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We have obtained the three independent complex components Pqq(u), Pq2(ur), and P44(ur) of the
linear piezo-optical tensor P~I,~(~) [b, e, ~(~) = Poq~(u)Xq~] of GaAs in the ~1.5—5.4-eV photon-
energy range (visible UV) by applying static uniaxial stress (X) along the high-symmetry directions

[100] and [111]and measuring the stress-induced changes in the dielectric function e(v). These mea-
surements were performed using a conventional rotating analyzer ellipsometer at room temperature.
The measured components of the piezo-optical tensor are in agreement with prior Kramers-Kronig
analysis of piezoreflectance data. Each component of P,~ q~(u) is also compared with band-structure-
based calculations performed with the empirical pseudopotential method. The calculations are in
reasonable agreement with the experiment. Improved deformation-potential constants Dz, Dz, D3,
and D3 for the Ez —E~ + Az transitions were also obtained from an analysis of the ellipsometric
data. They compare favorably with theoretical estimates. In particular, the experimental value of D3
agrees rather well with band-structure-based calculations, in contrast with previous measurements
of this parameter.

I. INTRODUCTION AND OVERVIEW

Following our work on the piezo-optical response of
germanium, ~ we present here a similar study for GaAs.
Most of the experimental conditions and the analysis
of data are described in Ref. 1 and redundant details
will be avoided whenever possible. The effects of strain
on optical properties of semiconductors are reviewed in
Refs. 2—5.

The piezo-optical response of GaAs (zinc-blends-type,
Tg point group) has some specific features which are ab-
sent in diamond-type semiconductors. For stress along
one of the crystal axes (S4 of Tg), the point group is re-
duced to Dzg and GaAs exhibits circular birefringence
(optical activity) for light crossing the crystal with k
along one of the other two cubic axes (Cz of Dzg). s s

The optical activity, however, is weak and thus only
observable below the fundamental gap Eo. Even with-
out external stress GaAs presents natural linear bire-
fringence which is usually associated with the presence
of internal strain along the specific direction of crystal
growth. ~s In the visible-UV region, above the fundamen-
tal absorption edge, the piezo-optical response of GaAs
is dominated by the stress-induced linear birefringence
and the corresponding piezo-optical tensor (with non-
vanishing real and imaginary parts) is known qualita-
tively from Kramers-Kronig analysis of piezoreflectance
data. ~~ ~s However, absolute values for the so-called
piezo-optical tensor are poorly known. This paper in-
tends to fill that gap in the literature. Together with
our results for Ge (Ref. 1), it illustrates the applica-
tion of spectroscopic ellipsometry to the study of piezo-
optical constants of semiconductors and to the evalua-
tion of deformation-potential constants. The frequency-
dependent components Pqq(u), Pjz(u), and P44(u) can
be obtained in absolute units with no additional as-

sumptions (e.g. , Kramers-Kronig analysis). This is the
principal advantage of piezoellipsometry with respect to
piezoreflectance.

Section II of this paper discusses the experimental
setup, sample preparation, data evaluation, and experi-
mental results for both the piezo-optical components and
the deformation-potential constants for the Eq —Eq +
hq transitions. Section III deals with the comparison
between experiment and the empirical pseudopotential
method. Section IV contains a discussion of the results.

II. EXPERIMENT

A. Experimental technique and sample preparation

The experimental technique, rotating analyzer ellip-
sometry (RAE), is well known to give values for the di-
electric function (sometimes called pseudodielectric func-
tion if no correction for possible thin surface layers dif-
fering from the bulk is applied) with high numerical
accuracy. ~4 ~s In addition, when the complex reflectance
ratio~s ~s is analyzed with an appropriate model for the
reflection process, the ellipsometric data provide a good
approximation to the projection of the dielectric ten-
sor onto the intersection of the plane of incidence and
the sample surface. This was shown to be true for
weakly anisotropic samples, with a large dielectric func-
tion [[e(~)[ && 1].~r In the present work, the complex
reflectance ratio between s and p-polarized -light was
converted to e(u) using the simplest model for the re-
Bection process, i.e., a two-phase model consisting of a
sharp interface between the sample and air.

