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The dielectric function for semidegenerate n-type silicon is calculated in both the random-phase ap-
proximation (RPA) and the Singwi-Tosi-Land-Sj6lander (STLS) approximation in a study of linear
screening theory and electron mobility. Using a spherical effective-mass model for the six conduction-
band valleys, the Boltzmann equation is solved exactly for phonon plus impurity scattering and the re-
sulting mobility is compared with experiment. Significant differences are found in doped silicon at
nonzero temperatures between Boltzmann equation solutions in the RPA Born approximation and the
less accurate force-force correlation function formula for the electrical resistivity due to electron-
impurity scattering. Phonon scattering has only secondary importance and is treated by standard
deformation-potential models. The problem of scattering by linearly screened ionized impurities is treat-
ed with exact phase-shift scattering theory. RPA phase-shift calculated electron mobilities in n-type sil-
icon at 300 and 77 K agree more closely with experiment than the Born approximation or Thomas-
Fermi calculations. The local field correction to RPA screening of impurity potentials is not significant
in scattering cross sections when the electron-electron vertex function is included. However, assuming
full ionization, the STLS dielectric function yields negative electronic compressibilities at 77 K in a con-
centration region centered approximately where the metal-insulator transition takes place at 7 =0, and
coinciding with strong violations of the Friedel sum rule by linearly screened potentials. Strong
Coulomb interactions are indicated and imply an inadequacy of linear screening theory, the Born ap-
proximation, and the Boltzmann equation for electron-impurity scattering applied to the electron-gas
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model for doped silicon at low temperature, despite apparently good agreement with experiment.

I. INTRODUCTION

Carrier mobility in heavily doped semiconductors is
limited primarily by scattering from ionized impurities.
This paper presents a study of impurity potential screen-
ing and electron mobility in uncompensated n-type sil-
icon at 300 and at 77 K for the 10'®-10%°-cm " concen-
tration range. For comparison, the screening of ionized
impurities has been calculated both from the
temperature-dependent random-phase approximation
(RPA) dielectric function and in the linearized Thomas-
Fermi approximation (LTFA). Mobilities have been ob-
tained by numerically solving the Boltzmann equation us-
ing as input electron-impurity scattering cross sections
derived with the partial-wave phase-shift method. For
comparison, the Born-approximation results have been
calculated also. Deformation-potential matrix elements
were used to account for intravalley and intervalley
scattering of electrons by phonons. Because recent work
indicates that electron-electron scattering is not
significant in n-type silicon,"? it has not been included
here. The results show that the RPA-phase-shift calcula-
tion of the electron-impurity contribution yields mobili-
ties that agree more closely with experiment than LTFA
results do, even when the Friedel sum rule is used to op-
timize the Thomas-Fermi screening length. Also present-
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ed are results of a calculation of the temperature-
dependent Singwi-Tosi-Land-Sjolander (STLS) approxi-
mation to the dielectric function for n-type silicon.>* In-
clusion of exchange and correlation effects through this
generalization of RPA screening of impurity potentials
does not change the mobility significantly. However, it
permits a study of the compressibility which shows diver-
gent behavior at 77 K. Negative electronic compressibili-
ties for the interacting electron gas are found to coincide
with strong violations of the Friedel sum rule by linearly
screened impurity potentials. An examination of the va-
lidity of linear screening theory and the Boltzmann equa-
tion suggests that the theory is not reliable under these
conditions and the good agreement with experiment may
be accidental.

The model used here treats a doped semiconductor as a
gas of conducting electrons with a neutralizing back-
ground provided by the ionized donors. All impurities
are assumed to be ionized. Effects of the band structure
of silicon are included simply by using the appropriate in-
terband dielectric constant €,=11.7, conduction-band
valley degeneracy n,, =6, and the density of states and
conductivity effective masses m*=0.33 and m_,=0.268,
respectively. Spherical energy surfaces are assumed
throughout the calculations. Correlations between suc-
cessive scatterings from different impurities are ignored.
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An impurity is viewed as a weak external potential with
Fourier components @.,(q)=4mZe /€ ,q%, where Ze is
the impurity charge. Results presented in this paper are
for Z =1, that is, for singly charged positive ions. The
induced density response 6n(q) is assumed to be propor-
tional to ¢.,(q). Screening is thus determined by the
static longitudinal dielectric function e(gq) defined in
linear response theory and the screened potential is
d(q)=¢.(q)/€(q).

