, we saw that for repulsively interacting electrons,
in the strong-barrier limit (small t), the hopping strength
scaled to zero at low energies and the link was insulating
at zero temperature. It seems extremely plausible that
one can join together these two perturbatively accessible
regimes to argue that, regardless of how small the barrier
is, at zero temperature it will cause total refIection and
the link will be insulating. Indeed, as will be shown in
Sec. VIII, for a special value of the interaction strength
corresponding to g(= —,') an exact solution is possible.
This solution indeed confirms that the smallest of barriers
causes total reflection at T =0. This gives us confidence
in concluding that, more generally, for repulsively in-
teracting electrons a single barrier causes total reAection
regardless of its strength. This is shown in the left of the
phase diagram in Fig. 1.

For attractive interactions, g ) 1, small 2kF back-
scattering was shown to be irrelevant in Sec. IIIA,
whereas an initially small hopping across a weak link was
shown to increase under renormalization. Once again,
upon patching together these two perturbative limits we
conclude that for attractive interactions the spinless elec-
tron gas behaves like a superQuid and at T =0 suffers no
reAection from even the largest of barriers. This is shown
in the right side of Fig. 1.

Noninteracting electrons are, of course, marginal, and
the degree of backscattering depends on the precise
strength of the scattering potential. Why is this the case?
Is it an accident, or is there a deeper physical reason un-

derlying the fact that noninteracting electrons are on the
border between two such different types of behavior? As

we discuss briefIy below, this behavior can be attributed
to the wave-particle duality of quantum mechanics.
Indeed, near a weak link or barrier, there are two
discrete, yet competing, processes taking place, one wave-
like and the other particlelike. The discrete wavelike
process is a 2m. slip in the phase difference P across the
weak link, and the discrete particlelike process is that of
hopping a single electron across the link. As is apparent
from the phase diagram in Fig. 1, for repulsive interac-
tions, with g & 1, the phase slips dominate, no electrons
are transferred, and the link is insulating. For attractive
interactions, the opposite occurs, with electrons being
transferred but no voltage-generating phase slippage.
For the Fermi liquid of noninteracting electrons both
processes apparently coexist.

This can be understood with the following simple argu-
ment. Imagine slipping the phase across the weak link by
2m but not allowing any electrons to hop across. Since
the phase slippage causes a voltage glitch, we expect
some charge to be transferred to the region of the weak
link from the leads. Call this charge Q2„. We can esti-
mate Q2 by combining Josephson's relation, which tells
us that the time rate of change of the phase causes a volt-
age, V =AB,P/e, with the fact that the leads have a con-
ductance given by 6 =ge /h. We write

Q, =fdt I =6fdt V(r), (3.14)

and upon inserting Josephson's relation and integrating
through one 2m. phase slip we find

(3.15)

We thus see that for repulsive interactions, when g & 1,
the charge pulled in from the leads is less than the elec-
tron charge. Since this is not enough charge for a single
electron hopping process, the charge cannot cross the
weak link and the barrier is insulating. For attractive in-
teractions, Q2 is larger than e, and an electron can hop
across the junction with some to spare, so one expects the
link to be conducting. For a noninteracting Fermi liquid,
precisely one electron of charge is transferred from the
leads to the region of the weak link, and apparently
sometimes it is transferred and sometimes it is not, lead-
ing to a conductance which depends on the barrier
height.

While at best "hand waving" and at worst merely sug-
gestive, it is nevertheless reassuring that such a simple ar-
gument can correctly reproduce the boundary between
insulating and conducting behavior at g =1, as was
shown via detailed calculations in earlier sections.

FIG. 1. The phase diagram for a one-channel gas of spinless
interacting electrons incident upon a single barrier. Here g is
the dimensionless conductance of the gas in the absence of the
barrier, and G is the conductance in the presence of the barrier.
The small arrows indicate the renormalization-group flows.
Notice that for repulsive interactions (g & 1) a single barrier is
completely reflecting. The dashed line at g =1, which corre-
sponds to a noninteracting electron gas, indicates a fixed line
along which the conductance through the barrier varies con-
tinuously.

IV. TRANSMISSION OF SPINLESS ELECTRONS
THROUGH A DOUBLE BARRIER

AND RESONANT TUNNELING

In this section we consider the scattering of a spinless
interacting electron gas incident upon a double-barrier
potential. For noninteracting electrons, as the incident
energy or wave vector of the electron is varied,
Schrodinger s equation typically gives resonances, or
peaks in the transmission. For a symmetric double-
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barrier structure, the transmission at the peaks of these
resonances is perfect, and the conductance is G*=e /h.
The width of the resonance is, of course, finite, even at
T=O, and is determined by the height and width of the
two barriers and the density of states of the electrons in
the leads. Do such resonances survive in the presence of
repulsive interactions when a Luttinger liquid is incident
upon a double-barrier structure? Since even a single bar-
rier causes total backscattering for repulsively interacting
electrons, one might have been inclined to guess that a
series arrangement of two barriers could only further
enhance the backscattering, so that resonant transmission
would be absent. In this section we show this is not the
case. Rather, resonances are possible, but, in striking
contrast to that for noninteracting electrons, they become
infinitely sharp in the zero-temperature limit. As in Sec.
III, we can analyze the backscattering from two barriers
perturbatively in two limits, very weak and very large
barriers, which we discuss below in Secs. IV A and IV B,
respectively.

A. Weak barriers

Consider a double-barrier scattering potential V(x),
which is nonzero only within a distance d of the origin,
and even there is much smaller than the Fermi energy.
For noninteracting electrons the Born approximation can
be used in this limit. At energies less than A'U~/d, back-
scattering is simply proportional to the Fourier transform
of V(x) at momenta 2k~: v, = V(2k+). The condition for
perfect resonant transmission is then simply that U& =0.
For a symmetric double-barrier potential, satisfying
V (x ) = V (

—x ), the Fourier transform (and hence U, ) is

real, so that the resonance can typically be reached by
tuning only one parameter, e.g. , the incident electron en-

ergy. For an asymmetric potential, two parameters must
be tuned to achieve a "true" resonance, by which we

mean a resonance which has perfect transmission. As we

shall see below, it is only such "true" resonances which
can survive in the presence of repulsive electron interac-
tions.

When electron interactions are present, the criterion
for resonance in the weak-scattering limit is the same as
for noninteracting electrons, namely a vanishing of
V(2k+). This follows readily from the perturbative
analysis undertaken in Sec. IIIA. As can be seen from
the RG flow equations in (3.4), the 2k+ backscattering is

always relevant for repulsive interactions. In its absence,
though, the next most relevant term, namely 4k+ back-
scattering, can be irrelevant. Specifically, provided g & —,',
the 4k+ backscattering, which consists of two electrons
being backscattered across the Fermi sea, and all higher-
order processes, flow to zero at low energies. This im-

plies that on resonance, when 0'(2k+) is zero, perfect
transmission is expected. Indeed, the fact that the T =0
on-resonance conductance will be G*=ge /h follows
directly from the perturbative calculation (3.5a).

On the other hand, for g (—,', the 4k+ backscattering
grows at low energies, which suggests that the resonance
will be destroyed in this case, as indeed we confirm in the
next section. We mention in passing, though, that

"higher order" resonances are in principle possible. If,
for example, both the 2k~ and the 4k& backscattering
could be simultaneously tuned to zero then, as (3.4a)
shows, the resonance would survive all the way down to
g =

—,'. For g less than —,', the 6k+ backscattering becomes
relevant and causes backscattering. In practice, however,
we expect that all but the leading-order resonance will be
extremely hard to "find, " so we focus below on that case
only.

B. Resonant tunneling in the large-barrier limit

In this section we study resonant tunneling starting
from the opposite limit, in which the tunneling barriers
are very strong. In this limit, we anticipate that the
physics associated with the Coulomb blockade"' should
become operative. Specifically, provided the capacitance
associated with the "island" between the two barriers is
small, the charge on the island will be fixed, and there
will be a large-energy barrier to add another electron
(namely the "charging energy,

" roughly e /C).
Transmission through the island will thereby be strongly
suppressed. However, if the chemical potential of the is-
land is adjusted (i.e., by tuning a gate voltage) to the
point where the energy cost to add another electron van-
ishes, we expect the possibility of a resonant transmission
through the island.

In order to analyze this regime, and to see how it is re-
lated to the small-barrier limit in Sec. IV A, it is useful to
consider a concrete model which consists of a perfect
wire with two 5-function barriers at positions x =0 and
d. In addition, we include a gate voltage VG, which cou-
ples to the electrons between the barriers. As described
in Sec. III A, the appropriate effective action in the 0 rep-
resentation may be easily obtained:

S=SO+ fdr V[ cos[2&n8, (r)]+cos[2&n82(r)+k~d]I

82(r) —8,(r)+ VG (4.1)

where 8,(r)=8(x =O, r), 8z(r) =8(x =d, 7), and So is the
quadratic action (2.4a) which describes the pure Lut-
tinger liquid. Here V is the strength of the two 5-
function potentials. It is again useful to integrate out the
quadratic degrees of freedom away from the barriers,
which enables the effective action to be expressed at low
frequencies as

S„=—' y I~„I 18(~„)I'+—In(~„)I'
167

+ Jdr V,s(8(~),n(r)), (4.2a)

where 8= ( 8
&
+82 ) /2, n = ( 82 —8

&
) /&m+ kid /2m. , and

V,s(8,n)= —,'U(n no) + V c—os2+n8cosvrn . (4.2b)

Here n can be interpreted as the number of particles be-
tween the two barriers, whereas 8/&m is the number of
particles which have been transferred across the two bar-
riers, from one side to the other. Thus 8 plays a role
similar to the 8 field entering in the single-barrier prob-
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+ (m sinmnocos2&m. 8) +V

2U
(4.3)

It is thus clear that in the weak-barrier limit, the extra
symmetry present when no is a half-integer corresponds
to the vanishing of the 2kF backscattering term:
v

&
cos2&m 8. This was precisely the condition for reso-

nance in the small-barrier limit, as established in Sec.
IV A above.

On the other hand, when the barriers are very strong,
V && U, the action will have deep minima when n is an in-
teger [from the second term in (4.2b)], so that the
discreteness of the electron charge is important. The de-
generacy between these minima, however, is broken by
the first term, proportional to U, so that a particular
charge state of the "island" is preferred, with an energy
gap of order U to other charge states. This is precisely
the physics of the Coulomb blockade, in which transmis-
sion across the island is impeded by an energy barrier re-
sulting from a small capacitance of the island. In this
case, U plays the role of the single electron charging ener-
gy e /C. When no is tuned to be a half-integer, we have
the additional symmetry discussed above, and two charge
states become degenerate. This corresponds to the situa-
tion when the chemical potential of the island is adjusted
so that the energy cost to add another electron to the is-
land vanishes. In Fig. 2(a) we display the positions of the
minima in the action as a function of 8 and n.

In the large-barrier limit, the partition function on res-
onance will be dominated by instantons (or tunneling
events) connecting these degenerate minima. These cor-
respond physically to hopping events in which electrons

lem, (3.2) and (3.3). The "mass" U, which suppresses
fluctuations in the particle number on the "island, " is
equal to AvF/gd. Equation (4.2) is valid for frequencies
smaller than U/A. At higher frequencies, the effective
action simply becomes that of two independent single
barriers. The parameter no, which specifies the optimal
value for n, is determined by the gate voltage and is equal
to kFd /2m+ VG /U. In general, no is a noninteger.

It is instructive to classify the symmetries of this mod-
el. The effective potential V,~ is invariant under the
transformation 8~8+&m, as in the case of the single
barrier. This transformation corresponds to the transfer
of an electron from the left to the right leads. However,
in the special case when no is tuned to be precisely a
half-integer, there is an additional symmetry present:
8~8+&m/2 an. d n~2no —n. Roughly speaking, this
symmetry corresponds to transferring an electron "half-
way" across the double-barrier structure, in conjunction
with a change in the charge state of the island. As we
shall argue below, the presence of this extra symmetry
when no= —,

' corresponds precisely to the condition for
resonance.