The experimental conditions were reported in our pre-
vious work on Ge; for details the reader is referred to
Ref. 1. A technical description of the ellipsometer used
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can be found in Ref. 18.
The samples were cut with the longest side along the

high-symmetry directions [100(and [i it[ with typical di-
mensions of 18x2.8 x 1.8 mm and oriented using Laue
x-ray diffraction. The bulk material used to fabricate
the samples was high-purity n-type GaAs with an impu-
rity content of less than 10~s cm s. Each sample was
etched with 1:1 HC1:methanol (methanol rinse) as sug-
gested previously. ~s The ellipsometric data were taken
for X parallel and perpendicular to the plane of inci-
dence under different stresses in increasing order up to
X 1000 MPa. For X along [100] measurements were
performed on the (100) face, while for X along [ill] they
were obtained on the (211) face. The different linear
combinations of P;z (m)'s found for each configuration for
b,e(u), either parallel or perpendicular to the stress, are
given in Ref. 5. The results are summarized in Table I
of Ref. l. Each spectrum was corrected numerically for
the presence of an oxide layer as described in Refs. 1 and
19. The thickness of the oxide layer was evaluated in each
case using a three-phase model (substrate/oxide/air) and
comparing our data in a region 1 eV around E2 with the
data for a very clean bare surface given in Ref. 19. The
assumption of an amorphous film with the dielectric func-
tion of the electrochemically grown GaAs oxide (Ref. 20)
forming the oxide layer is appropriate for mechanically
polished and etched surfaces. For the photon energy re-
gion of interest here we used the dielectric function of
this GaAs oxide given in Ref. 20 in order to correct for
the presence of the film following the procedure reported
in Ref. 1.

B.Data evaluation

When going from diamond-type semiconductors, like

Si or Ge (Og point group), to zinc-blende-type ones, like

GaAs (Tg), very little has to be changed in order to an-

alyze the piezo-optical response. z~ zs Although the sym-

metry of zinc blende is lower than that of diamond, both
materials can be treated as a fcc lattice with a basis;
both point groups (Og and Tg) require the presence of
only three independent piezo-optical constants labeled in

the same way for both crystal structures. z4 These crys-
tals when stressed along [100] or [111] become uniaxial

and, to first order in the stress (X), the change in the
second-rank dielectric tensor s,z(u) is diagonal with re-

spect to any sets of axes which include the direction of the
stress. ~ ~s ~s The case of a general stress (X,~) (or, alter-

natively, strain) is described by the linear piezo-optical
tensor Pg~gI, (u) which satisfies Pg~g~=P~, ai=Pg~gr=Pyyt~;

m, n=l, . . ,6 (i=j=l—.h m=1;i=1 j=2-+ m=6 and ap-

propriate index permutations). z We use the definition

6e,~((u) = P;~I,((ur)Xg(

for the linear piezo-optical tensor, where X;~ is the
second-rank stress tensor, and b, e;~.(u) the corresponding
change in the complex dielectric tensor. Once 6e;~(u)
is known, several related optical responses can be cal-
culated. In particular, changes in the reflectivity can
be directly compared with experimental piezoreflectance

results which can be easily obtained from the real and
imaginary parts of Ee([d) using the so-called Seraphin
coefficients n(~) and P((u); i.e. ,

7

( )&(R [ '( )1),
R(u))

+ P((u)b, (lm[~~~' (up)])

where
~[

and J mean parallel and perpendicular to the ap-
plied stress, respectively. It is also possible to decompose
the piezo-optical tensor P;~(~) into three components
belonging to different irreducible representations of the
point group. These are a one-dimensional representation
[hydrostatic component, Pqq(u) + 2Pqq(u)] transforming
like I'qt a two-dimensional one [Pqq(u) —Pqz(u)] which
transforms like I'q2, and a thr""-dimensional one [P44(u)]
transforming like I'qs. Since we measure the changes in
the parallel and perpendicular components of s(u) for X
either along [001] or [111], four linear combinations of
P,~(u)'s are obtained experimentally. Therefore, one of
them is a linear combination of the others since P;~(u)
has only three independent components. The fourth
measurement can be used as a self-consistency check. ~

