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We have done a numerical renormalization-group calculation for a Hamiltonian modeling charging

effect in ultrasmall tunnel junctions. %'e 6nd that the conductance is enhanced by the quantum charge
fluctuations allowing tunneling below the charging energy gap. However, in all cases the conductance is

found to vanish at zero frequency.

The tunneling of a single electron in a tunnel junction
charges the capacitor C made up by the junction and —in
a semiclassical picture —the tunneling electron must
therefore have an energy e /2C to overcome this energy
barrier. This is what is called the "Coulomb blockade. '
Recent experimental and theoretical ' works have
made it clear that quantum charge fluctuations must be
added to this picture. Charge fluctuations induced by the
coupling to the electromagnetic environments are very
important when the impedance of the surrounding circuit
is lower than the quantum of resistance: RH =h/e, as
was shown by Devoret et al." and Girvin et al. ' The
theories of these authors are in reasonable qualitative
agreement with experiments for large resistance junc-
tions. ' However, the important question of the role of
the charge fluctuations induced by multiple tunnelings
through the barrier remains open. In Ref. 13 it was
shown that these fluctuations may be included approxi-
mately as a renormalization of the environment im-
pedance seen by the junction. It has been suggested that
the junction may undergo a transition to a conducting
state. ' ' However, the existence of a true transition is
still an unsettled question. Zwerger and Scharpf' argue
that the conductance always vanishes at zero temperature
but that deviations from Ohmic behavior will only be ob-
served at exponentially small temperatures. Experiments
indeed show that the Coulomb blockade is suppressed as
the bare tunnel junction conductance is increased.
The purpose of this paper is to examine the importance
of the charge-transfer fluctuations.

We present numerical renormalization-group (RG) cal-
culations which show that for a simple Hamiltonian,
often used to mode1 charging effect in tunnel junctions,
the conductance at zero bias is always zero and that
frequency-dependent conductance vanishes as a power
law as the frequency approaches zero. The
renormalization-group calculation is very different from
the previous approaches in Refs. 7, 9 and 12—18 which
were based on a second-order cumulant expansion in the
tunneling term, ' which is only valid in the limit of
infinitely many channels. This approximation neglects
the coherence between the electron-hole pairs. In the
RG calculation, where the Hamiltonian including the
tunneling term is diagonalized directly, all coherence
effects are maintained.

H=Hp+HT=HU,

Hp = g Epckcp + g Ek d„d„
k P

=THT= —g (ckdk. +H. c. ),
kk'

HU=UQ (4)

where c,d are operators for electrons in the left and right
electrodes, T is the tunneling matrix element, v is the
normalization volume, and the charge difference is

Q =(NL Ntt )/2, wher—e NL ~it~= gkckck(dkdk ). The en-
ergy U, usually of the order of millielectron volts, is given
by the capacitance of the junction: U=e /2C. The
charging energy is thus given by the total charge
difference between the two sides, which means that the
charge is instantaneously converted to a surface charge
after a tunneling event. Since the redistribution of the
charge happens on the scale of the plasma frequency this
is a good approximation for the low energies. We have,
furthermore, done the approximation that the tunneling
matrix is constant up to a cutoff energy, D, which we take
to be the half bandwidth.

The transformation of the conductance bands to the
Wilson basis follows that of Wilson and Frota and
Olivera where the method of Wilson was extended to
calculations of dynamical properties. The bands are
discretized in logarithmic intervals: 6p E' =A D,
where n is an integer, A & 1 and z, as we will explain later,
can be varied continuously. By a canonical transforma-
tion the Hamiltonian is converted to a tridiagonal basis.

The renormalization-group calculation done here
differs from the RG calculations for single impurity
Hamiltonians (see, e.g., Ref. 21 and references therein) in-
vented by Wilson in that the correlation term enters in
all iterations as opposed to the impurity models where
the correlation term enters only in the first iteration. The
model Hamiltonian defined below is two coupled bands
with a correlation term given by the total charge
difference between them. We find that the appearance of
the changing term in all iterations does not give problems
with convergence.