In the limit of weak barriers, V « U, the action (4.2) is
minimized when n =no, and we may safely integrate out
n. We thereby arrive at a model in terms of 8 alone,
which is similar to the single-barrier model studied in
Sec. III A, except with

V,s(8)= V cosnnocos2 tl.m 8

N+1

n

N+1 .
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n

N+1
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N

FIG. 2. Positions of the minima of the function V,z(8, n)
[defined in Eq. (4.2b)] in the 8 nplan-e: (a) for E =1, (b) for in-

termediate values of K, and (c) for K =0. Here 8/'t/'n. is the
number of (spinless) electrons transferred across the double-

barrier structure, and n is the number of particles between the
two barriers. Notice that in (c) there is an effective symmetry
under transferring half of an electron across the double-barrier
structure.

hop onto or off of the island. The island may thus
effectively be described as a two-level system, in which
hopping on and off the island corresponds to switching
back and forth between the two levels. This situation is
most easily analyzed using the "Coulomb-gas" represen-
tation, which may be viewed either as an expansion of the
partition function in the 8 representation in terms of in-
stantons or equivalently as an expansion in the P repre-
sentation (as in 3.11) in powers of the hopping matrix ele-
ments, connecting the island and the left and right leads,
t+ and t . The boson fields will mediate an effective in-
teraction between these "charges. " In contrast to the
single-barrier case in (3.11), though, we now have four
kinds of charges: hops to either the left or to the right
across either of the two barriers (t+ and t representing
the "charge" fugacities). Care must be taken in treating
the two-level nature of the island. Specifically, the order-
ing of the hops is constrained by the fact that the charge
state on the island can only change by 1, which means
that hops onto and off the island must alternate in time.
If q; =68/v'm =+1/2 denotes the charge transferred so
the right in a hopping event and r, =b,n 2/=( —1)'l2.
denotes the change in the charge on the island, then the
partition function in the "Coulomb-gas" representation
may be written for the symmetric barrier case,
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t+ =t =t, as
T2

Z =g gr "f dr&„ f dr, exp 'g V„'
n q,. i(j

=2
V; = (q—;q +Kr, r)-1n(w, —~ )/r, .

(4.4)

V2

eG =
2e

As in (3.11), ~, =EF ' is a short-time cutoff. The more
general case of an asymmetric barrier, t+Wt, is con-
sidered in Appendix B. The initial value of K is 1; how-
ever, as we shall see, its value flows in the renormaliza-
tion group. The dimensionless lead conductance g, on
the other hand, is not renormalized. (This is related to
the fact that the sign of the charges ri must alternate in
time, whereas the charges q; can have any ordering). We
analyze the above model using the real-space perturbative
renormalization-group method invented by Anderson,
Yuval, and Hamann. Some details of this calculation
are presented in Appendix B. To leading (nonvanishing)
order in t the resulting RG flow equations are

dK/dl = —gdt K,
dt/dl =t [I—(1+K)/4gj .

(4.5a)

(4.5b)

C. On-resonance phase diagrams

In this section we analyze the flow equations derived in
the preceding sections for resonant tunneling of spinless
interacting electrons and unify them into a single set of
phase diagrams. The results are summarized in the phase
diagram displayed in Fig. 3, which corresponds to spin-
less electrons incident on a symmetric double-barrier
structure precisely on resonance. In the weak-barrier

In order to interpret (4.5) it is useful to consider inter-
mediate values of V/U in (4.2). As this ratio is reduced
from large values, the value of n at the minima deviates
from an integer, as shown in Fig. 2(b). This is a conse-
quence of the fact that the electrons on the island can
now virtually tunnel into the leads, so that the average
charge on the island is reduced. Therefore, during a tun-
neling event between these minima, n changes by an
amount less than 1, and the corresponding Coulomb-gas
model is like (4.3), except with K less than 1. But notice
that under the renormalization group (4.5a), K flows to
smaller values, which corresponds to smaller values of
V/U. If E ultimately flows to zero, then we arrive at the
situation in Fig. 2(c), in which the discrete charge of the
island, which is characterized by n, no longer plays any
role. In this limit (K =0) the Coulomb-gas model (4.4)
becomes identical to that describing a single barrier
(3.11), except that now we have the additional "resonance
symmetry" under 9~8+v m/2. A single charge q,
therefore corresponds to the transfer of "half" an elec-
tron across the structure. The presence of the double-
barrier structure on resonance allows electrons to be
transferred across the junction in two steps. The hopping
of an electron onto the island is therefore like transfer-
ring an electron "half-way" across the junction, or
equivalently, transferring "half" an electron across the
junction.

G

1/4 1/2

FIG. 3. On-resonance phase diagram for spinless interacting
electrons incident upon a double-barrier structure. The conduc-
tance off resonance is denoted by G, whereas the conductance
on resonance is denoted by G*. The dashed line at g =1 is the
fixed line for transmission off resonance, corresponding to
noninteracting electrons, while the dashed line at g = —' is the

fixed line for transmission on resonance. The solid line between

g = —' and —,
' is a line of Kosterlitz-Thouless separatrices.

limit, shown in the upper part of Fig. 3, when the reso-
nance condition U, —:V(2kF ) =0 is satisfied, we saw in
Sec. IV A that all other perturbations are irrelevant pro-
vided g & 4. In this case perfect transmission was found
on resonance. For g & —,', however, the 4kF backscatter-
ing term U2 is relevant and grows as one scales to lower
energies. For g =

—,', the U2 perturbation is marginal, and
a "fixed line, " with a conductance on resonance that
varies continuously, is expected. This is directly analo-
gous to the fixed line in the single-barrier phase diagram
at g =1 (Fig. 1), which corresponds to noninteracting
electrons being partially backscattered by the marginal
2kF backscattering term.

In the large-barrier or small-tunneling limit, con-
sidered in Sec. IV B, the RG flows for a symmetric double
barrier are given by (4.5). For g )—, it is clear that an ini-

tially small hopping t grows under the RG transforma-
tion, since K is always less than 1 (and positive). It seems
extremely likely that the RG flows in this case join on to
the flows on resonance in the small-backscattering limit,
so that perfect transmission follows. It is worth em-
phasizing that this is entirely consistent with what hap-
pens on resonance for noninteracting electrons, where
perfect transmission is found regardless of the strength of
the (symmetric) double-barrier potential. For g & —,', on
the other hand, it is clear from (4.5) that the hopping
strength t flows to zero, and the resonant tunneling is des-
troyed completely at zero temperature. This matches
nicely the analysis in the small-backseat tering limit,
where we found a growing 4kF backscattering term in
this case.

For —,
' &g & —,', although a small hopping t will flow to

zero, as t is increased a separatrix is crossed (at t ') above
which the RG flows are to large t. As shown in Fig. 4,
this separatrix flows into a Kosterlitz-Thouless fixed

point, described by (4.5), at K, =4g —1 and t =0.
Thus, as t is decreased through t *, the resonance at T =0
will disappear at a sharp Kosterlitz-Thouless phase tran-
sition. For g =

—,', the system flows into a fixed line with
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K= 1

(g&l /2)
K=1

(g&1 /2)

4g-I

FIG. 4. Schematic renormalization-group flows for resonant
tunneling when g & 4, as obtained from the flow equations
(4.5a). When g (

2
there is a Kosterlitz-Thouless separatrix

which is crossed as the hopping strength between the leads and
the island, t, is increased through t *. For g & —', the
renormalization-group flow begins to the left of the Kosterlitz-
Thouless fixed point, and always flows to strong coupling. This
corresponds to resonant transmission.

riers. Thus, the upper right corner of each figure corre-
sponds to the perfect conductor with no barriers. The
top and right axes, in which either t+ or t is infinite,
correspond to a single barrier.

For attractive interactions, g ) I [Fig. 5(a)], we have
perfect transmission even off resonance, and all flows lead
to the perfectly conducting fixed point in the upper right
corner. For g = I [Fig. 5(b)], a single barrier is a margin-
al perturbation, so the top and right axes are fixed lines,
denoted by the dashed lines in Fig. 5(b). However, a sym-
metric barrier has perfect resonant transmission, so that
on the diagonal the flows are into the perfectly transmit-
ting fixed point. This is consistent with the physics con-

E, =O, along which the renormalized value of t varies

continuously. If the bare t is just slightly greater than t *,
the flows are into the perturbatively accessible regime,
and the conductance can be shown to vary as
6 ~ (t t') .—As t is increased further, the conductance
on this fixed line continues to increase. It is reassuring
that for g =—,

' we have thus been able to access both ends

of the fixed line, at small and large barriers. This fixed

line is shown as a dashed line in Fig. 3. By generalizing
the simple physical argument in Sec. III C to allow for
tunneling "half an electron" across the junction, it is easy
to understand why the fixed line for this process occurs at

g
—1

It is instructive to briefly discuss the effects of an asym-
metric double-barrier structure. For noninteracting elec-
trons, the transmission through a large but asymmetric
double-barrier structure takes the form

2t+ tT=2 2t++t
(4.6)

where t+ is the transmission through the right and left

barriers, respectively. It is clear from (4.6) that an asym-
metric barrier may exhibit appreciable, but not perfect,
transmission. In the limit of small barriers this is also
clear, since for an asymmetric barrier, upon tuning a sin-

gle parameter (such as the electron energy} in general the
real and imaginary parts of the 2kF backscattering will

not simultaneously vanish. By this reasoning, we expect
that in the presence of repulsive interactions (where 2kF
backscattering is relevant) the resonance will be com-
pletely destroyed at T =0 by an asymmetry. It is instruc-
tive to see how this occurs in the large-barrier limit. In
Appendix 8 we derive the general flow equations for an
asymmetric barrier, working perturbatively in the
strength of the hopping t [see Eq. (B4)]. In Figs.
5(a)—5(c}, we sketch schematic renormalization-group
flows obtained from these, projected into the t+t plane
for various values of g. In each figure, the limit of t+ or
t ~~ corresponds to an absence of one of the two bar-

FIG. 5. Schematic renormalization-group flows for a spinless
electron gas incident upon two inequivalent barriers, with hop-
ping strengths t+ and t to the left and right leads, as obtained
from the flow equations in Appendix B for (a) g & 1, correspond-
ing to attractive interactions, (b) g = 1, noninteracting electrons,
and (c) ~ &g & 1, repulsive interactions. The dashed line in (b)
indicates a fixed line.
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tained in Eq. (4.6), since a slightly asymmetric barrier is
seen to exhibit almost perfect transmission for nonin-

teracting electrons. For repulsive interactions and

—, &g & 1 IFig. 5(c)], a single barrier is insulating. There-

fore, the top and right axes flow to the fixed point with a
single infinite high barrier. Though a symmetric barrier
flows along the diagonal to the perfect conductor, an
asymmetric barrier ultimately flows to one of the two in-
sulating fixed points. Notice that although the barriers

may initially get smaller under renormalization, the
larger of the two barriers eventually turns around and
grows. Finite temperature, of course, can cut off the
renormalization-group flows, and, as discussed in Sec.
VII, a slightly asymmetric barrier can still exhibit large
conductance when the temperature is not too low. For
—,
' &g & —,', the Kosterlitz-Thouless transition is present,
and the flow diagram becomes somewhat more compli-
cated. In this case, a line of Kosterlitz-Thouless separa-
trices divides the flows from the infinite single-barrier
fixed point and the infinite double-barrier fixed point.
For g & —„' the system is always insulating.