The Friedel sum rule places a condition on a screened
impurity potential: the screening charge must exactly
cancel the ionized impurity charge. For n-type semicon-
ductors, it has the following form:>*

2nval ©
2 Tk,T ;(21+1)f0 S(EVf(E)1—f(E)dE . (1)

Here §,(E) is the phase shift of the wave function for the
scattering electron with angular momentum / and energy
E, f(E) is the Fermi-Dirac distribution function, T is the
temperature, and kp is Boltzmann’s constant. Equation
(1) is valid even when bound electronic states exist, as
long as the impurity potentials are not overlapping. For-
tunately, the sum rule is most robust in the region of
strong screening, where it is most useful for the present
analysis. The results presented here show that an impuri-
ty potential screened in linear-response theory violates
the rule especially when it is just strong enough to form
its first bound state. It is argued that strong violations of
the Friedel sum rule are signals of the breakdown of
linear screening theory.

Electron exchange and correlation contributions to
screening yield a local-field correction (LFC) to the RPA
dielectric function which is significant when electron-
electron coupling is strong. These effects have been in-
cluded in the present study through the temperature-
dependent STLS approximation.>* The LFC appears
unimportant in the electron-test charge interaction when
the electron-gas model is assumed, but it can introduce
major changes in thermodynamic properties. Though the
dielectric function e(q) describes screening only in the
linear approximation, it exactly describes the electron-
electron interaction energy which determines the free en-
ergy of the gas. The compressibility sum rule relates the
long-wavelength static dielectric function to the iso-
thermal electronic compressibility K at electron density
n’
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For stability of a system, K is required to be positive, but
a negative electronic contribution seems to be permitted.
Negative compressibilities have been predicted for the
zero-temperature interacting electron gas at densities
lower than a critical value by several LFC theories®® and
by Monte Carlo calculations.!® Also in the classical limit,
negative compressibilities have been found with LFC
dielectric functions'"'!? and Monte Carlo methods.!> An
experimental measurement'* of negatively divergent
compressibilities in the two-dimensional electron gas has
been reported for densities lower than a critical value, in
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good qualitative agreement with Monte Carlo!’® and
STLS (Ref. 16) calculations. The compressibility sum
rule applied to the STLS dielectric function correctly pre-
dicts that negative values of K occur in all of these cases,
though it tends to underestimate the critical coupling
strength somewhat. It is generally agreed that the nega-
tive K values do not signal an instability of the electron
gas since the neutralizing background is able to stabilize
the system.!?

More recently, Tanaka and Ichimaru!’ found a region
in the density-temperature plane corresponding to nega-
tive isothermal compressibilities. One may then ask
whether this behavior occurs for nonzero temperatures
and densities relevant to the study of transport in doped
semiconductors. We find that K diverges when the mag-
nitude of the electron-electron interaction energy is equal
to the average kinetic energy of the interacting electrons.
Application of the compressibility sum rule to the STLS
dielectric function for n-type silicon shows that at low
enough temperatures the interacting gas compressibility
and the long-wavelength static electric polarizability
diverge. At 77 K, the ratio of the noninteracting gas
compressibility, K., to K is negative for a broad range
of electron concentrations and is minimum near the den-
sity where the impurity potential forms its first bound
state, approximately coinciding with the density where
the metal-insulator transition takes place at 7 =0.
Though we know of no previous calculation of divergent
compressibilities in a real bulk semiconductor, it is
perhaps not surprising that they should appear near the
metal-insulator transition where strong coupling effects
are expected to be important. Divergent donor polariza-
bilities were observed experimentally'® in insulating sam-
ples of phosphorous-doped silicon as the metal-insulator
transition was approached.