Kramers-Kronig consistency for the real and imaginary
part of each component of P~(ur) is also expected since
the piezo-optical tensor plays the role of a linear suscep-
tibility. We investigated such consistency numerically us-

ing the experimental data with no extrapolation at lower
and higher energies. An extensive comparison with previ-
ous experimental results obtained with other techniques
as well as self-consistency checks are given in the follow-

ing section.
The procedure followed for the evaluation of the

deformation-potential constants of the Eq —Ej +b, q tran-
sitions is identical to that reported in Ref. 1. Here we
summarize the basic facts. We use the same symbols
and definitions of Ref. 1 throughout the work for consis-
tency. The Eq —Eq + Aq structure in zinc-blende and
diamondlike semiconductors arises from optical transi-
tions between the valence and conduction bands along
A (111).zs s2 ss The type of the optical critical points in-
volved depends on the different curvatures of the bands
along three mutually perpendicular directions. One
findss s ' s's that both Ej and Eq + b, q can be best
modeled with a two-dimensional (2D) joint density of
states. The model dielectric function as well as its second
derivatives were given in Ref. 1 [Eqs. (3)—(5) of Ref. 1].
The microscopic interpretation of these features and their
dependence on stress is as follows:

1. X
~] [100]. The effective Hamiltonian for Eq and

E~ + Ly for this case has been given in Re&. 40 and 41.
A phenomenological exchange interaction between elec-
tron and hole Wannier functions has to be included in

the Hamiltonian to explain the difference between mea-
surements of e(ur) along and perpendicular to the stress.
The eigenvalues for Eq and Eq + Lq as a function of the
stress can be obtained from Ref. 1 [Eqs. (7) and (8)]; they
are also given in Ref. 11. From measurements of c~~(~)

and e (cu) while X
~~

[100] one obtains the hydrostatic
deformation potential Dz~ and also Dss which represents
the intraband effect of a [100] shear. The spin-exchange
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terms are obtained by comparing the difFerences of Eq (X)
and (Eq +Aq) (X) found for s(u) parallel and perpendic-
ular to X. The stress dependence of the amplitudes (or
strengths) for both critical points has been also reported
in Ref. 1 [Eqs. (15)—(18) of Ref. 1]. Of particular im
portance is the dependence on X of the ratio of a pair
of amplitudes which is then independent of the absolute
oscillator strengths. Unlike the eigenvalues for Eq and
Eq + b, q the strengths of the transitions are linear in
Dss, ~ and can be used not only to evaluate the correct
sign of this deformation potential but also to check the
magnitude obtained from the fit of the eigenvalues. The
amplitude ratio I@,/I@,~~, at X=O can be compared
with theoretical calculations reported in Ref. 24:

(Eg + b, g/3)(E) + b, g)2
z&( )/ Eg+E&( ) —

(E )2(E 2Q /3)

The intensity ratio given by (3) underestimates in general
the experimental value but can be improved by adding
the linear terms in k, as discussed in Ref. 43.

2. X
~~

[111]. The efFective Hamiltonian for this con-
figuration is also reported in Refs. 40 and 41. The corre-
sponding eigenvalues and strengths as a function of X are
in Ref. 1 [Eqs. (9)—(12) and (19)—(22) of Ref. 1]. In this
case the stress fixes a preferential direction (singlet) along
the stress. The three other valleys along [111],[Tljl, and
[111] are equivalent and give rise to different eigenvalues

(triplet). The parallel component of e(u) to X comes
from the contribution of the triplet only, and is more
easy to analyze. Knowing the hydrostatic deformation
potential D~~ from measurements with X~~ [100] it is pos-
sible, in this new configuration, to obtain the deformation
potentials D&~ (intervalley efFect of a [111]shear) and Dss

(intravalley effect in the valence bands). Ds is usually ob-
tained from the X dependence of the ratio of strengths
for the triplet IE /Iz, +r, (X) because the experimen-
tal points for the eigenvalues usually mask the quadratic
contribution proportional to Dss. More details of the data
evaluation are given in the following subsection.