V. TRANSMISSION THROUGH A SINGLE
BARRIER FOR ELECTRONS WITH SPIN

In this section we generalize the considerations of Sec.
III to include electrons with a spin degree of freedom,
and analyze transmission through a single barrier. We
defer a discussion of resonances in the double-barrier case
until Sec. VI. When there are no barriers, as we have
seen in Sec. II, the Luttinger-liquid phase is characterized
by a charge conductivity g and a spin "conductivity"

g . Moreover, in a model with SU(2) spin symmetry,

g =2. In this section we will find it useful to consider
arbitrary values of g and g; however, it must be kept in

mind that when g & 2, the Luttinger-liquid phase is un-

stable to formation of a spin gap.
Our approach follows closely that for the spinless case:

We first study the effects of a very small barrier, in Sec.
V A, and then analyze the opposite limit of a large barrier
or weak tunneling in Sec. VB. For g =2, the case with

spin symmetry, the results are very similar to the spinless
case. Namely, for repulsive interactions, g & 2, an arbi-
trarily small barrier will cause total reflection and insulat-

ing behavior at zero temperature. Again, there are
power-law corrections at finite temperatures with an ex-
ponent which is slightly modified from the spinless case.
For attractive interactions, on the other hand, we find

perfect transmission at T =0.
More generally, when g W2, there is a richer class of

possible behaviors, for there are now four possible phases,
corresponding to either perfect transmission or perfect
reflection of the charge and spin degrees of freedom. For
any given value of the lead conductances g and g, at
least one of these four phases is found to be stable. How-
ever, in contrast to the spinless case, our perturbative
analysis in the limits of small and large barriers indicates
that for certain values of g and g, there must be non-

trivial phase transitions at an intermediate barrier height
separating two of the phases. This was emphasized re-
cently by Furusaki and Nagaosa. ' By carefully tuning

the lead conductances g and g, we are able to perturba-
tively access these nontrivial critical fixed points as de-
scribed in Sec. V D. We find that right at the transition,
both charge and spin are partially transmitted and par-
tially reflected. But, most striking, the transmission
coefticients are shown to be universal, depending only on
the lead conductances.

A. Small barriers

Consider first the limit of a small barrier. As before,
we add a small scattering potential V(x), which is
nonzero only near the origin. It is again convenient to
perform a partial trace over those quadratic degrees of
freedom away from the origin, which enter into the
Luttinger-liquid action (2.7). With spin, when V(x)=0,
the action in the 0 representation may be written

s, = y I~„I I 0,(~„)I'+ y I~„I I0.(~„)I' . (5.1)
=1 1

gp,

The addition of a local perturbation will introduce addi-
tional terms to this action. These may be arrived at by
translating the scattering term

5H= f dx V(x)(gtgt+g(P() (5.2)

into the boson variables. Since the potential V(x) is as-
sumed to be nonzero only near the origin, it is possible to
perform a gradient expansion as in Sec. IIIA. A term
will thus be generated of the form

5S=u, f dv,'( cosv2'.n—0(+c so.&2n. (0)

=v, d icos m.8 cos m.8 (5.3)

5S=fdr V,s(0 (r), 0 (r)), (5.4a)

where

V tr(0, 0 )= g '
—,'u(n, n )e

n, np' a

(5.4b)

The g' indicates a sum over all integers n, n such that
n + n is even. Since the original Hamiltonian is Hermi-

where u, is the Fourier component V(2k~) of V(x), and
the 6W fields are evaluated at x =0. Here we have used
(2.5) to relate 0 and 0 to 0& and 0&.

In general, though, when considering possible pertur-
bations about (5.1), we must consider all terms which are
consistent with the symmetries of the problem, since they
will all be generated under renormalization in any case.
The important symmetry is that the action must remain
under either of the transformations 0&~0&+&nor.
0&~0&+v'~, which correspond to moving all of the
spin-up (or -down) particles over by one interelectron
spacing. Equivalently, the action must be invariant un-
der the combined transformations 0 ~0 + v'm and

p p
0 ~0 +v'n. Thus, if we ignore terms involving spatial
derivatives (which are less relevant), the most general
perturbation to the Lagrangian can be expressed as a
function V,s(0, 0 ), which is periodic in both arguments
with period v vr. We can thus write
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2 2n n

dv(nz, n )Idl = 1 —
gz

— g v nz, n (5.5)

For the case with SU(2) spin symmetry, g =2, the

most relevant perturbation is v, =v(n =l, n =1). This

tian, the function V,~ must be real, so that the coeScients
in (5.4) satisfy v(n, n )=v( —n, n—)'. Moreover,
due to spin-rotational in variance, one has
v (n, n ) = v ( n— , n ) .If the original potential V(x)
was symmetric, V(x)= V( —x), then the perturbation in
(5.4) will also be invariant under 8 ~—8, which implies
that v (n, n ) =v (n, n), —in which case all the
v(n, n ) are real.

A renormalization-group analysis, perturbative in the
v(n, n ), can be carried out as in Sec. III A, and the
leading-order Row equations are

corresponds physically to 2kF backscattering of the elec-
trons. [For a symmetric potential v, is real, and the con-
tribution to the action from this backscattering is given
explicitly in (5.3).] As in the spinless case, this is relevant
for repulsive interactions, g (2. For noninteracting in-
teracting electrons g =g =2 it is marginal. For attrac-
tive interactions g )2, it is irrelevant; however, in this
case it should be emphasized that there will in general be
an instability towards a singlet superconducting phase,
and the spin part of the action will no longer be massless.

Allowing for more general values of g, we follow
Furusaki and Nagaosa and plot curves in the g —g
plane above and to the right of which the operator in
question is irrelevant. For example, the 2kF backscatter-
ing v, is irrelevant for values of g and g above and to
the right of the line g +g =4, as shown in Fig. 6(a).
Other important operators include the process which
backscatters both a spin-up and a spin-down electron,
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FIG. 6. Regions of stability of various phases of the interacting electron gas with spin, incident upon a single barrier, shown in the
g~-g plane: (a) The shaded region corresponds to the phase in which both spin and charge are perfectly transmitted, and was ob-
tained in the limit of weak backscattering, Eq. (5.5). (b) Shaded region corresponds to the phase in which both charge and spin are
completely reflected, obtained in the limit of large barriers from Eq. (5.10). (c) Shaded region corresponds to the phase which is a
spin conductor and/or charge insulator, as discussed in Sec. V C. (d) Shaded region is a phase which is a charge conductor and/or
spin insulator. In (c) and (d) the cross-hatched regions indicate stability of the respective "mixed" phases in the case of a barrier with
inversion symmetry. In each of the figures the dashed line at g =2 corresponds to a spinful electron gas with SU(2) spin symmetry.
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which takes the form

i2&~e
6S = fd~ ,'—(u e '+c.c.), (5.6a)

G(T)=e /h gz
—g 'cT(n, n )lu(n, n )l

n, ncJ' p

XT(n g +n e )/2 —2

Similar expressions may be derived for G(cu) and I( V),
and the coefficients cT, c, and cz are tabulated in Ap-
pendix A.

B. Large-barrier limit

Consider now the transmission of a spin electron gas

through a very large barrier. This limit can best be de-

scribed by considering two semi-infinite Luttinger liquids

coupled together by a weak hopping matrix element t. In
this case, the effective action in terms of the phase
differences across the junction p =(p + —

pz )/2

may be written

(5.7)

To this we add a hopping term,

oH = t, [ i}'I+i(x—=0)i}'j &(x =0)

+/+i(x =0)g i(x =0)+H.c. ] . (5.8a)

The bosonized form of this expression leads to

M, = ,' t, f d r( cos2—v'irP t +cos2&~$ i )

=t, c so&2mg cos2&m.g (5.8b)

In general, terms involving multiple hops will be generat-
ed under the renormalization group, so we should again
consider all such terms consistent with the symmetries.
The most general hopping term may be written as

6S= g ' t (n, n )f dr cos2n &~P cos2n
n, ncr' p (5.9)

where the coefficient u =
—,'u(n =O, n =2). The analo-

gous operator for the spin degrees of freedom,

6S =fdr —,'(u e +c.c. ), (5.6b)

with u =
—,'v(n =2, n =0), corresponds physically to a

backscattering of an up-spin electron and a down-spin
electron which are incident from opposite directions, so
that the net charge momentum is unchanged. The opera-
tor U is irrelevant to the right of the line g = 1, and v is
irrelevant above the line g =1, as shown in Fig. 6(a).
Below or to the left of these lines, the operators are
relevant, and initially weak scattering grows under renor-
malization to lower energies. The fate of the physics in
this regime will be analyzed in Secs. V B and V C below.

As for the spinless electron gas, the conductance can
be calculated straightforwardly as a perturbation expan-
sion in powers of the coefficients v (n, n ) in (5.4),

where g' indicates a sum over non-negative integers n

and n such that n +n is even. Note that by time-
reversal invariance t (n, n ) is necessarily real. The
single-electron hopping term is then t, =t(n = l, n =1).
Other important low-order terms are t =t (n =0,
n =2), which corresponds to hopping a singlet pair
across the junction (two charges, but no spin) andt—:t(n =2, n =0), which corresponds to ffipping a
pair of spins (a spin 1 is transferred, but no charge). The
lowest-order renormalization-group flows for these per-
turbations are

n
dt(n, n )/dl = 1—

gp

2
n

t(n, n ) . (5.10)

with similar expressions for G (cu) and I ( V). The
coefficients dT, d„,and dv are computed in the Appen-
dix.

It is again illuminating to consider the Coulomb-gas
representation of the partition function obtained by ex-

panding Z in powers of t„t, and t . %e may classify
the diff'erent kinds of "charges" (or hops) by defining

q; =+n to be the charge transferred across the junction
and s; =+n to be the spin transferred across the junc-
tion. Thus, for a t, hop, q; =+1 and s; =+1, ~hereas for
a t hop, q; =+2 and s; =0. As in the spinless case, in-

tegrating out the bosonic P fields in (5.7) will mediate a
logarithmic interaction between these "charges" of the
form

2 2
q, q, + s,s, ln(r, —r, )/r, . (5.12)

This Coulomb-gas model can also be understood in the
0 representation in the large-backscattering limit. In this
case, the effective potential V,i (8,8 ) has deep minima,

depicted in Fig. 7, which are related by the symmetry un-

der 0 ~0 +&~ and 8 ~0 +&~. The partition func-

For g =2, the case with SU(2) spin symmetry, all hop-
ping terms flow to zero for repulsive interactions g (2;
however, t, increases under the RG flows for g )2.
Once again, these results match nicely the analysis in the
small-V(x) limit, and we conclude that a single barrier
causes complete reffection (i.e., insulating behavior) at
T=O. The system is an insulator for repulsive interac-
tions. The phase diagram for g =2 is similar to the spin-
less electron phase diagram shown in Fig. 1, except that
the fixed line occurs at g =2 rather than g =1, and the
conductance to the right of that fixed line is G =g e /h.
More generally, the values of g and g for which the in-

sulating fixed point is stable (i.e., all hopping parameters t
ffow to zero) is shown in the shaded region of Fig. 6(b).
The boundaries of this region are determined by the most
relevant hopping terms, which are t„t, and t

In the regions in which the insulating fixed point is
stable, the conductance at finite energies may again be
computed perturbatively. %e find at finite temperatures

2 2(n /g +n /g —2)
G(T)= g 'dT(n, n )t(n, n ) T

n a p

(5.11)
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tion is dominated by tunneling events, or instantons, be-
tween the nearby minima, as indicated in Fig. 7. These
instantons correspond precisely to the hopping events t„
t, and t described above, and the interactions between
these instantons are described by (5.12).

C. "Mixed" phases

We have seen that the conducting phase in which both
spin and charge are perfectly transmitted (i.e., the con-
ducting fixed point) is described by the limit in which

V,ff(8, 8&)=0, and is stable when all the perturbations
u (n~, nq ) in (5.4) are irrelevant. The phase in which both
spin and charge are completely reflected (i.e., the insulat-

ing fixed point) is described by the limit in which

Vcff (8,8 ) is large, and is stable when the instantons (or
hopping events) connecting the various minima are
bound and hence irrelevant. A third possibility is to have
the potential experienced by 0 and 8 strongly aniso-

tropic, so that motion is free along one direction, but is
blocked by a very high barrier in the other direction. For
example, when u =u(n =O, n =2) in (5.4b) is large,
there is a large barrier for transporting charge across the
junction, but the spin may tunnel freely. This situation
describes a charge insulator and/or spin conductor.
Similarly, large u =u(n =2, n =0) describes a charge
conductor and/or spin insulator. These "mixed" phases
will be stable provided both the additional perturbations
u (n, n ) are all irrelevant and the instantons connecting
the different minima are bound.