It is interesting that the quantities under study, such as
the Friedel sum rule violation, compressibility, and
Coulomb coupling strength, are not monotonic functions
of density for fixed temperature. This is related to the
fact that doped silicon falls between the classical and de-
generate limits of the electron-gas model into the region
of semidegeneracy. The degree of degeneracy of an elec-
tron gas may be characterized by the dimensionless tem-
perature ©=kzT/E;. In a doped multiple-valley semi-
conductor such as silicon or germanium, the Fermi ener-
gy Ep=#*/2m*(3m’n /n4)** is smaller than it would
be in a single-valley band at the same electron density.
Multiple valleys push a semiconductor in the direction of
nondegeneracy. Dandrea, Ashcroft, and Carlsson'’
found that © <0.1 approximately defines the degenerate
regime, while ©>10-100 defines the nondegenerate or
classical regime. They found that for 0.1 <© <10, the
electron gas is semidegenerate and inadequately described
by either zero-temperature or classical theories. In sil-
icon at room temperature, © varies from 7.7 for an im-
purity concentration of 10'® cm ™3 to 0.36 for 10%° cm™?,
putting heavily doped silicon squarely into the region of
semidegeneracy. Clearly, a screening model must be val-
id in this region if it is to describe accurately the screen-
ing of impurities in doped semiconductors.

The screening capability of a system of mobile elec-
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trons is determined by (1) the density of electrons avail-
able for screening, (2) the ratio of electron-ion potential
energy to electron kinetic energy, (3) the ratio of a typical
electron wavelength to the range of an impurity poten-
tial, and (4) the interactions between the screening elec-
trons beyond the Hartree level. If (2) is small, a linear
screening model is adequate. When (3) and (4) are negli-
gible, the LTFA model is an accurate approximation to
linear screening. When (3) becomes significant, RPA
screening is more accurate than LTFA, and when (4) is
important, local-field corrections modify the RPA result.
All four factors are density and temperature dependent.

Previous calculations of carrier mobility in semicon-
ductors which have combined the LTFA screening model
with the Born approximation for electron-impurity
scattering cross sections have yielded mobilities that are
consistently higher than experimental values, particularly
for cases with multiple-valley conduction bands.?’ Meyer
and Bartoli have made extensive calculations of carrier
mobilities in semiconductors,”?! using the phase-shift
method to find the electron-impurity scattering rate with
the Friedel sum rule to determine the screening length of
the impurity potential, which they assumed to be of the
LTFA form. Their results show differences between
theory and experiment that are smaller than the Born re-
sults but still substantial, with the theoretical mobilities
for Si at room temperature nearly twice as large as the
experimental values for impurity concentrations of
10°-10%° cm™3. In a study of the reasons for this
discrepancy, they have used LTFA and the Born approxi-
mation to argue that the conventional linear extrapola-
tion from the problem of free electrons screening a single
ion to screening in a multi-ion system is not accurate.!?
They found corrections to the conventional treatment
which appear to considerably improve the agreement
with experiment in the ‘“strong screening limit,” where
the LTFA screening length g1 is much shorter than the
average distance between impurities. An important im-
plication of their analysis is that the strong screening re-
gime is unphysical and that neighboring ions must neces-
sarily overlap to some extent.

LTFA is an approximation to RPA, becoming
equivalent in the limit of small momentum transfer, g.
The work of Saso and Kasuya®® suggests that LTFA is
not reliable for understanding transport when gy is
small compared to a scattering electron wavelength.
They observed that, at zero temperature, the Fermi wave
vector kp=(2m*Ep)'/?/# is less than ¢qp/2 in
multiple-valley Ge for a wide range of impurity concen-
trations, whereas the opposite is true if n, is set equal to
unity. They also pointed out that large g values of e(q)
become important and LTFA becomes invalid when
2kp <gtp. At nonzero temperatures, €gp, is less than
€rtra When the impurity potential is not slowly varying
compared to the wavelengths of electrons in states for
which —3f /9E is large. The present study shows that
this is the case in n-type silicon for conditions close to
those under which strong screening is observed, namely
in the higher concentration range at 300 K and for a wide
range of concentrations at 77 K. Thus, in agreement
with Meyer and Bartoli,"?? screening is weaker and
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mobilities are lower in this regime than conventional
LTFA predicts. However, in disagreement with them,
the RPA result does not imply that impurity ion poten-
tials must always overlap.

