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We have calculated the conductance of a two-dimensional electron gas through single and double con-
strictions using a mode-matching technique. In order to take into account the smooth variation of the
confinement potential, and the presence of disorder, the calculation is made within a lattice model. We
find that the conductance at plateaus is reduced below the quantized values if short-range scatterers are
introduced in the channel. However, the conductance remains well quantized even in the presence of
long-range impurities. These observations explain the suppression of conductance time-dependent fluc-
tuations at plateaus experimentally observed by Timp et al. [Phys. Rev. B 42, 9259 (1990)]. We also ex-
amine the effects of impurities on the resonant transmission properties through a single quantum dot.
As the disorder is introduced, the resonances are broadened in energy and can appear as either peaks or

dips depending on the strength of the disorder.

I. INTRODUCTION

Recent advances in microfabrication technology have
made it possible to realize quantum ballistic electron
transport in a two-dimensional electron gas (2DEG) in
GaAs-Al,Ga,_, As heterostructures. A split-gate tech-
nique has been developed by Thornton et al.! to achieve
one-dimensional (1D) systems with controllable width.
By applying negative bias to two metal gates, fabricated
by lift-off on top of the heterostructure, a narrow channel
is left between the pinched-off regions. The conductance
of the narrow channel has been found to be quantized in
steps of 2e¢2/h, as the number of 1D subbands in the
channel is varied as a function of the applied gate volt-
age.? A variety of theoretical studies have been present-
ed, using various techniques to investigate the accuracy
of the quantization, and the quantization can be under-
stood easily if the narrow constriction is widened into
2DEG leads adiabatically.®> The absence of intermode
scattering is not, however, a necessary condition for the
quantization. In the opposite limit of abrupt geometry,
where strong mixing occurs between 1D modes as the
electron passes through the wide-narrow junction, the
conductance has also been found to be quantized.*® It
has been pointed out that an oscillation due to multiple
reflections between the exits of the constriction is super-
posed on the conductance plateaus in the abrupt
geometry. The actual geometry in real devices is thought
to lie between these two limits, since the oscillation is not
observed under usual experimental conditions. There-
fore, one needs to include the flared geometry at the exits
of the channel in any realistic simulation.

The most important criterion for the conductance
quantization phenomena is that the sample length must
be less than the elastic mean free path. The effect of
scattering from random impurities has been investigated
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with the assumption of a 8-function potential.®~® How-
ever, experimental observations suggest that a long-
ranged potential in GaAs plays an essential role in the
deterioration of the plateaus.!®!' The quantization
breaks down even when the sample length is an order of
magnitude less than the transport mean free path [,.'°
Because of the preferential forward scattering in GaAs, [,
(estimated from the mobility) appears much larger than
the mean distance between total elastic-scattering
events.!> Recently, Timp and co-workers'' observed
time-dependent fluctuations of the conductance with an
amplitude of ~e?/h in a point contact. A population
fluctuation at an impurity state causes bilevel switching
phenomena of the conductance in small devices.!* The
trapping and detrapping of an electron in the localized
state change the local potential, and give rise to a random
telegraph signal in the current. It has been observed that
the fluctuations are completely inhibited at the center of
the plateaus. !

A simple mode-matching technique is one of the sim-
plest ways to characterize electron waveguide struc-
tures.>!'* However, the application is limited to some
special geometries, and an abrupt connection between the
narrow constriction and wide regions is usually assumed.
The smooth potential variation and the presence of im-
purities in real devices have been usually incorporated us-
ing the lattice Green’s-function technique.'> In this pa-
per, we extend the mode-matching technique to a lattice
model in order to take into account the arbitrary
confinement potential and the presence of disorder in the
channel. The calculation of the transmission coefficients
is based on the transfer-matrix technique. Numerical cal-
culations are performed on single and double point-
contact geometries. It will be demonstrated that the
change in the conductance at the plateaus due to the
presence of disorder is suppressed when the long-range
nature of the impurity potential is taken into account.
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II. NUMERICAL APPROACH