For the case of the charge insulator and/or spin con-
ductor with large u, the instantons (or hopping events)

connecting adjacent minima in the 8 direction are
equivalent to the t hops described in the preceding sec-
tion. As (5.10}shows, they are irrelevant provided g (4.

The most relevant possible perturbation about this
"mixed" phase is 2kF backscattering of an electron:

u, =u(n =l, nz=l). To determine its effect, we write
the efFective action [assuming SU(2) spin symmetry] from
(5.1) and (5.4) in terms of u and u, as

S =So= d~ U e +U, e cos ~0 . 5.13

In general, for a scattering potential V(x) with no special
syrnrnetry, the coefficients U and U, will both be com-
plex. For large U, the action will have deep minima
when 8 is equal to a value 80 determined by the phase of
u . In the "mixed" phase (charge insulator and/or spin
conductor) we can safely integrate out the massive fluc-
tuations of 0 about this minima to obtain an effective ac-
tion in terms of 0:

g I, 118 (~, )l + fdr%(u, e' ")cos&n8.
n

(5.14)

As (5.5) shows, the nonlinear term above flows to zero
and is irrelevant when g &4, leaving a spin conductor.
We therefore conclude that for a general scattering po-
tential V(x), the charge-insulator and/or spin-conductor
phase is stable for g &4 and g )4. This is shown as the
shaded region in Fig. 6(c).

When the scattering potential has an inversion symme-
try, V(x)= V( —x), though, we may choose both u, and
u to be real. It then follows that &n8u =n/2 (provided
u is positive, which corresponds to a potential barrier).
Therefore, the coefficient of the costa 8 term in (5.14)
vanishes identically. The next most relevant perturbation
is U, which becomes relevant only when g &1. Thus
with inversion symmetry, the charge-insulator and/or
spin-conductor phase is stable for all g &4 and g ) 1, as
depicted by the cross-hatched region in Fig. 6(c). In par-
ticular, we find that for the physically interesting case
with SU(2) symmetry (g =2), this mixed phase can only
be stable for a syrnrnetric potential.

The spin-insulator and/or charge-conductor phase may
be analyzed in a similar fashion by simply interchanging
p and cr in the above equations. In the absence of SU(2)
invariance, when V(8 )AV( —8 ), this phase is stable
for g &4 and g )4, as shown in the shaded region of
Fig. 6(d). When the barrier has spin symmetry, however,
we have the analog of the inversion symmetry described
above, and this phase is stable for g ) 1, as shown in theP
cross-hatched region of Fig. 6(d).

D. Intermediate-coupling fixed points
and universal conductance

FIG. 7. Positions of the minima of the function V,N(0 Op),
defined in (5.4b), in the 0 -0& plane. Tunneling events between
these minima are denoted by t„t, and t~ and correspond to
transfer of charge and spin across the barrier, as described in
detail in the text.

As discussed in Sec. V C above, for every value of g
and g at least one of the four possible phases (corre-
sponding to charge and spin conducting or insulating} is
stable. However, as is clear from inspection of Figs.
6(a) —6(d), there are values of g and g for which more
than one phase is stable. For example, there is a small re-
gion just to the right of g =3 and g = 1, where for weak
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i&~e i 2&7I.eS =SO+ JdrA(v, e 'cos&m8 +v e ') . (5.15)

In general, for a scattering potential V(x) with no special
symmetry, the coeKcients v, and u will both be com-
plex. However, by shifting 0 by an appropriate con-
stant, we can eliminate the imaginary part of u„leaving
three independent real coupling constants, v, and
U =Ui +LV2.

The renormalization-group flow equations to second
order are

dUe /dl = Ep+ G~

4
Ve V 1 ue (5.16a)

v
2

dv] /dl: 6 U]

dv2/dl = —epv2,

(5.16b)

(5.16c)

where we have g =1+@ and g =3+a . Provided both
e and e + e are positive, these flow equations exhibit a
critical fixed point at v,*= [ez(ez+ e ) ]'
v f = —(e~+e )/4, and v2 =0. As shown in Fig. 8, this
fixed point separates flows toward strong coupling from
flows to the origin. The correlation time exponent can be
extracted as usual from the one relevant eigendirection at
the critical fixed point.

There also exists a critical fixed point when e and

backscattering the phase in which both spin and charge
are perfectly transmitted is stable, whereas for a large
barrier the perfectly reflecting or insulating phase is
stable. It is clear that in this region there must exist a
phase transition at finite barrier height separating these
two phases.

In this section we show that it is possible to perturba-
tively access this nontrivial critical point both in the
small- and large-barrier limits. We also evaluate the
charge and spin conductance at this new critical point
and find that it is universal, depending only on the lead
conductances g and g .

In the small-barrier limit the critical fixed point de-
scribed above becomes perturbatively accessible near the
point g =3 and g =1. The reason is that at these par-
ticular values both the 2kF electron backscattering,
denoted v„and the backscattering of an up-spin and
down-spin electron (together), denoted v, are marginal
perturbations (see Fig. 6). For g =3+a and g =1+@,
with small e's, both v, and u, when initially small, flow
to zero with an eigenvalue proportional to e, as is clear
from (5.5). We show below by performing a renormaliza-
tion group to second order in v, and v that there exists a
critical fixed point separating these stable flows to zero
coupling from flows to strong coupling, which presum-
ably take one into the totally insulating phase. The fixed
point, being at order e, is perturbatively accessible, and
the critical properties can be directly computed.

To this end, consider the action in the t9 representation
corresponding to a sum of the pure Luttinger-liquid ac-
tion, So in (5.1), and the two types of weak backscatter-
ing, v, and v:

Ue

0

FIG. 8. Schematic renormalization-group flows for the tran-
sition between the insulating and conducting phases of an in-
teracting electron gas with spin incident upon a barrier, as ob-
tained from the flow equations (5.16). Here U, denotes the
strength of the 2kF electron backscattering, and U& the real part
of the amplitude for simultaneous 2kF backscattering of a spin-

up and spin-down electron.

S =Sp+ dT t, cos 2~ cos2 n p+ t cos4 m

(5.17)

Formally, this is very similar to (5.15). Indeed, if we
define g =4—e and g =—', —Z, the renormalization

group flows to second order in t and can be deduced
directly from (5.16):

dt, /dl =— 8 +9'
t —tt 0' (5.18a)

/Gjl = — t0 4 cJ (5.18b)

Provided d and Z +9K are both positive, there will be a
critical fixed point at t,'= [Z (Z +91~)]' /4 and

t.* = —(Z.+9Ep)/16 This fixed point separates flows to
strong coupling (which presumably flow to the perfectly
conducting fixed point) from flows to the origin {the insu-
lating fixed point). It seems quite plausible that this fixed
point, obtained in an expansion about g =4 and gp= —', ,

should match smoothly onto that found in (5.16) above in

E' + E'p are both negative. As we sha1 1 show in detail in
Sec. VIA in connection with resonant tunneling, when
the barrier is symmetric, this fixed point separates flows
to different strong-coupling fixed points (namely the insu-
lator and the charge insulator and/or spin conductor).

Before evaluating the conductance at this new critical
fixed point, we show that it is also possible to access this
transition in the large-barrier (i.e., small-r) limit. This is
possible in the vicinity of the point g =4 and gp 3,
where we see from Eq. (5.10) that both t, and t are mar-
ginal perturbations. This point is the intersection of the
two boundaries in the upper left part of Fig. 6(b). In this
case, the action in the P representation following from
(5.7) and (5.9) has the form
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the expansion about g =3 and g =1.
The conductance at these new critical fixed points to

leading order may be obtained by simply plugging the
fixed point values of the v's or the t's into the perturbative
expressions derived in Appendix A. We have checked ex-
plicitly that this is legitimate by carrying out the pertur-
bation theory for the conductance to third order in v and
t, and verifying that all logarithmic divergences (in fre-
quency) cancel at the fixed point. In the small-u expan-
sion (i.e., about g =3+@ and g =I+a&) the conduc-
tance to lowest order in the e's is

2G'= (I+a )
— (e +e )(3e +e ) (5.19)

Similarly, in the small-t expansion (i.e., g =4—Z and

g =—', —Z)wefind

e 77G'= Z (Z +97).
h 32

(5.20)

Additional critical fixed points may also be found in
the vicinity of g =3, g =1 and gp =4, g =—', . The
values of the t*'s or v*'s are identical to those above with

p and cr interchanged, and the conductance at these fixed
points again follows from the perturbation theory in Ap-
pendix A.

VI. RESONANT TUNNELING
OF ELECTRONS WITH SPIN

We now consider the problem of resonant transmission
through a double barrier including a spin degree of free-
dom. The general structure of the problem is similar to
that of the spinless case. That is, in the situation where
there is only a single relevant perturbation about the con-
ducting fixed point (e.g. , u, ), it is possible, by tuning
some parameter, to achieve the resonance condition that
the renormalized value of vl =0. In this case, there is
perfect transmission on resonance.

There are, however, important differences regarding
the nature of these resonances in the large-barrier limit.
Specifically, when the barriers are large, so that the
charge between them is discrete, there will be a spin de-
generacy on the is1and when the charge is odd. This is
reminiscent of the Kondo problem ' in which a local mo-
ment is coupled to conduction electrons. This problem
has recently been analyzed in some detail for the case of
Fermi-liquid leads, ' ' and it has been shown that there
can be "Kondo resonances" with perfect transmission
even when there is a Coulomb blockade fixing the charge
on the island. We find that the Kondo resonances are the
generic resonances for transmission through a double
barrier, and for syrnrnetric barriers can be achieved by
tuning only a single parameter. Other "higher-order"
resonances are also possible, but will in general require
the fine tuning of more parameters and will therefore be
difficult to "find" in practice. (One such case is a
"charge" resonance where both the spin and charge
states on the island are degenerate. ) Again, we follow the
same program of first analyzing the problem in the
sma11-barrier limit and then the large-barrier limit.

A. Small barriers

As we saw in Sec. IV A, for a spinless electron gas the
condition for resonances was that the (fully renormalized)
2k+ backscattering vanished. For a symmetric potential
V(x), this could be obtained by fine tuning a single pa-
rameter (e.g., the gate voltage), since the Fourier trans-
form of V(x) is then real. More generally, however, two
parameters would need to be tuned. With spin present,
this reasoning still applies, and we obtain below the on-
resonance phase diagram. As we shall see, for the physi-
cally relevant case with SU(2) spin symmetry (where
g =2), both charge and spin are perfectly transmitted on
resonance, provided g ) 1. For g &1, the system flows
to the phase in which the spin is still perfectly transmit-
ted on resonance, but the charge is completely reflected.

In addition to this resonance, which we refer to as a
"Kondo" resonance for reasons which will become ap-
parent in the next section, there is another (intermediate-
coupling) resonance which we have found which can also
be accessed by tuning a single parameter [or two parame-
ters when V(x) is not symmetric]. This latter resonance
is of interest for two reasons: (i) On resonance, the
charge and spin are not perfectly transmitted, as they are
on the Kondo resonance. Rather, the charge and spin
conductances are shown to take on universal values. (ii)
With SU(2) spin symmetry, this "intermediate-coupling"
resonance is present for g &1, a regime in which the
Kondo resonance is a charge insulator (and thus difficult
to observe). We analyze this "intermediate-coupling"
resonance in more detail below, after discussing the Kon-
do resonance.

In the small-barrier limit, the condition for the Kondo
resonance is that the 2kF backscattering, u, in (5.3), is
tuned to zero. With SU(2) spin symmetry (g =2) the
next most relevant scattering term corresponds to the
backscattering of both a spin-down and spin-up electron,
denoted u, and is given explicitly in (5.6a). As (5.5)
shows, vp is irrelevant provided g ) 1. In this case, both
charge and spin wi11 be perfectly transmitted on reso-
nance, since the weak barrier scales to zero at low ener-
gies. For g & 1, though, v increases under the
renormalization-group flows. At low energies, there is
thus a large barrier for the transfer of charge across the
junction. However, since v is irrelevant for g ) 1, there
is no barrier to the transfer of spin. It is thus natural to
expect that we flow to the charge-insulator and/or spin-
conductor phase described above in Sec. V C.