O
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data of Fig. 2. For a fixed photon energy, the evolution
of the real and imaginary parts of s(ur) is linear up to

600 MPa, except close to critical point transitions. An
example of the nonlinearity found close to a critical point
in s2(~) is given in the inset of Fig. 2. Using fits to the
linear portions of the s(X) dependence we obtained the
corresponding linear combination of P,~ (u) 's discussed in
Ref. 1. The three independent components of P;z(v) in
the photon energy region 1.6—5.4 eV are shown in Figs.
3(a)—3(c). The real parts of each component are plotted
in Fig. 3 together with the corresponding curve obtained
by Kramers-Kronig transformation of the experimental
imaginary part. This curve was calculated numerically
using~

FIG. 1. Real (ez) and imaginary (ez) parts of the dielec-

tric function of GaAs at X=O. Solid symbols represent data
tabulated in Ref. 19 for a bare surface. The solid lines are our
experimental values with a correction for the presence of an
oxide layer of ~12 A..

C. Experimental results

In Fig. 1 we show typical measured spectra of the
complex dielectric constant of GaAs at X=O. The data
were corrected for the presence of an oxide layer of ~12
A. The solid symbols represent data from Ref. 19, ob-
tained with a bare surface in Ng atmosphere within a
windowless etching cell. As for the case of Ge, we found
good agreement with the data of Ref. 19, except for mi-
nor differences near Eq —Eq + Aq arising from differ-
ent polishing procedures of the surface. These differ-
ences have negligible effects in the evaluation of P,~(u)
and the deformation-potential constants as we show be-
low. Figure 2 displays in detail the behavior of ez(u) for
X~~ [001]at three difFerent compressive stresses around the
Eq —Eq + b, q transitions. In the next subsection we will
show that Dss is negative and, according to Eqs. (15)
and (16) of Ref. 1, e2(u) (which is proportional to the
amplitude of the transitions) should increase for Eq and
decrease for Eq + Ez, in qualitative agreement with the
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FIG. 2. Imaginary part of e(ur) as a function of the com-
pressive stress X

~~ [100] in a region near Eq —E& + b,q. The
inset shows the evolution of e2(u) for a fixed photon energy
as a function of the stress. Note the nonlinearities induced by
the stress at 4u 2.93 eV when X ~ 550 MPa.
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(4)i

2 AI [P„(A)]„
k~) u, (~ fl )

where ~; and uf are the initial and final experimental
energies, P means "Cauchy principal part, " and i

' is an
ad hoc constant fixed so as to obtain the best fit with the
directly determined Re[P~(a)]. As for Ge, i no attempt

was made to continue the frequency dependence of P;z (u
below u; and above uf since most of these contributions
are eing taken care of by the dispersionless parameter
"O'." In addition, we have included in the inset of Figs.
(a)—3(c) the imaginary parts of each P,z(cu) obtained

in ar itrary units from piezoreflectance measurements.
Both the Kramers-Kronig self-consistency and the qua¹
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FIG ~ 3. (a) Pll(~), (b) Plz(iLi), and (c) P44(u) in the 1.6 —5.4-eV photon-ener ran e. On
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a par icu ar p oton energy. The imaginary part
pon ing qu tative result of piezoreflectance from Ref. 12 (inset).
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tative comparison with piezoreflectance data are in excel-
lent agreement with our experimental results. The error
bars in Fig. 3 were calculated as in Ref. 1; by assum-
ing a statistical error of 10 z for s1z(u) (determined
experimentally), and calculating the corresponding error
for the slope of the linear fit of s(u, X) at each tu P. 11(u)
and Prz(~) were obtained using (Table I in Ref. 1)