The Hamiltonian that we study is
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The advantage of the transformation is that the two
bands coupled only through the first "orbital" in the new
basis. The Hamiltonian can then be solved iteratively,
where each iteration, because of the logarithmic discreti-
zation, gives a new energy scale. For the Hamiltonian for
the Nth iteration we obtain

N —1

HN —A' " g g„(z)(f„f„+,+g„g„+)+H.c. )
n=0

1—g ckd =2(f@~o)=(HT) l2T .
kp

The results are shown in Fig. 1 for two different values of
T. In the figure we compare with the expression for a
second-order perturbation theory in the tunneling matrix
element:

(12)

+T(fogo+H. c. )+ UQN (5)

HN+, =A ~ HN+AN~'hN

+2A UQNgN + ~
+A UgN + ]

hN =(„ fNfN+1+gNgN+1+ H. c.

where

N

QN
= g (f.'f. —g".g. »

n=0

1
fo(go) y ck(dk )

&2v „
and where T =4T/[(1+ A ')D], U = U/[2(1+A ')D].
The Hamiltonian (5) has been multiplied by the factor
2A' "~ I[(1+A ')D] so that HN is of order 1. The
transformation between the energies ek in the original
Hamiltonian equation (1) and the hopping elements g„(z)
in the tridiagonal basis is a function of z and, in contrast
to the Wilson discretization, must be found numerically
by a recursive method. ' For large n they are given by
g„-A' ' " . It is important to note that g„do not de-

pend on the parameters of the Hamiltonian other than
the bandwidth D, which sets the energy scale. The ener-
gies g„simply define the correspondence between the di-

agonal basis of Ho and the tridiagonal basis used in Eq.
(5).

From Eq. (5), we can express the Hamiltonian for the
X+ 1 step in terms of HN and QN and obtain the recur-
sion formula

The agreement is seen to be good for the sample with
small T, as expected. We have found the exact U =0 re-
sult (derived in Appendix A) which is shown as arrows at
the vertical axes. The agreement with numerical results
illustrates the accuracy of the RG calculation.

The expectation value given in (11) decreases logarith-
mically as ln(U/D) for large U where D is the half band-
width (we take for simplicity a half-filled band). We thus
see that the correlation term effects the ground-state
properties very little because of the large phase space
available for virtual tunneling events. The opposite is the
case for the transport properties which we study next.

Transport properties. The experimentally interesting
quantity is the conductance. We calculate the
frequency-dependent conductance which is given by the
Kubo formula:

G(~)= —g l(nIII0) I'&(&„—&o —co),
n

(13)

0.00

where
I
n ) are eigenstates of the Hamiltonian and

I is the current operator given by I=ie[H, Q]
=ieT gk (ckd —H. c. ).

In order to calculate a continuous conductance spec-
trum, we need a continuum of excited states. In the nu-
merical solution we have only discrete lines and we em-

ploy the method of Frota and Olivera (see also Ref. 21),
where this problem was bypassed by the introduction of
the extra parameter z, which shifts the discrete lines con-
tinuously. Averaging over z gives the conductance as a
function of frequency:

A =fNfN gNgN (10) T/0=0. 1

From one iteration to the next the basis set is enlarged by
the states, fN+, Iq'N ), gN+, lq'N ), and f„„g„„lqN ),
where I'PN ) is a state in a basis set for HN. The matrix is
diagonalized in the basis spanned by the eigenstates of
HN. In each iteration we also keep the matrix element of
QN, and IN, where I is the current operator defined
below. After the diagonalization we keep only the
lowest-energy states, typically 450 states. The iterative
process is continued to N of the order 20, where the ei-
genvalues are converged within less than 2%. We turn
next to the results of the RG calculation of the ground-
state and transport properties.

Ground-state properties. We have calculated the aver-
age charge transfer in the ground state, i.e., the expecta-
tion value

—0.30
0.0 0.5

U/D
1.0

FIG. 1. The average charge transfer [see Eq. (11)] in the

ground state plotted as a function of the charging energy for
two values of the tunneling matrix element. The circles are the

renormalization-group results and the lines are the second-order

perturbation theory in T. We see that the perturbation theory

describes well the ground-state properties. The arrows at the

ordinate axis are the exact U=0 results and the agreement with

the numerical calculations is excellent.
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(14)

6 =6 a =m 2p2T24a
( I+a) (15)

where we again take a constant density of states and
where the quantum of conductance is GH=e /h. It is
seen that this conductance-formula has a maximum value
6p 6~ which is reached for a = 1 . We emphasize
that the present model with a constant tunneling matrix
element limits the range of conductance that we can
study. The constant T is equivalent to a junction with
only one connecting channel between the two sides. The

a=.02

0

tx=.33

where z, are the roots of the function,
f„(z)=E„(z) Eo——tu. This function is found numercal
ly by running for typically 20 different values of z.