When there is SU(2) symmetry, so that g =2, we thus
expect that on resonance we have a charge and spin con-
ductor for g ) 1 and a charge insulator and/or spin con-
ductor for g & 1. We shall see that this is also the case in
the large-barrier limit. This is shown in Fig. 9.

For general values of g and g, the behavior of the
Kondo resonance can be easily deduced from similar
reasoning. In this case we can have each of the four pos-
sible phases, as described in Sec. V, depending on g and

g . The phase diagram in the g -g plane is shown ex-
plicitly in Fig. 10.

We now consider the "intermediate-coupling" reso-
nance that we mentioned at the beginning of this section.
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G =G
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FIG. 9. Kondo-resonance phase diagram for interacting elec-
trons with SU(2) spin symmetry, g =2. Here G and G
denote off-resonance conductances, whereas the on-resonance
conductances are denoted with an asterisk. The dashed line at

fp 2 is the fixed line off resonance, while the dashed line at

g = 1 is a fixed line on resonance.

This resonance arises from the competition between v,
and v in the situation when both are relevant perturba-
tions. We therefore return to the action (5.15), in the 8
representation, keeping these terms:

S = SO+ f dr(v, cos&~8 cosign. 8 )

+ )dr(v, cos2&m8 +U2sin2&m8 ), (6.1)

where we have shifted L9 by a constant, so that now the
2k~ backscattering v, can be taken as real, and v

&
and vz

are the real and imaginary parts, respectively, of v .
For simplicity, consider initially the SU(2) spin-

symmetric case, with g =2. Equation (5.5) shows that
when g (1 all three coupling constants in (6.1) are
relevant. Imagine for the moment setting v, =0. Then
under the flows of v, and v2, which scale off to strong
coupling, the system enters a charge-insulating but spin-
conducting phase. Is this phase stable to a small v, term?
In general, no, but as we discussed in Sec. V C, when the

potential V(x) is symmetric, so that U2=0 in (6.1), then
this "mixed" phase is stable. The reason is that when

v, ~ ~ and v2=0, up to small massive fluctuations, we
can put 2&F8 =min . (6.1), which makes the term pro-
portional to v, vanish. On the other hand, when

v, =v&=0, as v, grows large under renormalization the
system is expected to enter into a phase with both charge
and spin insulating. It is thus clear that when v2=0 and

g (1, there should be a transition between these two
phases as the ratio v, /v, is varied. As we shall see, pre-
cisely at this transition the charge conductance has a
finite value. Since the two phases on either side of this
transition are charge insulators, the transition is a charge
resonance in the sense that as a parameter is tuned
through the transition a peak in the charge conductance
will occur.

In the SU(2) case, the "resonance" fixed point, which
separates flows to these two phases, is at intermediate
coupling and is therefore inaccessible perturbatively.
However, we now show that by allowing g to be
different than 2 we can perturbatively access it. Recall
that all three operators in (6.1) above are marginal when

g =1 and g =3. This suggests an analysis similar to
that in Sec. V D, perturbative in E'p gp

1 and
e =g —3. The analysis is identical to Sec. V D, except
that now we consider t. and e +e to both be negative.
Indeed, we can simply use again the second-order RG
equations for U„v„and v z, given explicitly in (5.16).
When both E'p and e +e are negative, these flow equa-
tions give a critical fixed point at u,'=[a~(e~+e )j'
U i

= iEp+e i/4, and uz =0. The RG fiows in the u, -v,
plane are sketched schematically in Fig. 11. The transi-
tion separates the "mixed" phase (charge insulator
and/or spin conductor) from the totally insulating phase,
as discussed above. At the critical fixed point, v2 is a
relevant perturbation. This is consistent with the fact
that for g = 3 and g = 1, the charge-insulator and/or
spin-conductor "mixed" phase is only stable then the bar-
rier is symmetric, so that v2 =0. The conductance at this
resonance critical point can be evaluated by inserting the

4

3 R

e a2

FIG. 10. Kondo-resonance phase diagram in the g -g plane,

as obtained in the small-barrier limit from Eq. (5.5). The four

phases are ( A) charge and spin conductor, (B) charge and spin

insulator, (C) charge insulator and/or spin conductor, (D) spin

insulator and/or charge conductor. The dashed line indicates

an electron gas with SU(2) spin symmetry.

FIG. 11. Schematic renormalization-group Rows describing
the transition between the spin and charge insulator and the
spin-conductor and/or charge-insulator phases, as described in

Sec. VI A.
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fixed-point values v,
* and v*, into the general expressions

derived in Appendix A, and to leading order in e the re-
sult is identical to (5.19).

B. Large barriers: Kondo resonance

We now consider resonant tunneling with spin in the
limit of large barriers. In this case, we again anticipate
physics associated with the Coulomb blockade, which
fixes the charge on the island. The spin degree of free-
dom gives the problem an additional twist, however,
since when the charge on the island is an odd integer,
there will be a spin degeneracy on the island in the ab-
sence of a magnetic field. This is analogous to the Kondo
effect, where the island plays the role of the localized
magnetic impurity. It has been shown that such a situa-
tion can give rise to a "Kondo" resonance in the
transmission through the island. ' ' Below we show
that such a Kondo resonance can occur in a Luttinger
liquid, and that it is the direct analog of the v, =0 reso-
nance discussed in Sec. VIA above, in the small-barrier
limit.

It is again instructive to consider first the special model
with two equal strength 5-function barriers, which we
studied in Sec. IV B in connection with spinless electrons.
Again, denoting the 8 fields at the two barriers with

subscripts 1 and 2, we define 8 z=(8, z+8i )/2, and
=(8z —8i )/ n.. Physically, 8 / n corre-

spond to the spin and charge which have been transferred
across the junction, and thus play a role similar to the 0
fields which entered into the single-barrier problem,
(5.1)—(5.4). Moreover, n may be interpreted as the
spin and the charge between the two barriers. The low-

frequency effective potential analogous to (4.2) experi-
enced by 8 and n then has the form

V =V costs.8 cosv n8 cos—n cos n-eff P ~ 2 P

+sin&m. 8 sin&@8 sin —n sin —n
P 2 P 2

+ (n no )+ —(n no )—Up
&

Uo.
2 (6.2)

Here V is the strength of the two 5-function scatterers,
and the U's suppress charge and spin fluctuation on the
"island" between the two barriers. Again, npp can be
tuned by varying a gate voltage VG. In the case with
SU(2) spin symmetry, no =0.

As in Sec. IVB, we analyze the symmetries of this
model. It is clear that Eg. (6.2) is invariant under the
transformation 8 ~8 +&mand 8 ~8 .+v m.. This cor-
responds to transporting an electron from the right to the
left leads, and is related to the single-particle hopping
term t, . As in the spinless case, we shall see that reso-
nance is possible when there is an additional symmetry.
In the absence of a magnetic field (when no =0), such a
symmetry exists when n p is an odd integer. In this case
V ff is invariant under the additional transformation
n n n p

~2n pp n p
in conjunction with either

8 ~8 +v'm. or 8 ~8 +&@. These transformations
correspond physically to processes where (i) an electron is
transferred across the island flipping its own spin and
that of the island, or (ii) an electron in one lead flips its
spin and the spin on the island.

In the limit V(( U, U, n, and n may be integrated
out, leaving a model similar to (5.4). However, in the
presence of the additional symmetry above (when no is
an odd integer), the effective potential V,s(8, 8&), which
enters in (5.4), now has an additional symmetry, name~i

invariance under either 8 +8 +—v n or 8 ~8 +&m.
This means that the 2kF electron backscattering term in
(5.4), v, cos2&~8 cos2&~8, is not allowed. But the van-
ishing of v, was precisely the condition for resonance in
the small-backseat tering limit.

In the limit of large barriers, on the other hand, V,ff in
(6.2) will have deep minima when n and n are integers.
When the resonance condition defined above is satisfied,
there are then two degenerate spin states, which have
n =+1, respectively. This is reminiscent of the Kondo
effect, in which a local moment is coupled to conduction
electrons. For this reason, we refer to this resonance as a
"Kondo" resonance.

The partition function on resonance will be dominated
by instantons connecting the various degenerate minima
of V,ff related by the symmetries described above. The
fugacity of the instanton corresponding to the process in
which an electron hops across the island leaving the spin
on the island unchanged is denoted by t, . It should be
clear that this has the same physical content as that
defined in Sec. V, namely a single electron hopping from
the left to right leads. Similarly, the fugacities of the in-
stantons corresponding to processes (i) and (ii) described
above, in which the spin on the island is flipped, are
denoted by t and t, respectively. These two processes
are distinct from t and t defined in Sec. V.

As in Sec. IV B, we can analyze the effects of these pro-
cesses with a renormalization-group approach. To this
end, we define q; =b,8 /&m. and s; =b,8 /&n, which, as
in (5.12), measure the charge and spin transferred to the
right. In addition, in order to specify fully aB of the al-
lowed processes, we must define t; =b,n /2 as the change
of the spin on the island. With these definitions, the hop-
ping of a single electron between leads, t„corresponds to
(q;,s, , t;)=(+1,+1,0), whereas the t process corre-
sponds to (+1,0, +1) and the t process to (0, +1,+1).
While q; and s,. can have any ordering, t, , which is con-
strained by the allowed spin states on the island, must al-
ternate in sign.

By expanding the partition function in powers oft„t,
and t, we arrive at a Coulomb-gas model, where now the
interaction between the "charges" has the form

2 2
V; = q;q +(s,s.+K r, r .)1n(r,. rj. )/r. ,. . —

(6.3)

Notice that this differs from the single-barrier expression
(5.12) by the presence of the term proportional to K
Here in the double-barrier case we have initially K = 1,
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but, as we shall see, its value is reduced upon renormal-
ization. Specifically, upon applying the real-space
renormalization-group procedure used in Sec. IVB, we
arrive at the following RG flow equations to leading or-
der in the hopping strengths (t's):

4

3

dt /d/= l—
p

(6.4a)

dt /dl = I — (I+K ) t
1

(6.4b)

dt, /dl = I—
gp

dK /dl = 8(~t—+P )r', K

(6.4c)

(6.4d)

The structure of these equations is similar to that of
(4.5) for the resonant tunneling of spinless electrons. The
resulting phase diagram for the case with SU(2) spin sym-
metry (g =2) is shown in Fig. 9. In this case, since K
is always less than 1, t always grows under the flows and
we expect perfect spin transmission, regardless of the
value of g . For attractive interactions, g )2, both t,
and t will also grow under the RG flows and so charge is
also expected to be perfectly transmitted (in this case a
single barrier conducts perfectly). For repulsive interac-
tions with g in the range, 1&g (2, although t, will ini-

tially decrease, after E flows to zero, the charge hop-

ping t will grow. We thus expect that in this case also,
both charge and spin will be perfectly transmitted on res-
onance, even though a single barrier will be insulating.
For g (1, on the other hand, t and t, will both flow to
zero, so that the system is presumably insulating. How-
ever, since t continues to grow even in this case, we ex-

pect the phase to be a charge insulator and/or spin con-
ductor.

As in the spinless case, the decreases in K under re-

normalization may be understood as an effective decrease
in the ratio V/U in (6.2), and indicates that the discrete-
ness of charge and spin on the island has become less im-
portant. When E flows completely to zero, we are left
with an effective single-barrier problem, except that now,
since we have the additional symmetry under
0 ~0 +&nor 0 ~0 .+&n, processes .in which a

P P
"charge" hops without a "spin" or vice versa are allowed.
This corresponds precisely to the small-barrier limit, pro-
vided one tunes to resonance with v, =0. We can thus
identify the small-barrier resonance (when v, =0), with
the Kondo resonance which we have analyzed in the
large-barrier limit.