Zk~ll (~)
P11(~)=

[[[001]

ZLE (ld)
P1z(cu) =

II [oo1]

while P44(~) was obtained from

I
C$

CL
Cb

5
3

0

: Rea

- Imag

11(u1)-P12 (u1) l

[b,sll (~) —b,s~ (~)]
(6)

[[[111]

In Fig. 4 we show two irreducible components of the
linear piezo-optical tensor P;~(u) calculated using the
data of Figs. 3(a) and 3(b). Figure 4(a) displays
[P11(cu) —P12(u)], the component which transforms like
I'1z while Fig. 4(b) shows [P11(u) + 2P1z(u)], the hy-
drostatic component of the piezo-optical tensor (11).
In both cases the imaginary part is compared again with
the corresponding piezoreflectance measurements, in ar-
bitrary units. 1z

Using (2) it is possible to calculate [1/R(u)]
x[dR(u)/dX], which is expected to be proportional
to the directly measured piezoreflectance spectrum oc

[b,R(u)/R(a)]. We have calculated the changes in the
parallel and perpendicular components of the reflectivity
with respect to the stress for both cases, X]~[001) and

X[~[111],and displayed the results in Figs. 5 and 6. The
insets represent again piezoreflectance data from Ref. 12.
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FIG. 4. (a) I'12-hke and (b) I'1-like irreducible compo-
nents of the linear piezo-optical tensor P~(w) calculated us-
ing the data of Fig. 3 (ses text for detaits). The imaginary
parts are compared with piezore8ectance measurements from
Ref. 12 in arbitrary units as in Fig. 3.
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FIG. 5. Calculated derivatives of R(ur) (normalized by
the reflectivity) for X[[[100] (or equivalent directions). (a)
[I/R(ru))[dR(~)/dX] from Bell((u) and (b) from b,e (~). The
inset shows data for light polarized parallel (solid line) and
perpendicular (dashed line) to the stress in piezoreflectance
&om Ref. 12.
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0.008
X parallel to [111]

D. Deformation-potential constants
for the Eq —Eq + Lq transitions
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FIG. 6. Same as Fig. 5 for X~~ [111).

Excellent agreement between both sets of results is ob-
served.

In Fig. 7 we show the calculated refiectivity using the
e(~) values for an unstressed sample (see Fig. 1) and for
one stressed along either [001] or [111],with X=435 MPa
in both cases. These data are in reasonable agreement
with what is expected for Ei —Ei + b, i.i 44

In this subsection we discuss the critical point analysis
for the Ei E—i+Bi transitions. The error bars represent
only the errors of the fits. Each parameter (amplitude,
energy threshold, and broadening) is given for a confi-
dence &96% by our fitting procedure. The trial values to
start the fits were obtained from Ref. 45.

1. X~~ [001]. Figure 8 displays the dependence on stress
of the Ei and Ei+hi critical point energies as obtained
from the fits with Eqs. (5) and (6) of Ref. 1. The four
curves should be represented by Eqs. (7) and (8) of
Ref. 1. The inset shows the same results obtained from
piezorefiectance in Ref. 11. Note the different curvature
of Ei with respect to the data of the inset; correspond-II ~

ingly, we obtained a larger absolute value of Dss, we shall
return to this point in the discussion of the results. Di
was evaluated from &(Ei+Ei + hi), which is indepen-
dent of b~„b'g„and Dss. The results are plotted in Fig.