Saso and Kasuya®® found that, at zero temperature,
RPA screening reproduced the characteristic features of
impurity potentials in Ge obtained by more accurate non-
linear many-body methods. However, the T=0 resistivi-
ties they obtained with the phase-shift method and the
nonlinear Hartree method (a nonlinear version of RPA)
were higher than the RPA values. Their inclusion of ex-
change and correlation contributions resulted in even
higher resistivities in good agreement with experiment
for doping levels above 3 X 10'® cm 3. On the other hand
Chattopadhyay’s®* combination of the Born approxima-
tion with a temperature-dependent solution of the non-
linear Poisson equation (a nonlinear version of LTFA)
yields resistivities that are lower than the LTFA values,
increasing rather than decreasing the discrepancy be-
tween theory and experiment.

Temperature-dependent RPA screening was used with
the Born approximation for electron-impurity scattering
cross sections to calculate resistivities in Ge by Saso and
Kasuya,”>?5 who solved the Boltzmann equation, and in
Si by Sernelius,> who used a memory-function approach.
Both studied the effects of anisotropic band structure,
concluding that these effects cannot explain the
discrepancy between theory and experiment. This paper
presents the first calculations of mobility in a doped semi-
conductor which combine temperature-dependent RPA
screening with phase-shift scattering cross sections.
Agreement with experiment is better than with the Born
RPA, though a discrepancy remains in the lower concen-
tration range. Some understanding of the weaknesses of
the model are gained through study of the Freidel and
compressibility sum rules.

Section II describes the method used for numerically
solving the Boltzmann equation. Section III shows the
form of the electron-phonon and electron-impurity
scattering rates, and shows how the phase-shift method
and the temperature-dependent RPA dielectric function
were used. A comparison is made between the
Boltzmann-equation solution and the method of Ref. 2
and the calculated mobilities are compared to experi-
ment. Section IV discusses the conditions for validity of
linear screening theory, the Born approximation, and the
Boltzmann equation in terms of the electron-impurity
coupling strength and the Friedel sum rule. Section V
shows how the LFC influences the dielectric response and
compressibility of the electron gas at nonzero tempera-
tures. Section VI offers some conclusions.

II. SOLUTION OF THE BOLTZMANN EQUATION

The drift mobility is defined as the average drift veloci-
ty, v=7k /m}, per unit electric field, in the limit of zero
electric field. To take the average, the nonequilibrium
electron distribution function F(k) can be found from the
Boltzmann equation. In steady state under a spatially
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where S(k,k’) is the probability per unit time that an
electron in the initial state k will make a transition to the
final state k', and Q is the volume of the system. We
have used Rode’s method?® for solving the equation
which assumes that the deviation of F(k) from f(k) is
small and proportional to the cosine of the angle between
6 and k, that is,

F(k)=f(k)+ f(k)+g(k)cosO . 4)

It is also assumed that only a small electric field is applied
so that g(k) is first order in 6 =|&|. Equation (4) is exact
only for spherical energy surfaces, but is taken as an an-
satz here. Then, the differential scattering rate W(k,k’)
depends only on k=|k|, k’=|k’|, and y, the angle be-
tween k and k’. Using the law of cosines, an exact in-
tegral equation for g(k) in terms of g(k’) results,?
e6 of _ 1

—ﬁ__aﬁ_ﬁgg(k Jeosy { W(k',k)[1—f(k)]

+W(k,k')f(k)}

gL S (WK1 f(k)]
Q2

+ Wk’ k)f (k') . (5)

No assumption of parabolity is necessary to Rode’s
method. However, parabolic bands have been assumed
throughout the present calculation since the conduction
band of silicon is very nearly parabolic near its minima.