Allowing for more general values of g, we can con-
struct the Kondo resonance phase diagram in the small-t
limit directly from (6.4), since in this limit the t s flow to
zero before E changes appreciably, so that the boun-
daries are determined with I( =1. In Fig. 12 we display
this phase diagram as a function of g and g . The phase
boundary at g =4 is determined by the relevance of t,
which is not included in (6.4) (see Sec. VB). For larger
values of the initial hopping strengths t, the phase boun-
daries will shift, since then K has "time" to flow. If K

FIG. 12. Kondo-resonance phase diagram in the g -g plane
in the limit of large barriers, as obtained from the How equa-
tions (6.4). The four phases are ( A) charge and spin conductor,
(B) charge and spin insulator, (C) charge insulator and/or spin
conductor, (D) spin insulator and/or charge conductor. The
dashed line indicates an electron gas with SU(2) spin symmetry.

flows all the way to zero, then the phase diagram be-
comes identical to that in the small-barrier limit
displayed in Fig. 10.

In addition to the Kondo resonance described above,
one might expect to have a "charge" resonance, which
occurs when the gate voltage is adjusted to the point
where the cost in energy to add another particle to the is-
land vanishes identically. This is a direct analog of the
resonance in the spinless case described in Sec. IV. In
general, however, as we now point out, such a resonance
will be more difficult to observe with spin, since it re-
quires the tuning of more parameters. It is important to
remember that simply adjusting the chemical potential of
the island to the point where the energy to add another
electron vanishes is generally not a sufhcient condition
for resonance. We saw this in Sec. IV, where we found
that if the two barriers have even slightly different
strengths, the resonance is ultimately destroyed. (This is
in contrast to what occurs for noninteracting electrons. )

Specifically, in this case, an asymmetry in the barrier
strengths will break the "resonance symmetry" of the
effective potential V,s in (4.2).

In the case with spin, two adjacent charge states of the
island will become degenerate in energy when no in (6.2)
is tuned to be a half-integer. However, (6.2) does not pos-
sess any extra "resonance symmetry" unless, in addition,
no is also tuned to be a half-integer. (This will not gen-
erally be the case even in a magnetic field. ) If this can be
achieved, though, then (6.2) will be invariant when both
n and n change by +1 and both 0 and 0 change by
+&a./2. This corresponds physically to hopping an elec-
tron from one of the leads onto the island, which is what
we expect for the "charge" resonance. If we trace this
symmetry to the small-barrier limit, as was done above
for the Kondo resonance, then we find that V,ft(0, 0&)
must be invariant under the combined transformation
0 ~0 +&m./2 and 0 ~0 +&~/2. This requires that
in addition to v, =O, we must also have v =v =0. Thus
this is clearly a "higher-order" resonance, which requires



46 TRANSMISSION THROUGH BARRIERS AND RESONANT. . . 15 255

the tuning of six parameters. Evidently, the effective po-
tential (6.2) has some extra symmetry built into it, which
allowed us to achieve this resonance tuning only two pa-
rameters no and no . There is no reason to expect that
such a symmetry should be present in a more general po-
tential.

VII. RKSONANCK LINK SHAPES

The above discussion has focused on the conductance
through a double barrier when precisely on resonance
and at T =0. A more crucial issue experimentally is the
width of the resonances and the line shapes of the reso-
nance peaks. Consider then the regions in the phase dia-
grams (Figs. 3 and 9 for spinless and spinful electrons, re-
spectively) where resonances with perfect transmission
occur when some parameter, such as a gate voltage, is
tuned. Precisely on resonance, the RG flows are toward
the fixed point which describes the pure Luttinger liquid
with no scattering, i.e., that given in (3.3). Since all
scattering except the 2kF scattering is irrelevant at this
fixed point, the resonance condition is that the renormal-
ized value of V(2kF) =0. As the system is tuned slightly
off resonance, by, for example, changing the chemical po-
tential, the conductance will be determined by the behav-
ior of this single relevant parameter as it flows away from
that unstable fixed point. Near resonance, the initial
value of this parameter will be proportional to the dis-
tance from resonance, V(2kF, l =0)=5—:VG

—VG. Un-
der renormalization, the 2kF scattering grows, as
dv&/dl=k, u„with a positive eigenvalue, denoted as A, ,
given by

A, =1—g (7.1a)

for spinless electrons and

I,= 1 —(g +g )/4 (7.1b)

for electrons with spin. As usual near a critical point, we
can introduce a divergent time scale associated with this
relevant direction which diverges as 5~0 as 5
From this we deduce a characteristic frequency scale,
denoted 0, which vanishes as 0=5' . Near the reso-
nance for small 5 the conductance at finite temperatures
should depend only on the ratio kz T/RQ. More
specifically, one expects the conductance for small T and
5 to be described by a universal scaling function:

G(T,5)=Gg(c5/T ), (7.2)

where e is a nonuniversal dimensionful constant. For
larger 5 or T, the irrelevant parameters will provide
corrections to this scaling form. For instance, for the
spinless case there will also be a dependence in (7.2) on
V(4k+)T' s ", which, however, vanishes in the zero-
temperature limit.

The sealing function 6 (X), which is a symmetric
function of its argument, X =c5/T, can be obtained for
small X directly from our perturbative results in Sec.
III A, Eq. (3.5) and Sec. V A, Eq. (5.6). We find a quadra-

tic dependence,

Gs(X) =6' [ I —X +0 (X )], (7.3)

where the conductance on resonance is G*=ge /h for
the spinless case and G =g e /h for electrons with spin.
The behavior of G for large X can be obtained by match-
ing onto the flows into the stable fixed point which de-
scribes reflection from a single large barrier. As shown in
Secs. III B and VB, off resonance (e.g., for a single bar-
rier) the conductance vanishes as G = t T ' '~s " for

2/g —1

spinless electrons and as G=t T with spin. Re-
quiring that the form in (7.2) matches onto this implies
that as X~~,

6 (x)=x-"&

for the spinless case and

(7.4a)

Gs (X)=X
P

(7.4b)

for electrons with spin. For intermediate values of X, al-
though Gs(x) is not perturbatively accessible, it should
be a universal function, depending only on the dimension-
less lead conductance g or g . In the next section we will
indeed verify this for the spinless case with g =

—,', where
an exact nonperturbative solution is possible.

The above considerations show that at low tempera-
tures the resonance peaks should have a temperature-
dependent width which scales as T . Moreover, rescaled
data from different temperatures should collapse onto the
same universal curve. The line shapes of the peaks are
predicted to be non-Lorentzian, with tails which fall off as—4/g
5 2~s in the spinless case and as 5 ' with spin. In
both cases, the line shape is Lorentzian and temperature
independent in the limit of noninter acting electrons
(g =1 and g =2), as expected.

For a 1D channel with a finite length L, which is joined
at the ends to metallic (Fermi-liquid) leads, the predicted
power-law behavior will be cut below a temperature
TL =AvF/k&L. Specifically, the resonance line shapes
will cease to sharpen up below this crossover tempera-
ture. In addition, at low temperatures a finite applied
voltage will serve as a cutoff. Thus, at T=O, the I-V
curves near resonance (for V) k~TL le) should satisfy a
scaling form, I/V=Gs(5/V ). Although Gs(x) should
be a universal function with the same small- and large-X
dependenees as 6 (X) in (7.3}, the two functions will in
general be different.

When the barriers are asymmetric, it is likely that as
the gate voltage VG is tuned, we do not pass through the
resonance point V(2kF) =0. However, if the asymmetry
is not too large, it is likely that there exists a well-defined
minimum 5;„=min~V(2kF)~ at some value Vo. In this
situation, 5 in Eq. (7.2) should be replaced by f (5), where
for large 5 f (5)=5, whereas for 5~0, f(5}~5;„.The
resonance peak will then ultimately vanish at zero tem-
perature, but at 6nite temperatures it will have a temper-
ature dependence determined by G *=Gs (c5;„/T
Again, for temperatures below TI, T should be replaced
by T~.
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VIII. EXACT SQLUTIQN AT g =—'

S = —g leo„l l 8(e~„)l + v f dr cos[2&m.8(r ) ],
I Q)

(8.1)

One of the beautiful features of scaling is that one often
can extract a lot of information with relatively little
e6'ort. Indeed, in the previous section we inferred the
temperature dependence of resonance widths and the
asymptotic form of the resonance tails by simply piecing
together the perturbative results of Secs. III and IV. A
drawback of scaling, though, is that one is never quite
certain about its validity in any particular case. For-
tunately, as we now show, for spinless electrons with a
particular value of the dimensionless conductance, g =

—,',
the conductance through a resonance can be calculated
exactly, with no recourse to perturbative methods. This
solution follows closely a paper by Guinea, where he
obtained an exact solution of a closely related model
which he was studying in the context of macroscopic
quantum tunneling in Josephson junctions. Here we
briefly outline his route to the solution, which ultimately
involves mapping the problem into the 2D classical Ising
model with a surface boundary condition. This enables
us to extract the conductance as a function of tempera-
ture throughout the resonance regime, and verify both
the perturbative results of Secs. III and IV, and, more im-

portantly, the scaling results of Sec. VI.
The action we wish to solve is that for spinless interact-

ing electrons in the presence of a 2kF backscattering term
from a potential scatterer localized near x =0. In terms
of the boson field 8(x =O, r) the appropriate effective ac-
tion follows from (3.2) and (3.3) and takes the form

case g =1 appropriate for noninteracting electrons. No-
tice that in (8.3a) the x integration is restricted to positive
x, as appropriate for the semi-infinite system under con-
sideration. The second term, when expressed in terms of
the fermion field p„,is of the form 1(0+$0+. Upon using
(2.2) to bosonize this term and noting that since we are at
the end of a semi-infinite lattice we can set 8(x =0)=0,
this term becomes

Si =u fdrcos[&nP(x =O, r)] . (8.3b)

Upon integrating out P(x) away from x =0, in the semi-
infinite lead, the first term (8.3a) becomes

s, =-,' y l~„lip(~„)l'. (8.4)

5S= —f d isa( )r},i8( )r,
1

(8.5)

which enables us to evaluate the conductance via two
functional derivatives with respect to the "vector poten-
tial" a(r); see (2.9). Before taking these derivatives,
though, it is convenient to perform a shift,
8(r)~8(r)+(gl2&rr)a (r), which eliminates the term
linear in a and gives for the full action, S„,=S +5S,

The equivalence is now clear. When we let P(r)~28(r)
in (8.3) and (8.4), the total action So+S, becomes identi-
cal to S in (8.1) provided g =

—,'.
Before sketching Guinea's solution to the spin problem

in (8.2) it is useful to express the conductance in terms of
the spin operator. To this end we add to the original ac-
tion in (8.1}a source term of the form

where the coefficient U is proportional to the 2kF back-
scattering, P'(2kF ). In arriving at (8.1) we have integrat-
ed out the fluctuations of 0 in the two leads, which gen-
erates the singular frequency dependence in the first
term. It is, of course, the nonlinearity coming from the
cosine term which makes this problem difficult to solve.

As noted by Guinea, when g =
—,
' we can write down a

simple spin Hamiltonian which describes the same low-

energy physics as (8.1) above. To be explicit, consider the
following spin- —,

' quantum xy model defined on a semi-

infinite lattice:

S„,= —g leo„ll8(co„)l+u fdrcos[2&m8(r)+ga(r)]
ltd

+ & I~.ll«~. )I' .
4m, .

'~n

(8.6)

Upon differentiation twice with respect to a (r) we gen-

erate two contributions, one a constant piece coming
from the last term in (8.6}, and the other a correlation
function of an operator, 0 =sin(2&m8). Specifically, in

an imaginary time representation the conductance is

given by

H = —
—,
' g ( cr„o„+i +H. c. ) + v cr0,

n=0
(8.2) 2 2ge (geu) p (

h A'~„
(8.7a)

where o. is a spin-one-half operator, and as usual
o.—=o'+io.~. The last term is a "magnetic field" acting
on the end site. To establish the equivalence between
(8.2) and (8.1) it is useful to note that the xy model can be
mapped into a fermion model using a Jordan-Wigner
transformation. The first term in (8.2) becomes simply
the kinetic energy for noninteracting electrons hopping
on a semi-infinite lattice. In the P representation the
e6'ective low-energy action for this term takes the form

S,= ,' f "dx f-dr(a„y)', (8.3a)
0

where we have used (2.4b) and have specialized to the

where

P(co„)=f dr(e " 1)P(r),—
0

P(r)=(T,O(r}O(0)) .