9(a). Two values for Dss were obtained, from 2(Eill+E&+)
and 2 [(Ei+hi)ll+(Ei+hi) ], respectively, as displayed
in Figs. 9(b) and 9(c). These are curves which are inde-
pendent of bg, and bq, . The reader is referred to Ref. 1
for details. Using the so-obtained values for Dii and Dss

we can obtain bg, , and compare the ratio of amplitudes
with theoretical predictions. In Fig. 10 we show the
amplitude ratios for both Ei and Ei + Ei. The curves
were calculated from the ratios of Eqs. (15) to (16), and
(17) to (18) of Ref. 1 with the value for Dss previously
obtained (see above). In Fig. 10 not only the absolute
value of Dss is checked but also the correct sign of this
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FIG. 7. Re6ectivity changes calculated using the ellipso-

metric data for both X]][100]and X]][111](see text for details)
(Refs. 1 and 44).
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FIG. 8. E, ' and (Zi+Di)ll' as a function of the stress
for X[[[100](or equivalent directions). The inset shows data
from Ref. 11 obtained with a critical point analysis of the
piezoreflectance data. The same symbols are used in order to
compare with our experiments.
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X parallel to [100]
6.08 -—

Et+(Et+6))

6.04 -' (a)

6.06-

deformation potential can be determined. All the values
of the deformation-potential constants and spin-exchange
parameters so obtained are given in Table I.

2. X[][111].As done for Ge, ~ we analyze 6s~~ (u) which
has contributions from the triplet only. However, we dis-
play in Fig. 11 the complete set of data for the compo-
nents parallel and perpendicular to X for both Eq and
Eq + b, t and compare them with the data of Ref. 11 (in-
set). The difFerences between our results and those of
Ref. 11 lead to a difFerent value for Dss. Anticipating the
discussion of results we mention that our value is in better
agreement with theoretical estimates than that of Ref. 11.
In Fig. 12(a) we show the average 2[E& + (Et + hq) ]
which, according to Eqs. (11) and (12) of Ref. 1, is in-

dependent of Dss and can be fitted to a straight line to
obtain D~&, using the previously obtained D~~ (hydrostatic
deformation potential). Dss cannot be obtained from ei-
ther Et or (Eq + b.t)+ in Fig. 11 because of the small
curvature masked by the linear portion and the exper-
imental uncertainties. ~ Dss was obtained from the fit of
I&+ /Iz+, +z, vs X, given by the ratio of Eqs. (19) and (20)
of Ref. 1. Since Dss is small, that ratio can be approx-
imated by a linear function of X; Fig. 12(b) shows the
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FIG. 10. (s) Intensity ratios obtained from the fits of the
experimental data with Eqs. (5) snd (6) of Ref. 1. The solid
line is the ratio of Eq. (15) to (16) in Ref. 1 with the value
of D3 obtained above (Fig. 9). From this plot the sign of
D3 can be determined. (b) Same as (s) but for the E& + b, q

transition. The solid line is the ratio of Eq. (17) to (18) in
Ref. 1.
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can be fitted to s line to obtain Dq (hydroststic deformation
potential) (Ref. 42). (b) snd (c) correspond to the average
between the parallel and the perpendicular results for Eq and
E~+A~ of Fig. 8 which are independent of the exchange terms
6Jy g Fitting both with a parabola, it is possible to obtain
two independent values of D3 (Ref. 1). All the numerical
values obtained in the fits are given in Table I. The sign of
Da has to be determined using the data of Fig. 10.

3.13-
0)

U)I
~ 2.94-

2.93-

2.92-

2.91

I ~ ~ I ~ ~ I I I I I I ~ ~ I ~ I ~ ~ I ~ ~ ~ ~ ~ I i ~ I I I ~ ~ I ~ ~ ~ ~ I I I ~ ~ ~ ~ ~ i290
-50 i50 350 550 750

X (10 Pa)
FIG. 11. (s) (Eq + b, q)l~' snd (b) (Eq)~~' for X]]flllj.

In both cases the parallel component has only contributions
Rom the triplet. The inset shows data from Ref. 11. The
difFerences between the curvatures of the plots shown in the
inset and our experimental data are related to difFerent val-
ues for D3s(see Table I). The inset from Ref. 11 included
three points indicating the contributions of the singlet (low-
est curve) which we do not separate out in our dsts.
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TABLE I. Deformation-potential constants and spin-exchange parameters (in eV) for the Eq —Eq+ b, q transitions in GaAs,
compared to other measurements and theoretical results.