In Fig. 2 we show the results for the frequency-
dependent conductance for different coupling strengths.
The curves have been normalized to the exact large-tu (or
U =0) asymptote. The RG calculation is thus found to
give an accurate result for the conductance in the asymp-
totic limit. In this limit, the limiting conductance can be
found exactly which is done is Appendix B, and the result
1S

G' '=GH4a(1 —U/co)e(co —U) . (16)

For larger values of the coupling parameter the conduc-
tance is 6nite for energies below the charging energy gap.
This is due to quantum fiuctuations or multiple tunneling
events which introduce an uncertainty of the charge on
the junction capacitor. The conductance therefore scales
like T (a ), which is roughly the case for the curves in
Fig. 3. This smearing of the Coulomb gap structure for
large and intermediate values of a is clearly seen in Fig.
2. However, we 6nd for all parameters which we have
used that the conductance vanishes for zero frequency.
For small energies the conductance vanishes as a power
law. In Fig. 3 we show the low-frequency part of the
curves in a log-log plot. The power is found to be nearly
independent of a and given by =2. This power-law
dependence agrees with the perturbation expansion by
Ueda and Guinea' [In contrast, a perturbation calcula-
tion by Nazarov, ' yields a G(co)-a (co/U) depen-
dence. ] and with the results found by Zwerger and

single-channel limitation is not present in the second-
order cumulant expansion employed in Refs. 7, 9, and

tg, —16. Realistic junctions can have more channels [and
thte conductance formula in Eq. (15) should be replaced

be the corresponding multi-channel formula] and conse-
quently have a larger maximum conductance than 60.

In Fig. 2, we show the results for the conductance cal-
culated for three different values of the parameter a and
for each a we have calculated for two different values of
the charging energy. We see that the results do not
change with U when scaled accordingly. Therefore, the
model (when U is well below the band edge, which is
indeed the case experimentally where U are of the order
of millielectron volts) has essentially only one parameter
which is the tunneling matrix element.

For small a the junction is practically "blocked" for
energies below the charging energy. To second order in
the tunneling matrix we get the result for this "semiclas-
sical" limit:

10o
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FIG. 2. The frequency-dependent conductance calculated for
different values of a =~ p T, normalized to the exact result for
the large-co limit, see Eq. (15). For each a, we have shown the
results for two different values of the changing energy,
U=0.001D (solid symbols) and U=0.01D (open symbols) and
the results scale with U. The lines indicate the semiclassical re-
sult in Eq. (16) (normalized to 602), which is seen to be a good
approximation for the data for the small a, but for larger a
quantum fluctuations are important and we have a nonzero con-
ductance for co & U as well.

10—4-

m/U
100

FIG. 3. The same data as in Fig. 2 plotted in log-log plot.
The low-frequency part of the conductance is given by a power
law where the power is approximately given by 2 and approxi-
mately independent of the nominal resistance of the junction.
For clarity we have inserted a dashed line with slope 2.
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Scharpf who show that the conductance vanishes as the
temperature squared.

In recent Monte Carlo calculations' it was found that
as the conductance is increased there is crossover to a
state which deviates from the low conductance situations
where there is an algebraical decay of the correlations be-
tween backward and forward tunnelings. The crossover
was claimed to indicate a transition from a blocked to a
conducting phase. As explained above, we cannot make
make conclusions from the RG calculations about junc-
tions with Gp )GH. However, the scaling behavior of the
model leads to general conclusions, which we discuss
next.

We have used a scheme closely related to the one used
by Anderson for the Kondo problem and by Haldane
for the Anderson model. The strategy is to gradually
lower the high-energy cutoff by successive cutting off of a
strip of the high-energy cutoff. We find from this analysis
that the only nontrivial scaling is an increase of U which
is continued until U is of the same order as the cutoff en-
ergy. We obtain the scaling equation for U:

dU
d ln(D)

(17)

The authors acknowledge stimulating discussions with
G. D. Mahan. The research was supported by the U.S.
Department of Energy through Contact No. DE-AC05-
84OR21400 administered by Martin Marietta Energy
Systems, Inc. , and by the University of Tennessee.