A. Confinement potential

Let us consider a wire with length L and width W, in
which arbitrary model potentials are introduced. A self-
consistent calculation of an electrostatic potential in the
split-gate geometry'® has indicated that the confinement
potential is almost parabolic when only a few modes are
occupied below the Fermi energy. As the channel is
widened, the confinement potential possesses a flat bot-
tom between parabolic walls. Therefore, we will assume
the following confinement potential in the wire:
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where 0(t) is a step function, defined by =0 for ¢ <0
and 6=1 for ¢t >0, and Vyw(y) is a hard-wall potential
defined by Vyuw=0 for |y|<W/2 and Vyw=o for
ly| > W /2. We assume that y,(y), which determines the
boundary between the parabolic wall and the flat bottom,
is given by

p

W | 4lx| [x|<£
4 | L |’ 4
(x)= (2)
T el ] L L
2 2 L T4 2

The parameter p characterizes the abruptness of the con-
striction as shown in the upper half of Fig. 1. At x =0
the confinement potential is parabolic. The width of the
constriction is determined by the parameter d and
throughout this paper we assume d =Ap. The propaga-
tion threshold for the nth mode, at the narrowest part, is
given by
E n_ U }» F

E, —;'d—(n—%). (3)

In the vicinity of the constriction the potential is raised
above the conduction-band edge in the 2DEG region due
to a proximity effect, and so we assume the bottom poten-
tial Vp(x) to be

p
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The lower half of Fig. 1 shows an example of the poten-
tial profile at the Fermi energy for U/Er=0, 0.5, and 1.
The potential in the two perfect lead regions attached to
each end of the wire (|x|>L /2) is solely given by
V(x,y)= VHw(y)-

In order to apply the mode-matching technique to the
smooth potential variation, we divide the system into N,
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FIG. 1. A schematic illustration of a quantum point contact.
The upper half shows y,(x), which is the position of the bound-
ary between parabolic walls and a flat bottom. The solid,
dashed, and dotted lines correspond to p =2, 3, and 5, respec-
tively. A potential profile at Fermi energy is shown in the lower
half for p =3. The solid, dashed, and dotted lines correspond to
the height of the bottom potential U/Er=0, 0.05, and 1, re-
spectively.

consecutive segments, with lattice constant a (L =N,a)
along the wire. The potential is assumed to be indepen-
dent of x in each segment. The Schrodinger equation in
the segment j [ —L /2+(j —1)a <x < —L /2+ ja] is thus
given, within the effective-mass approximation, by
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The general solution of the wave function is expressed in

terms of a superposition of the eigenmodes x\/(y) in the y
direction:

V(x,p)= " (A explig’x]+B\exp[ —ig"xDx\{(y) ,

n

(6)
where x'/(y) satisfy the 1D Schrodinger equation
7 d> D)= F D)
——2;52”4’1/ W +Vaw) X D)=Ex/'(y) .
(7)
The subband thresholds E/ are related to ¢/ as
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In the two semi-infinite strips, the eigenfunctions have
the form
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The eigenfunctions in the uniform waveguide section in
the presence of the point-contact potential can be ex-
panded in terms of u,(y):

Dy)=3 fifu(y) . (10)
!

The expansion coefficients f\{ are given as a solution of
the following eigenvalue equations:
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. 2 ]
K= 2"’2:; J w0 (ydy (12)
T

The eigenfunctions are normalized and thus satisfy the
orthogonality relation

;f}/’f}/’=8,—j - (13)

We again divide each segment into N, grids with lattice
constant a (W =N,a) so as to integrate Eq. (12) numeri-
cally for arbitrary potentials. We thus have N, right- and
left-going states in each segment. One can introduce the
scattering from short-range impurities through random-
ness of the site energy, distributed uniformly between
—TI'/2 and T" /2. Tt is useful to express the randomness in
terms of the mean free path A. In a 2D system, we have
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B. Transfer-matrix technique

Transmission coefficients through the entire lattice are
evaluated using the transfer-matrix technique. Imposing
the boundary conditions between jth and (j +1)th seg-
ments at x = ja, one obtains the relation

T(j)T(j)

LUHD A 4D
BU+D =TV B TITY | |BY | (15)
where AY and B are vectors describing the amplitude

of the modes in the jth segment and T,!jj ) are N » XN, ma-
trices. The transfer matrix for the entire system is given
as

1)

T=7"'™ " 0 (16)

When an electron is incident through mode n in the
left-hand lead, the wave function in the right-hand lead is
given as a superposition of all right-moving waves:

0)= 3 e () (a7

where

and t,, are the transmission coefficient from mode n in
the left-hand lead to mode m in the right-hand lead. One
can obtain the wave function in the left-hand lead using
(16) and (17), and hence we have the following set of
equations:

2 tmn(Til)Im
Etmn

=5, , (19a)

(19b)
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where r,; are the reflection coefficient from mode !/ to
mode 7 in the left-hand lead. Therefore, one can evaluate
the transmission probabilities T, =(k,, /k,)|t,,|*
which are related to the conductance of the system
through the Landauer formula'’

2
R (20)

where the sum runs over the propagating modes. The
numerical stability is monitored through the unitarity
S, (T, +R,,)=1. Here, R,,,=(k,, /k,)|r,,|* are the
reflection probabilities.