D1

—7.6+0.5 "
—7.9+0.5 "
6.7+0.5 '

—6.9 + 0.7'

—9.4 + 0.9

—8.0 6 0.8

93
—14.4"

—8.4 y 0.8

9 2+09 "

6.2 + 0.6'

8.5 + 0.8

7.9 6 0.5"

12.5"(I,
' = 0.76)

12.3"(( = 0.6)

12.0+0 7 "'

D3 (eV)

3.4+0.3 "'
35+03 ' '

2.4 (at k = 0)'

3.2 + 0 3"~

—5.4+0.9 "
—4.3+0.8 '

D3 (eV)

0+0.5 "

8.5 (at k = 0)'

—6"(( = 0.76)
-4.5"(I,

' = 0.6)

—6.4 + 1.5'

bg, (meV)

10.2 + 1.0b "
99+10 ' "

10ct8

8.0 +1.5'

by~ (meV)

5.5+0.8 '"~
3.6+05 ' '~

10c)e

6.1 + 1.2~

Ref.

11, 40
11, 40
11, 40

47

13

48

49

30
30

present work
present work

X II [»1].
b X ]] [001].' 77K

300 K' Eg peak.

' E~+A~ peak.
s Iz, /Iz, +z, for X]][111].
" Theory; see Fig. 15 and text.
'2K.
' Absolute value.

best linear fit to the data. All the deformation-potential
constants obtained from these fits are also given in Ta-
ble I.

The intensity ratio given in (3) predicts IE, (0)
/I@,~~, (0) 1.13, for X=O, which agrees rather well
with the experimental ratio (see Fig. 10), especially in

3.06
E +(E)+b, j

view of the fact that linear terms in k have not been
considered in (3).4s

III. PSEUDOPOTENTIAL CALCULATIONS

In this section we deal with the predictions of the em-
pirical pseudopotential methodzz (EPM) for the different
components of the piezo-optical tensor P~(u) We used.

the same computer code that was employed for Ge in
Ref. 1. We computed the imaginary part of e(~) using

o 3.0~

3.02
LU X parallel to [111]

41rzezh . 2). 2 )s ]( '.t I't7l, t)]'
Cs1I

x b(E, (k) —E„(k)—ur)dk

(7)

0
~~
~ 1.50-

T
IE

~T
E)+b, )

,~r
1.30 - s~

t 0 s ~ a s ~ ~ a s s I ~ a ~ s ~ ~ s s ~ I s a s ~ ~ s s s s I s s ~ ~ s s s s s I ~ s ~ s ~ s1.
-50 150 350 550 750

X (~06Pa)
FIG. 12. (a) i [Ei + (Qz + b,z) ] as a function of X. The

data were obtained by analyzing the change in &t (u) wtuch
has contributions from the triplet only. (b) Intensity ratio
[Eqs. (19) and (20) in Ref. 1] for the triplet. From the linear
fit of this curve we obtained the value (and correct sign) for
D3 that is displayed in Table I.

and a Lorentzian with a broadening I'0 0.1 eV to sim-
ulate the b(E) function. For the stressed lattice we in-
terpolated the well-known symmetric and antisymmet-
ric form factors Vs(G) and V~(G) (Refs. 22 and 29)
(G = 3, 4, 11) (G is a reciprocal-lattice vector in units
of 21rja) to obtain the new Fourier components of the
pseudopotential using the approach sketched in Ref. 1.
For X]][111]the deformation of the primitive cell (in-
ternal strain) was taken into account with the internal
strain parameter /=0. 6.M's We used a sampling of 2361
points within the full first Brillouin zone. In Fig. 13 we
show the imaginary part of the dielectric function ez(u)
evaluated with (7) for the unstressed lattice. The inset
shows ez(cu) calculated in Refs. 29 and 23. Our calcula-
tion as well as the one shown in the inset represent poorly
the experimental imaginary part of the dielectric func-
tion around E~. This is expected for a one-electron type
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FIG. 13. Experimental (solid) and calculated (dashed)
imaginary part of the dielectric function for X=O. The in-

set shows an EPM calculation reported in Ref. 29. The
EPM calculation is particularly far from the experiment near
Ey —Eq + 6q where the excitonic contributions are known

to play an important role. The low density of k points
within the first BZ introduces the artificial structure between