(8.7b)

(8.7c)

Here ei„=2mn /P is a Matsubara frequency. As usual, to
get the dc conductance an analytic continuation to real
frequencies must be performed, co„~—i co+ e, before
taking the zero-frequency limit. Finally, we need to ex-
press the operator 0 in terms of the spin operators in
the Hamiltonian (8.2). Since the mapping takes
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au+~exp[i2&ir8(r)] we have simply

O=oo. (8.7d)

We now briefly sketch Guinea's exact solution of the
spin- —, xy model in (8.2). This basically involves a se-
quence of mappings to bring the Hamiltonian into the
quadratic form of fermions. First, it is convenient to per-
form a "duality" transformation from the original spin- —,

'

operator cr to a dual spin- —,
' operator denoted p:

2N

Ck
i/SN —0 p 4

[Ak{c„+c„)+Bk(c„—c„)],
(8.13)

provided the coefficients Ak and Bk are chosen correctly.
Following Guinea's Appendix we find that Ek =sin(k),
and the coefficients are given by

with the k sum over k =el/2N with 1=1,2, . . . , N, by
using a Bogoliubov transformation,

~ =II&
m &n

(8.8a)

(8.8b)

4u cos(k)
k exp(ik)E„—Siu

(8.14a)

It is straightforward to check that the new operators p
satisfy the appropriate spin commutation relations. The
mapping in (8.8) has been used widely in the context of
1D quantum Ising models. In terms of these new
operators the Hamiltonian (8.2) becomes

Bk=Ek Ak/2v and for n =2,4, 6, . . .
i n ~ n —1 ik(n —1) r ~0 r iOei ~ n —1 —ik(n —1)

Bo i »e ik»+( A 0/A Oe )i »e ik»—
k k k

The inverse transformation to (8.13) is

(8.14b)

(8.14c)

rf (P»Pn +2+8» + i )+ Po '
n=0

(8.9)
1ic„= g [( Ak+Bk )Ck+( Ak Bk» )Ck ] .
SN

(8.15)

p„+=2c„+expimgc c.
m(n

p'„=wc„c„—1 .

(8.10a)

(8.10b)

In this representation, the model splits into two decou-
pled models, one on the even and the other on the odd
sites, H =H,„,„+H,dd. Moreover, these two Hamiltoni-
ans clearly commute. Each model describes a semi-
infinite quantum Ising model in a transverse field, with a
free boundary condition on the end for the odd-site mod-
el, and a different field, of strength v, on the end site of
the even-site model. It turns out that since the transverse
field has identical strength to the Ising coupling term, the
two models are at bulk critical points. As shown origi-
nally by Lieb, Schultz, and Mattis, this critical point is
in the 2D classical Ising model universality class. Thus
(8.9) describe two decoupled semi-infinite 2D Ising mod-
els at criticality, one with a free boundary and the other
with a boundary field given by V.

Since the Hamiltonian on the odd sites can be
obtained from the even-site Hamiltonian via
H,~d=H,„,„(v= —

—,'), we need only solve the even-site

problem. This can be achieved by mapping H,„,„

into a
free fermion model by performing a Jordan-Wigner trans-
formation,

(8.16)

where fE = [exp(PE)+ 1] ' is the Fermi function.
P,dd(r) is given by this same expression except with
V~ ——.4'

Upon combining (8.14a) and (8.16), then inserting into
(8.7b) and performing the time integration, we find

, (1—s)(i fF.)—P(a)„)=,f dEdE'
(mv) 1+(E/8v )

X
—P(E +F.')

i a)„(E+E')—
where for small T and v the energy integrals can be taken
from minus infinity to infinity. We are now in a position
to perform the analytic continuation to real times, by let-
ting i co„~co+ie in (8.17). After performing the integral
over E' we then find in the zera-frequency limit

(8.17)

It is now straightforward to evaluate P(r) in (8.7c),
since it factorizes into a product of contributions from
the even and odd sublattices, P(r)=P,„,„(r)P,dd(r),
where P,„,„(r)=(O,„,„(r)O,„,„(0))and O,„,„=co+co.
At temperature T we find

P,„,„(r)= f dk~Ak~ [e ' (1 fE )+e "—fF ],

Here cn is a standard fermion operator and the sites n

and m are even sites only. In terms of the fermion fields
the Hamiltonian is quadratic,

lim
Q)~0

ImP„(co) a, /aE
2 dE, (8.18)

(nu) 1+. (E/Su )

2(N + 1)
[(ct ~

—c„z)(c„+c„)+2c„c„]
n —2

+2VC OCP (8.11)

where the sum is only over even sites. This can be
brought inta a diagonal form,

where Pz(cu) denotes the retarded correlation function.
Finally, upon inserting into (8.7a) we get the final result
for the dc conductance at finite temperatures:

2

G(T v)= „1—f dE( df /dE)—
E +(Sv~)

H,„,„=gEkckck,
k

(8.12)
(8.19)

Notice that in the presence of 2k+ backscattering,
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u&0, as the temperature tends to zero the conductance
vanishes, since the Fermi function derivative is simply a 6
function of energy in this limit. The link is insulating at
zero temperature regardless of how small the backscatter-
ing. Thus this nonperturbative result confirms the con-
clusions reached in Secs. III and IV, which were based
upon piecing together perturbative results. If we take the
backscattering to zero, to place us on resonance, and then
take the temperature to zero, the conductance is given by
G = G ' =e /2h, which corresponds to perfect transmis-
sion for the g =

—,
' case under consideration.

The exact result (8.19) can, moreover, be cast in the
scaling form, given in (7.2), namely

G (r, u) =Gs(cu/T' g) . (8.20)

Upon comparing (8.19) and (8.20) we obtain an explicit
expression for the scaling function at g =

—,':
00 e~ y

2

Gg &i&(X)=G' J dy (e~+1) y +X
(8.21)

This scaling function has the predicted forms, deduced
from the perturbative considerations of Secs. III and IV,
namely quadratic deviations from G* at small argument,
and an X g=X dependence for large argument.
Thus, in summary, the exact solution of the special case

g =
—, discussed in this section is consistent with all re-

sults inferred in earlier sections from perturbative ap-
proaches and scaling, and gives us confidence in their
more general validity.

IX. DISCUSSION AND CONCLUSIONS

In this paper we have seen that electron-electron in-

teractions play a crucial role in determining the nature of
transport in one-dimensional structures. In particular,
for repulsive interactions we found that an arbitrarily
weak barrier in an otherwise infinite Luttinger liquid will

cause total reflection of an incident current and hence in-

sulating behavior at zero temperature. The experimental
signature for this Luttinger-liquid physics will be the
power-law scaling of the conductance as a function of
temperature for temperatures larger than the finite-length
cutoff energy Tz . The exponent of this power law is then
a measure of the interaction strength of the Luttinger
liquid. Moreover, the I-V characteristics should exhibit a
similar power-law behavior with the same exponent.

We have also discussed the nature of resonant tunnel-
ing through a double-barrier structure in a Luttinger
liquid. We found that there can be perfect resonant
transmission, provided the interactions are not too
strongly repulsive, or in practice with a Coulomb interac-
tion the electron density not too low. Moreover, at finite
but small temperatures the resonance line shapes are de-
scribed by a universal scaling function. It should be em-
phasized, however, that in this theory we have ignored
any structure within the island between the two barriers.
As such, our results are valid only on time scales long
compared to ~;,&,„d,the time which it takes for an electron
to traverse the island (or equivalently for temperatures
below T;»,„d=A'/kate;»»d). Thus, in a realistic experi-
ment on a one-dimensional wire, we expect the predicted

scaling behavior to be valid for temperature scales be-
tween T;,&,„dand TL. In general, two parameters must be
tuned to achieve a resonance; however, in the case of a
symmetric double-barrier structure, resonance may be
achieved by tuning a single parameter, such as a gate
voltage. For slightly asymmetric barriers, it will never-
theless be possible to observe the resonances at finite tem-
perature; however, as the temperature goes to zero, the
peak height of the resonance will go to zero.

In the absence of any barriers, the two-terminal con-
ductance of a pure one-channel 1D wire is given by
ge /h. This result, however, should be qualified by the
fact that at present we have no theory for the interface
between the one-dimensional Luttinger liquid and the
two- or three-dimensional (Fermi liquid) leads. The con-
tact resistance between the 1D sample and the leads may
well be very important in practice. It should be noted
that conductance quantization in units of e /h has been
observed for point contacts. In such experiments,
though, the one-dimensional channel is very short—
containing only a few electrons —so that the three-
dimensional leads dominate the behavior. Unfortunately,
at present it has not been possible to observe such con-
ductance quantization in longer channels. Presumably
this is due to the difhculty of eliminating the effects of im-

purity scattering in the wire. If clean wires can be made,
though, which are long enough that many (say tens) of
electrons reside in the length of the 1D segment, then
quantization of the conductance in units smaller than
e /h would be expected.

The effects of disorder in a one-dimensional channel
can be minimized by applying a strong magnetic field.
Since this will tend to spatially separate the right- and
left-moving electrons, it should reduce the unwanted im-

purity backscattering. The optimal value of the magnetic
field, in order to maximize the spatial separation between
right and left movers, corresponds to a magnetic length
comparable to the width of the one-dimensional confining
potential.

There is a deep connection between the 1D transport
which we have studied in this paper and edge transport in
the fractional quantum-Hali regime of a two-dimensional

electron gas. Indeed, the quantum-Hall regime may well

be the best place to observe the phenomena which we

have predicted. Specifically, %en has shown in a recent
series of papers that the edge excitations of a two-

dimensional electron gas in the fractional quantum-Hall

regime may be described as a "chiral Luttinger liquid. "
A quantum-Hall bar which is long, but not one dimen-

sional, will consist of chiral Luttinger liquids on each
edge which move in opposite directions. This is formally
identical to a one-dimensional Luttinger liquid, which
has both right- and left-moving electrons. Moreover, as
Wen has shown, ' the dimensionless conductance of
this Luttinger liquid is simply given by the filling factor
of the bulk fractional quantum-Hall state, at least for the
odd-integer states g =v=1/m. Since the two edges are
assumed well separated from each other, tunneling be-

tween the edges is strongly suppressed. Therefore, the

problem of backscattering in the bulk Luttinger liquid is

eliminated. Moreover, since it is much easier to fabricate
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large two-dimensional electron gases, the cutoff due to
the finite system size (L) should no longer be a limiting
factor, and it should be possible to achieve a much wider
range between T;„,„dand Tl. Imagine now a constric-
tion in this quantum-Hall "wire" which allows tunneling
between the two edges. This is precisely the analogue of
the single-barrier problem described in Sec. III, and in a
v= —,

' state, for instance, the two-terminal conductance
should vanish at low temperatures as T . In the pres-
ence of two such constrictions, we have precisely the res-
onant tunneling problem described in Sec. IV. At low
temperatures the resonance line shapes should be de-
scribed by a truly universal scaling function with no un-
determined "free" parameter g. It is also clear that there
will be qualitative differences between resonances in the
integer and fractional Hall effects, with only the latter
having resonant widths which vanish in the zero-
temperature limit.

In the absence of a magnetic field, the electron spin de-
gree of freedom will play an important role, and this
leads to some novel effects. In particular, we showed that
with a barrier present, in addition to the perfectly con-
ducting and perfectly insulating phases, it is possible, un-
der certain conditions, to have a phase which is a charge
insulator yet a spin conductor.

In the presence of a double-barrier structure, the reso-
nant tunneling of electrons with spin will be dominated
by so-called "Kondo resonances. " In contrast to spinless
electron resonances, these resonances occur when the
charge between the barriers is an odd integer, and there is
a remaining spin degree of freedom on the island. There-
fore, in an experiment analogous to that of Meirav et al.
the resonance peaks should have a periodicity as a func-
tion of gate voltage which corresponds to the addition of
two electrons to the island.