III. RESULTS AND DISCUSSION

In this section we present numerical results for the
point-contact and quantum-dot structures. The lattice
system simulates a continuum system if @ <<Ap. There-
fore, we consider N, =N, =32 lattice sites and assume
that Az /a =8.1.

A. Single point contact

Let us first consider the case of no impurities. Figure 2
shows the conductance of the single point contact as a
function of the potential height U at the saddle for p =2,
3, and 5. For p =2 the effective length of the point con-
tact is small, and so the quantization is not well
developed.>!® With increasing p, the length of the con-
striction is increased and the transition region for the
flared horn becomes short compared to the constriction
length. Therefore, the conductance becomes well quan-
tized and then goes below the quantized values because of
an oscillation due to multiple reflections at the entrance
and the exit of the constriction.*> Note that, in the limit
p— o, the point-contact length approaches L /2=~2Ap,
and so several peaks are expected to superpose on the
plateau. The conductance at the steps decreases for
larger p since the tunneling transmission through the
bottleneck of the constriction becomes negligible.

In Fig. 3 we show the conductance in the presence of
the short-range disorder for p =4. The site energy is ran-
domly modified with a uniform distribution of the width
I'/E=0.5 The corresponding mean free path is
A /L =13. The solid lines correspond to different impuri-
ty configurations. One can see that the conductance can
be both enhanced and reduced between plateaus. Howev-
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FIG. 2. The conductance of a point contact for N, =N, =32
and d =Ap=8.1a. The solid, dashed, and dotted lines corre-
spond to p=2, 3, and 5, respectively. The dash-dotted line
represents the number of propagating modes at the constriction.
With increasing p, the effective length of the point contact is in-
creased and the quantization becomes better.

er, it is in general suppressed below the quantized values
on the plateaus.®*® We call attention to the fact that the
conductance in the plateau region is no longer given by
integer multiples of 2¢2/h when the short-range disorder
is introduced. The upper half of Fig. 3 shows (G )—G,
and the standard deviation of the conductance
AG =({G?)—{(G)?)'2. Here G and G, represent the

conductance with and without presence of the disorder,
The average is

respectively. calculated from 25

r G>G,

(4/z0 J0 suun) oY Y5<o>

Conductance (units of 2e2/h)

FIG. 3. The conductance of a point contact with the pres-
ence of short-range disorder for p=4. The dotted line
represents the conductance for a perfect sample, while different
impurity configurations are assumed for the solid lines. The
amplitude of the disorder is I'/Er=0.5. The dashed line
represents the number of propagating channels at the constric-
tion. The conductance at plateaus is reduced below the quan-
tized values.
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equivalent samples. The amplitude of the fluctuations is
maximum (AG=0.3~0.4e?/h) when a new channel is
barely opened and minimum (AG=0.06~0.08¢%/h)
whenever the electron energy is near the bottom of the
subband thresholds. The effects on the quantized con-
ductance of scattering from impurities have been report-
ed by Timp et al.'®'! They observed time-dependent
random fluctuations of the conductance with an ampli-
tude AG =~e?/h when the Fermi energy is aligned be-
tween quantized plateaus. The time spent on each con-
ductance value is much larger than the transit time
through the constriction. Each value is thus supposed to
correspond to a particular configuration of random po-
tentials. It has been found that the fluctuations are inhib-
ited when approaching the plateaus.!! The numerical re-
sult shows that AG in the plateau region is suppressed by
+ compared to that in the region between two plateaus.
We show below that this suppression is further pro-
nounced if one takes into account the long-range nature
of the scattering potential.

The assumption of the short-range impurity potential
is plausible in a metal, where scattering is almost isotro-
pic due to good screening. Thus, the total and the trans-
port scattering rates are identical. However, the scatter-
ing potential in GaAs has been known to be long
ranged'? due to relatively poor screening and small-angle
scattering, which is less likely to affect the mobility or
destroy the quantization significantly.’® In GaAs-
Al,Ga,_,As, ionized impurities, which are the dominant
source of the scattering, are separated from the 2DEG by
the spacer layer. A self-consistent calculation has found
that because of the long-range nature of the impurity po-
tential the correlation length of the random potential
fluctuation is large compared to the Fermi wavelength
and much larger than the distance between donors.!® In
other words, the modification of the potential due to cap-
ture and emission of an electron at a single trap site cor-
responds to a change in U instead of a fluctuation of the
lattice-site energy as used in our model.?® Now, we adopt
the following potential for an individual impurity:

Vimp(r)zUiexp(_Ir_ro’/rd) » 21

where ry is the position of the impurity. The decay
length of the impurity potential is represented by ;. The
strength U; is chosen randomly within the width I'. The
correction to the site energy is given as a sum of these
N,=[LW /r}] impurity potentials added randomly in the
channel.?! The solid lines in Fig. 4 show the conductance
with the presence of the long-range impurities for several
values of r;. We expect r; =Ag, since the Thomas-Fermi
screening length is typically comparable with A in 2D
GaAs.!? Although the position of the plateaus is shifted
in U/Ep by the long-range disorder, the conductance
remains well quantized as integer multiples of 2e2/h.
Note that we assumed a relatively large randomness, and
as a result we found a considerable shift of the pinch-off
energy roughly by an amount of I'. If I is small com-
pared to the energy width of the plateaus, one finds that
the conductance at the center of the plateaus is almost in-
dependent of the disorder. Timp et al.!! attributed the
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Conductance (units of 2e2/h)

U/E,

FIG. 4. The conductance of a point contact with the pres-
ence of long-range disorder for p=4. The dotted line
represents the conductance for a perfect sample, while different
impurity configurations are assumed for the solid lines. The
dashed line represents the number of propagating channels at
the constriction. The amplitude of the disorder is I'/E=0.5.
The range of the impurity potential 7; (the number of impurities
N;) is 1.0 (1024), 4.0 (64), and 8.1 (15) from the top to the bot-
tom.

inhibition of the telegraph noise to the suppression of
large-angle scattering in the 1D channel.?> However, the
experimental result shows the suppression of the ampli-
tude of the fluctuations rather than an increase in the
time duration on each telegraph step.!! Our result sug-
gests that the inhibition can be explained in terms of the
long correlation length of the impurity potential. Since
the conductance was quantized with 1-5 % accuracy in
the experiment,!! the correlation length of the potential
fluctuation is expected to be larger than the point-contact
length.!®

The conductance quantization is well preserved as far
as the correlation length of the randomness is larger than
the constriction length. The effect of such long-range dis-
order is essentially to move the step structure in energy.
The short-range potential model could overestimate the
effects of the disorder. If the constriction length exceeds
the correlation length, potential hills and dips appear in
the channel, leading to the breakdown of the quantiza-
tion. In this situation, transmission resonances through
quasibound states obscure the quantization as seen in the
case of r;/a =1.0 in Fig. 4. We address the effects of the
randomness on the resonances in the remainder of this

paper.
B. Double point contacts

The conductance of a disk structure attached to wide
regions through narrow wires shows resonance structures
when the Fermi energy coincides with the quasibound
state ene:rgy.23'24 We now turn to a discussion of the im-
purity effects on these transmission resonances. In order
to calculate the conductance of the quantum dot, we as-
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sume that y,(x) and Vy(x) are given as follows:

Wt cos |27 || 1x|>L/4

yo(x)=1 4 (22)
0, Ix|<L/4,

VB(x)=g 1— cos —4—%’5 (23)

The upper half of Fig. 5 shows y,(x) and the lower half
shows the potential profile at the Fermi energy for vari-
ous values of U/E. For these parameters, the curva-
tures of the potential in the x and y directions are compa-
rable near the bottom of the quantum dot, and so one
may approximate the confinement potential as
V(x,y)=mao*x*+y?) /2. In a weak-coupling limit, the
quasibound-state energy is roughly given by?

E,=#o(n +1), (24)

where n =0,1,2, .. ..
fold degeneracy.

The conductance of the quantum dot is shown in Fig. 6
as a function of U. One can see several resonance peaks
with amplitude almost unity. The peak around
U/Eg=1.5 corresponds to the n =0 bound state and the
two peaks on the lowest conductance plateau correspond
to the n =1 bound states. The latter states are no longer
degenerate due to a nonquadratic potential and a cou-
pling to the side leads. We label these peaks 4, B, and C
as seen in Fig. 6, for convenience. The dashed and dotted
lines show the examples of the conductance in the pres-
ence of short- and long-ranged disorder, respectively. An
example of the behavior of the resonances as the strength
of the disorder is increased is shown in the inset of Fig. 6
for short-range impurities. For these curves, the random

The nth energy level has (n +1)-

0.5 T E— /\
T /
A /]
[ "\\ / |

\ / |
/
2,0 N~/
> T ' f
‘r S /
l - A ’ _ |
| . S
| : Vi
Lo N
1 ’ \
] i1/ \, 1
‘ ,// \\\
0.5 " ol i I
-0.5 0 0.5
x/L