(Es —Ex + b, y) and (E2). However, the so-calculated e2(u)
still reproduces the P~~ (u)'s moderately well.

of calculation: exciton efFects are known to sharpen and
increase the weight of these structures thus improving

agreement with experiment. However, the EPM method
reproduces difFerential efFects quite we]1,4s in particu-
lar those in vrhich the excitonic character of the criti-
cal points does not change as a function of the external
modulation. In the case of Ge, ~ we found that the EPM
method describes reasonably well the components of the
piezo-optical tensor near the critical points Eq Eq —+b q

and Ez although the explicit calculation of es(u) had the
same problems as here. In Fig. 14 we show the three in-
dependent components of the piezo-optical tensor P;~(u)
calculated with the EPM near the optical critical points
Et —Eq + b.t and Ez. Despite the fact that the cal-
culation did not include spin-orbit coupling, the general
shape of the piezo-optical components are in good agree-
ment with the experimental determination. The calcu-
lated values near Ez are in absolute units while those
near Eq —Eq+Aq were multiplied by a factor of 1.9 so
as to exhibit approximately the same amplitude as the
experiment. The theoretical values were obtained from
the difFerence between ez(~) for X=O and a calculation
for X=2.4 GPa along either [001] or [ill]. As in the
case of Ge, ~ we had to use an unrealistic value for the
stress, in comparison to those used in the experiment,
to avoid numerical problems with small difFerences. The
lack of spin-orbit coupling eliminates some of the sources
of nonlinearities and the so-obtained components of the
piezo-optical tensor still show general agreement with the
experimental data.

IV. DISCUSSION AND CONCLUSIONS

Our experimental data for the components of the piezo-
optical tensor of GaAs were shown to be Kramers-Kronig
consistent and compatible with prior results obtained by
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FIG. 14. Experimental (solid) and calculated (dashed)
imaginary parts of the piezo-optical constants (a) Pqq(u), (b)
Pqq(ar), and (c) P44(sr) (see text for details)

I ( I i I

K L

FIG. 15. Deformation-potential constants D3 and Dq
(conduction and valence band) along (ill) calculated with
the EPM (Ref. 30) using the rigid-ion-pseudopotential ob-
tained by interpolation of the empirical pseudopotential form
factors of Ref. 50. These results correspond to an internal
strain parameter ('=0.6.
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Kramers-Kronig analysis of piezoreQectance experiments.
Numerical processing allowed us to compare our results
with those of direct piezoreflectance measurements (see
Figs. 5 and 6); this comparison is quite satisfactory. The
EPM method with no spin-orbit coupling reproduces rea-
sonably well the experimental data. The experimental
piezo-optical components P,s(ur) have been given in ab-
solute units and can be used for numerical estimates of
optical properties of stressed GaAs layers in the visible,
near IR, and near UV. Evaluation of the deformation-
potential constants for our data shows, as in the case
of Ge, ~ some differences with respect to prior work (see
Table I); in particular concerning the shear deformation
potential Dss. Our results seem to agree quite well with
theoretical predictions using the EPM method. In Fig.
15 we plot the theoretical values for Dss and D~~ (con-
duction and valence bands) obtained in Ref. 30 also with
the EPM. The values displayed in Table I are an average
from I' to L along (111) for two different internal strain
parameters ((). Our experimental determination is in

better agreement with the EPM estimates than previous
ones. EPM is known to yield reliable predictions of the
deformation-potential constants, a fact which gives extra
confidence to our experiments. In addition, the correct
sign for the shear deformation-potential constants was
determined from the intensity ratios of the amplitudes
for Eq and Eq + hq. To the best of our knowledge there
are no ab initio calculations in the literature to compare
with our data.

A similar study for Si is in progress and will be pub-
lished elsewhere. s~
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