The differential scattering rate W(k,k’) is a sum of
rates for elastic and inelastic processes, Wi(k,k')
=W, (k,k')+ W, (k,k'). For elastic processes only,
k=k’, and a simple “‘relaxation-time” form results. The
dependence of g(k) on g(k’) due to inelastic events which
scatter electrons into the state k implies that, in general,
an iterative solution for g (k) is necessary. However, if
the inelastic differential scattering rates do not depend on
the angle 7, their contribution to the first sum on the
right-hand side of Eq. (5) vanishes. This is the case for
doped silicon when electron-electron scattering is ignored
as in the present work, since the only remaining inelastic
mechanism is intervalley scattering by phonons which is
approximately y independent due to the wide separation
between valleys. The only intervalley scattering events
whose effect changes in the equilibrium distribution func-
tion are those which scatter electrons out of the state k.
The solution for g(k) to first order in the applied electric
field is then
-1

, (6)
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III. SCATTERING RATES AND MOBILITY

The first approximation to W(k,k’) is the Born approx-
imation, that is, Fermi’s golden rule that W(k,k’) is pro-
portional to the square of the matrix element for the in-
teraction potential between the electron and a scattering
center. In contrast, the phase-shift method yields an ex-
act result for W(k,k’). Both methods require a model to
represent the interaction potentials.

Some previous calculations?”?® of carrier mobility in
silicon have included a constant factor to take into ac-
count the fact that electron-electron scattering can dis-
tort the electron distribution function and thus change
the electron-impurity and electron-phonon scattering
rates. However, Appel’s work? indicates that, for non-
degenerate statistics, the correction factor is not constant
but depends on the carrier wavelength and the screening
length 1/qrg, becoming insignificant for the doping
range considered here. Meyer and Bartoli' used Appel’s
scattering rates in a variational solution of the Boltzmann
equation for isotropic energy surfaces and found that the
electron-electron scattering correction at 300 K is never
greater than a few percent at any doping level. There-
fore, it has been neglected in the present work.

Recently, Fischetti’*® made an approximate calculation
of the electron-plasmon scattering rate and found a
significant reduction in electron mobility. A more careful
study of collective electronic excitations would be of in-
terest, especially with regard to the issue of strong cou-
pling. A negative plasmon dispersion relation is linked to
negative electronic compressibility.'>

Selection rules allow intravalley electron-phonon
scattering in Si only by acoustic phonons.®! This process
was treated as elastic and a simple isotropic dilation was
assumed. Since kpT is large compared to the relevant
acoustic-phonon energies, Eq. (7) yields, for the scattering
rate,

Tacl k) o’

) 9)

where E, is the acoustic deformation-potential constant
and ¢,;=19.07X10'°N /m? is the spherically averaged
elastic constant for longitudinal modes. As Rode
showed,*? the contribution from intervalley scattering is
of about the same magnitude as intravalley scattering at
room temperature in silicon. Because the relaxation-time
approximation is not made in Rode’s method, the inelas-
tic character of carrier scattering from optical phonons is
accurately accounted for. From Eq. (8), the scattering
rate for this process is
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D¥n,y—1)m* _
T 1k)= 27;7@%2 e IN+ 1= 7tk )]
+k T[N+ f(E)]}, (10)
where
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In this expression, N is the phonon distribution function,
D is the deformation-potential constant for intervalley
scattering, p=2.33 g/cm? is the mass density of silicon,
and fiw is the phonon energy. Using the temperature
dependence of the band gap and electron and hole
effective masses compiled by Green,>’ the values for the
deformation-potential constants E;=9.6 eV and
D =6.5X10% eV/cm used in this work were empirically
derived by comparison between the measured* and cal-
culated temperature dependence of electron mobility in
intrinsic silicon. Intervalley scattering of electrons is
predominantly by a 58.5-meV transverse-optical phonon,
resulting in transitions between perpendicular valleys (f-
type scattering).>>3® Other workers have included minor
contributions from as many as five other phonons for in-
tervalley scattering.’’” However, using only the values of
E, and D stated above yields mobilities which are within
10% of the experimental values of Canali et al.3* for the
70-420-K temperature range. Any variation of these
values with doping has been neglected.