The tunneling matrix element is unchanged under the
scaling and hence also the current operator. We thus
have only one fix point which is large U. These argu-
ments are valid also for the general case, i.e., for junc-
tions with more channels, which suggest that the zero
conductance at co=0 found in the numerical calculation
is a general feature as well. The large-U fix point is
confirmed by our numerical renormalization-group calcu-
lations where we find that after approximately 20 itera-
tions we are in a fix point where states with nonzero
charge difference are projected out.

In summary, we have solved a simplified model Hamil-
tonian describing single-electron charging effects in small
tunnel junctions. The model was solved by the numerical
renormalization-group method of Wilson, and we found
both the ground-state and the transport properties.
While the correlation term was found to have very effect
on the ground-state properties, the situation is the oppo-
site for the conductance which in the present model is al-
ways zero at zero frequency and decreases approximately
quadratically with frequency.

The equations of motion are easily found and after
Fourier transformation we have

(ice„—ek)G&z(k, k', ice„)=—g G22(k", k', ice„), (A3)
V

If we define the functions

F,"(k';iso„)= g G,"(k,k', ice„),
k

(A5)

we get two coupled equations for F&2 and F22. Solving
these and inserting the result back into Eqs. (A3) and
(A4) leads after some algebra to the following result for
the k-summed Green's functions:

1
G, 2(iso„)—:—g G |(2k, k';ice„)

kk'

TF0(ice„)

1 —T Fo(iso„)

1G~2(i~„)—:—g G~~(k, k', ice„)
kk'

(A6)

Fo(iso„)

1 —T Fo(iso„)
(A7)

1 1
Fo(ia)„)=—g

V k l CO„Ek
(A8)

From this we finally get

—g ckd =—g G,2(k, k';~=0)1 y 1

kp k, k'

TF0(i ri) „}
2

1 —T Fo(ice„)
(A9)

The Matsubara sum is converted to a contour integra-
tion. We can show that the Green's function only has
poles on the real axes, which allows us to write the above
sum as

d&J nF(e) ImG |z(e+ i&) . (A 10)

When evaluating Fp we use as in the RG calculations a
constant density of states and, furthermore, that the Fer-
mi level lies in the middle of the band. We then obtain

(ice„—ek)G~2(k, k', &co„)=5kk +—g G,q(k", k';iso„) .
V

kryo

(A4)

APPENDIX A

F (E+0i5)=pin inp8(D —~e—
~
),e—D

e+D
(A11)

G&z(k, k', r) = ( V',cq(r)dk (0)),
G22(k, k';~) = ( Tgk(r)d„(0) ) . (A2)

In order to find an expression for the expectation value
of the tunneling term, we define the following Matsubara
Green's functions:

where 2D is the bandwidth and p=1/2D. When doing
the integral in Eq. (A10), we must include the contribu-
tion from a bound state below the band-edge. The energy
of this state is given by Dcoth(D/T) (and —there is also
one at the symmetrical position above the band). The
corresponding delta-function contribution to the integral
(A10}is
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D
T sinh(D 1'T)

2

(A12)

Here we calculate the conductance of the junction in
the U =0 limit. We start with an imaginary-time
current-current correlation function

P( 7 ) = ( Tg(r }I((}})

When T))D all the spectral weight is given by (A12}
whereas for small T the contribution goes to zero like
exp( —2D/T). The bound state corresponds to a local-
ized state at the junction interface in a bonding
configuration (the symmetrical state above the band is the
corresponding antibonding state). As is discussed in the
main part and shown in Appendix B, the limit of large pT
is unphysical and the conductance has a maximum for a
finite T corresponding to a completely transparent inter-
face.

APPENDIX B

The Fourier-transformed correlation function becomes

1
P(std„) =—QG22(trop)G22(trop+tco„)

P

X [1—T Fo(iso„)FO(iron+i co„)] . (B2)

1 7Tp T6 =—ImP(ro+i 5)=
CO ( 1+ 2 2T2)2

(B3)

Since we want the conductance for co «D, we can evalu-
ate F at small frequencies and obtain F(i ro„) =Hp . The
denominators in G22 are thus simply constants. From
this we get that the second term in Eq. (B2) is constant
and real, and therefore gives no contribution to the con-
ductance since we must take the imaginary part after an-
alytic continuation. We can now easily calculate the con-
ductance by performing the standard Matsubara summa-
tion and we obtain

=2e [G22(r)G22( —1) G,2(7 )G,2( 7 )] . (Bl) which is Eq. (15) (note that we have used A= 1}.
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