FIG. 5. A schematic illustration of a quantum dot. The
upper half shows the dependence of y, on the position x /L.
The potential profile at Fermi energy is shown in the lower half.
The solid, dashed, dotted, and dash-dotted lines correspond to
the barrier potential height of U/Er=0, 0.5, 1, and 1.5, respec-
tively.
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Conductance (units of 2e2/h)

0O 02 04 06 08 1 1.2 1.4 16
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FIG. 6. The conductance of a quantum dot for
N,=N,=32,d =Ar=8.1a. The solid line shows the conduc-
tance in the absence of disorder. Short- and long-ranged poten-
tial fluctuations with amplitude I' /Ez=0.5 and 0.8 are assumed
for the dashed and dotted lines, respectively. The number of
impurities for the long-range impurity is N;=15. Inset: The
effects of short-range impurities on the transmission resonances.
The random site energy correction is scaled by a common factor
for a particular impurity configuration. The curves from top to
bottom correspond to I'/Ex=0, 0.2, 0.3, 0.6, and 0.8, respec-
tively. The curves are offset by e2/h, for clarity.

correction of each site energy is scaled by a common fac-
tor for a particular impurity configuration. With increas-
ing disorder, the resonance peak B turns out to be a dip
and then becomes a broad peak. We note that the details
of the behavior of the resonance B depend on the impuri-
ty configuration, i.e., in some cases the resonance does
not turn to a dip or it remains a dip. On the other hand,
peak C depends only weakly on the disorder. We find
that the impurity effects on these peaks are generally
gentler for the long-range disorder, probably because the
mode mixing is less pronounced compared to the case of
the short-range disorder.

In a square-shaped quantum dot with width W, and
length L;, the resonance energy in a weak link is given by

) 2
E=2ﬁ—ml ] , (25)

where n and m are the quantum numbers of sinusoidal
wave functions in the x and y directions, respectively. In
this notation, the peaks 4, B, and C correspond to the in-
dices of (n,m)=(1,1), (2,1), and (1,2), respectively.?® In
the absence of disorder the confinement potential is sym-
metric with respect to y =0, so that the resonant state B
only couples with evanescent modes in the point contacts
because of parity. However, it can couple to a propaga-
ting mode in the point contacts if the disorder is intro-
duced. If the coupling is mainly due to the evanescent

nmw
Wd

mir
L,
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modes, electrons are resonantly transmitted, whereas
they are resonantly reflected if the coupling is mainly due
to the propagating modes.?>?" Therefore, the resonance
may appear as a dip in the disordered sample depending
on the relative strength of the mode mixing. The reso-
nance state C couples to both propagating and evanescent
modes even if the confinement potential is symmetric, so
that the peak is insensitive to the disorder.

It can be shown that the resonances in the quantum-
mechanical transmission probability in small systems are

of the Breit-Wigner form?®
I‘rl"l
(E—E,*+(,+T,)?%/4 "’

|T(E)|*= (26)

where E is the incident energy of an electron and
I, /#(T,; /#) is the escape rate of an electron in the quasi-
bound states in the quantum dot to the right (left) reser-
voir. The suppression of the amplitude of the peak A4
may be ascribed to the asymmetry of the escape rate in
each point contact. The asymmetry is expected to be
larger for the long-range disorder compared to the short-
range one.

IV. SUMMARY

We have presented numerical examples of the conduc-
tance of the quantum point contact and the quantum dot
taking account of the flared geometry. The model con-
sists of a square lattice, and the smooth potential varia-
tion and the presence of disorder are incorporated within
a mode-matching technique by use of the transfer-matrix
technique. The elastic scattering caused by impurities is
introduced through a disordered potential. For the
short-range disorder, the conductance is reduced below
the quantized values at the plateaus and can be both
enhanced and suppressed at the transition region between
the plateaus. However, the effect of the long-range disor-
der is mainly to shift the conductance traces in energy,
and hence the fluctuation of the conductance caused by
the capture and the emission of an electron in a single
trap site is suppressed at the plateaus. The transport will
be more adiabatic when the disorder has a long correla-
tion length compared to the case of the 8-function-type
random potential. The second example we show is the
effect of the disorder on the sharp resonances in the
transmission probability of a quantum dot. The
transmission resonances in the quantum dot are found to
appear as both peaks and dips if the symmetry of the
confinement potential is destroyed through disorder de-
pending on the strength of the randomness.
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