It is worthwhile to contrast this Kondo resonance in
the Luttinger liquid with the analogous resonances in the
case where the leads are Fermi liquids. This latter case
has been studied recently by a number of authors. '

With Fermi-liquid leads, at low temperatures the Kondo
resonance peak has a temperature independent width
which is essentially given by the Fermi's "golden-rule"
lifetime for an electron on the island. When the gate
voltage is adjusted so that the charge on the island is pre-
cisely an odd integer, the resonance peak is exactly cen-
tered about the Fermi energy. As the gate voltage is
tuned "off valence, " away from this value, the center of
the resonance peak shifts away from the Fermi energy.
But as long as the barriers are large, in the "Kondo lim-
it," the charge on the island will depend only very weakly
on the gate voltage, and the Fermi energy should still re-
side within the width of the resonance peak. When the
leads are Luttinger liquids, on the other hand, we have
seen that the resonance widths vanish at zero tempera-
ture, even if the barriers are not large. Then, at T=O,
the resonance will be at the Fermi energy only when the
average charge on the island is precisely an odd integer.
Since the average charge on the island is a smooth func-
tion of the gate voltage (unless the barrier heights are
infinite), the resonance in this case will be infinitely sharp
as a function of gate voltage. At finite temperatures, the

resonances will have a universal shape, as described in
Sec. VII.

Throughout this paper we have assumed that the
Coulomb interaction between electrons in the one-
dimensional wire is of short range, and have ignored all
complications which might arise from the long-ranged
piece of the interaction. As we now discuss briefly, the
effects of a long-ranged 1/r Coulomb interaction, while
possibly leading to qualitative changes in the results, will
in practice be hard to detect experimentally, since they
will consist primarily of a weak logarithmic temperature
and frequency correction. Consider for simplicity the
spinless electron gas with long-ranged interactions. One
expects that the effective action (2.4) should be modified
slightly, with the (VH) term replaced by a term of the
form fdk k U(k)~8(k)~, where U(k) is the Fourier
transform of the Coulomb interaction. For a 1/r interac-
tion this gives U(k)= —ln(k) in one dimension. The
effective quadratic action would then describe a density
wave with a modified dispersion of the form
co=&—ln(k)k, rather than the purely linear dispersion
for short-ranged interactions. Because this logarithmic
term varies so weakly with distance, we expect that it will
have a rather weak effect on the results for transport
through barriers, leading initially to weak logarithmic
temperature corrections. In the asymptotic zero-
temperature limit, though, these corrections can become
large and may change the results even qualitatively.
Indeed, even in the absence of a barrier, I/r Coulomb in-
teractions have been argued to destabilize the Luttinger
liquid at very low temperatures. Specifically, in Ref. 37,
it was shown that a 1/r interaction leads to an unbinding
of space-time vortices (in the P field), which destroy the
fluid phase, probably forming a Wigner crystal with
long-ranged crystalline correlations at T=O. Strictly
speaking, though, a correct analysis must also incorpo-
rate the transverse pieces of the Coulomb interaction (i.e.,
retardation effects due to the dynamics of the photon)
which were ignored in the aforementioned analysis. The
ultimate fate of the Luttinger liquid at the longest length
scales and T=O in this case is presently, as far as we
know, a theoretically open question.

Theoretically, there is a deep connection between
much of the analysis in this paper, and the recent prob-
lem of defects in quantum-spin chains, and more gen-
erally with boundary or surface critical phenomena in
two-dimensional theories at their critical point. This
connection is clearest from the analysis in Sec. VIII,
where a model of a Luttinger liquid with barrier was first
mapped into a quantum spin chain with boundary field,
and eventually into the 2D Ising model at its critical
point with a boundary magnetic field. Physically, the 1D
Luttinger liquid, when viewed as a 2D theory in space
time, describes a 2D critical theory. A defect or weak
link in the 1D wire becomes a surface or defect line in the
effective 2D theory. The conductance through the weak
link, which is a dimensionless number when expressed in
units of e /h, characterizes the surface critical phenome-
na in the 2D theory. The generic case of total reflection
or perfect transmission through the weak link corre-
sponds to an open or closed boundary, respectively, in
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the 2D critical theory. However, the new critical points
we found in the spinful case in Secs. V and VI (and shown
in Figs. 8 and 11) which had a nontrivial yet universal
conductance, presumably correspond to nontrivial sur-
face or boundary critical phenomena in the underlying
2D critical theory. It is quite possible that the powerful
methods of conformal field theory might be applied here
to give nonperturbative values of the exponents and other
universal critical properties.
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t' = t and then back to —~ +ip . We then find

I(t)= —,
' g t„f dt'sin[n[a(t) a—(t')]]

n

(A5)

where P ' '(t) is the analytic continuation
P [r~+( —)it] Fr. om this we may compute the current
at constant dc voltage and the (linear) conductance (re-
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P2 ~z (nV) —
P2 2z ( nV—)

I(V)= n g nt„
2l

G (co) = ngn'. t„'

where

(A6a)

(A6b)

APPENDIX A: PERTURBATION THEORY

In this appendix we outline the perturbative calcula-
tions of the conductance and I-V characteristics for
transport through a single barrier in the limits of a small

hopping t and for small backscattering U (2kF). We com-

pute the current in the presence of an arbitrary voltage at
temperature T to lowest nontrivial order in perturbation
theory.

We begin with the small-hopping limit, which is most
conveniently expressed in the P representation. In the
presence of an externally applied voltage the partition
function may be written

P,' (t) —P~' (t)
Pi(E)= f dt(e' ' 1)—

l
(A7)

P) (E~O, T)=iEr, (r, T) f3(A),

where

(A8b)

f' '=
r(x) ' (A9a)

This integral may be evaluated in the m=O and T=O
limits,

Pi (E, T =0)=ir, (Er, )" '[f, (A)+if2(A)], (A8a)

e
—s[y]

where

~[4]=g g I~. lid(~. )l'

(Al) fz(iL) = tan —
A, ,r(A) 2

~-) r(,')r(x/2)
2 I ( —,

) +(A, /2)

(A9b)

(A9c)

+g t„f drcos[2n)/m(t)(r)+na (r)], (A2)
n

In terms of these functions we may express the
coefficients b which appear in Eq. (3.12) as

where the voltage in real time is given by V(t) =d, a (t).
Here t„corresponds to the hopping of n (spinless) elec-

trons across the weak link. If we expand the partition
function in powers of t, we may integrate out P:

b„r=nn f3(l),
b„=em [f((A, )+if'()(,)],
b„„=~nf~(A, ),

(A10a)

(A lob)

(A10c)

Z =Zo 1+—,
' gt„f dr, dricos[n[a(r)) —a(r&)]]

13

n

evaluated at A, =2n /g. With spin the analysis is similar,
and we find for the coefficients d, appearing in Eq. (5.11),
the result

XP, (r, —ri)

where Zo is the partition with t =0 and

P ( ) ( T i2n&n(P(7) $(0)])—
2n2& V = ~e O

m.r, /p
sin( m r/p)

(A4)

dr(n, n )=—n+3(A, ),T o'~ p

d (n, n ) = n[f((A, )+if—~(A, )],o& P 2 P 1

dv(n, n )=—n f((A, ),V o& P 2 P

(A 1 la)

(A11b)

(A11c)

Here ~, =EF ' is a short-time cutoff. The current may
then be calculated via I (r) =5 lnZ/5a (r). We then
analytically continue to real time by distorting the con-
tour of the r integral from 0 to P to run from t' = —oo to

evaluated at 1=2n /g +2&~/g~.
In the opposite limit of small barriers, the action in the

0 representation for spinless electrons is
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s[8]= —g Ico„II8(co„)l
1

l CO
n

+g v„f dr cos[2n v'm 8(r)]
0

+ —f dr ia (r)8,8(r),1

7r
(A12)

where again in real time V (t) =(3,a (t). By changing vari-
ables 8(r)~8(r)+ga (r)/2(/m, this can be written in a
more tractable form,

APPENDIX B: RENORMALIZATION GROUP
FOR DOUBLE BARRIERS

In this appendix, we sketch the real-space
renormalization-group procedure used to derive the flow
equations (4.5). We consider spinless electrons in the
general situation where we have an island coupled to two
leads with asymmetric hopping strengths t+ and t . By
classifying the different kinds of hops in terms of the
charges q;

= b,Q+ —EQ and r; = b,Qd„, the partition
function in the Coulomb plasma representation may be
written

g,.(1+q, r, )/2 g,. (.1 —. ((,.r,. )/2

+gv„f drcos[2n&m8(r. ) ng—a(r)] . (A13)
0

and
(A13a)

(A13b)

The coefficients a appearing in Eq. (3.5) are then

a„r=m(ng) f3(k, ),
a„„=m(ng)[f,(A, )+if2(A, )],
a„v=m(ng) f((A, ),

(A14a)

(A14b)

(A14c)

evaluated at A. =2n g. Similarly, with spin, the
coefficients c appearing in (5.6) are given by

A similar expansion in powers of a (r) and analytic con-
tinuation leads to

2

I(V)= V g ngn—gl.v„l
n

P 2 (ngV) P2 —( ngV)—

2iV

n q,.

p 72
X f de„ f drexp —g V,

0 0 i(j
1

V,J
= [ q;qi+K, r;rj

2g

(B1)

+K2(r;q +r q; )]1. n(;r r/)/r, —,
where ~, =EF is a short-time cutoff. This expression is
a generalization of that given for the symmetric case in
(4.4). In (B1) the sums run over all possible
configurations of charges such that r, alternates in time
and g; q; =g; r; =0. The initial values of K, and K2 are
1 and 0, respectively; however, as we shall see, their
values flow in the renormalization group. The lead con-
ductance g, on the other hand, is not renormalized.

We now analyze the above model using the real-space
perturbative renormalization-group method invented by
Anderson, Yuval, and Hamann. This procedure involves
first decimating closely spaced dipole charges separated
by a distance between ~, and ~, +d~, . Then we rescale s
to restore the original cutoff.

If the dipole is between charges ~; and w, + „

then its in-
teraction with the rest of the charges is

1
[ qq +K(rrj+Kz(rqj+qr/)]r, ()Pn(r —r )/r, .

2g

cr(n~ n )= (n g /2) f3(A) (A15a) (B2)

c (n, n )=—(n g /2) [f,(A)+if2()(.)],c s

c„(n,n )=—(n g /2) f, (A, ),
evaluated at A=ng /2,+ g /2.

(A15b)

(A15c)

The constraint on the ordering of the r's specifies that
r =r, . For a virtual hop into the + lead, q =+r, ,
whereas for a virtual hop into the —lead, q = —r, By
expanding the exponential and integrating out dipoles
with separation between w, and ~, +d~„the partition
function can be expressed as

Z =Z' 1++dr, f dr
i,j

(B3)
t +t

(K'&r, r +K2r, q )+ . (r;q .+.K2r;r )r,BPn(r. r)/r, . —

Note that there is no term involving q;q, which follows
from the fact that q,- is free to be +1. We may now reex-
ponentiate (B3) and rewrite the partition function in the
form of (Bl), with new parameters K ( and K2.

Finally, to complete the RG transformation we rescale
r~e'r' with 1 =dr, /r, . Noting that g, &1 r, r

q,.q = —
—,
' g, 1 and g,. &. r, q +q, r = —g, q, r, , . .

we may then compute the renorrnalization of t+ and t
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The resulting flow equations are

dK, /dl = —42[K, (t~+ +t2 )+K~(t~+ t—2 )],
dK~ldl = —22[K2(t2++t2 )+(t2+ t—2 )],
dt+ ldl =[1—(1+K, +2K2)I4g]t+ .

(84a)

(84b)

(84c)

For a symmetric double barrier, t+ =t =t, we have
K2=0, and these equations simplify to the equations
presented in (4.5). For the case of electrons with spin, the
flow equations for the Kondo resonance (6.4) may be de-
rived in an analogous fashion.
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