Elastic scattering of carriers by ionized impurities has
frequently been calculated in the Born approximation
with a Coulomb potential screened according to finite-
temperature LTFA.3®3 Solving the linearized Poisson
equation in the finite-temperature Thomas-Fermi approx-
imation gives, for the screened potential of an impurity of
charge Ze,

¢LTFA(')=;Z‘8;CXP(‘QTF") ) (11)
where
2 =41re28_n= 4re? .
T = [ N(E) (B)1—f(E))dE

(12)

is the square of the inverse screening length of the impur-
ity potential. Here p denotes the chemical potential and
N(E)=n,ym*k /m*#* is the density of states in energy
for both spins. Using Eq. (7) and the Born approximation
for scattering from ¢;rps yields the Brooks-Herring
electron-impurity scattering rate for a concentration of
N; impurities,

1 _[ze? | 20m* 13
k) | €w | (i) ’
where
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Whereas the Born approximation is valid only when
the impurity potential does not significantly perturb the
scattering electron wave function, the phase-shift cross
section is exact.*’ For a spherically symmetric potential,
the phase shifts §;,(k) for the partial wave of angular
momentum / are calculated by numerically solving the ra-
dial part of the Schrodinger equation and matching the
numerical solution for the wave function in the region
where ¢(r)—0 to the solution with ¢(r)=0,

R(r)=c[j;(kr)—tand,(k)n;(kr)] .

Here j;(kr) and n,(kr) are spherical Bessel and Neumann
functions, respectively, and c is a normalization constant.
The scattering rate is*"?!

l(k) =N, S (14 Dsin¥8,—8,4,) . (14)
1mp

Ckm* 1=0

The Friedel sum rule may be used to find an optimized
screening length for ¢;rgs because it imposes a self-
consistency condition requiring that the free-carrier
screening charge exactly cancel the ionized impurity
charge at large distances. Optimization with the Friedel
sum rule is implemented by varying g1 in ¢ 1ga(7) until
the phase shifts found by solving the Schrodinger equa-
tion satisfy Eq. (1). The present study shows that the op-
timum screening lengths found with the sum rule are con-
sistently smaller in the semidegenerate regime than
LTFA predicts according to Eq. (12).

As was suggested in the introduction, LTFA is prob-
ably not a good model for screening when impurity po-
tentials are not slowly varying compared to the scattering
electron’s wavelength. A more accurate linear screening
model is the RPA, which accounts for the dependence of
screening on the momentum transfer, g. In this case, the
screened electron-ion potential energy is

o

)3f q q exp(iqr), (15)

—edrpa(r)=

where v;* :417'e2/q €,. The static RPA dielectric func-

tion may be written as

wnval m* (S} (k
erealq)=1—07 5 [ “dk f 2% |0 18
where
1 x+1
=14 - (1—x?
Y(x)=3 e (1 )In <1

For small x, Y(x) approaches unity and egp, approaches
€tra=1+q%¢/q*. For large x, Y(x) approaches zero
and €rpp <€ rpa. However, both egp, and € g, are
close to unity for very large q. Therefore, the difference
between RPA and LTFA is only significant when both
g3r~=q? and ¢ >>k for relevant k values. This occurs
whenever the impurity potential is not slowly varying
compared to electron wavelengths in states for which
—af /AE is large.

For comparison, results are presented here for mobili-
ties calculated with egp, both with the phase-shift
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method and with the Born approximation for the scatter-
ing rate,

2
1 Ze? |  47m* 2k, 1 1
‘ == 17
Bonk) | €w | (AKP oy | qg an

The mobility is found with the nonequilibrium distri-
bution function and may be written as

e
/"'drift:_’n_<7-># . (18)

c

Here, 7=(3,;1/7,)”!, where the index i runs over all
scattering mechanisms, and the average { ) u 18 defined as

of

3E dE . (19)

(4 )“E%fN(E)EA(E)

Since the scattering rates are added before the average is
taken, Matthiessen’s rule has not been invoked. It should
be pointed out that the mobility obtained by solving the
Boltzmann equation may differ from the mobility ob-
tained with the ‘“‘generalized Drude approach” (GDA)
used in Ref. 2. The latter method is also known as the
memory-function*? or force-force correlation function*
approach. It yields an approximate result for the con-
ductivity for arbitrary frequency of the applied field. The
GDA mobility is determined from the zero-frequency
limit of the imaginary part of the memory function.*?
For the case of elastic scattering from impurities,

2N; w
GDA_ _€¢ .. i Q Imle=Yq.0
Mdrift m, w—»O 3n f(z )3 m (q, )
-1
—e Ygq,0)] ,
where w12,=477-e2n /€,m*. It can be shown that, using

the RPA dielectric function €gp,,

opa__€ 1
= (20)
Medrify m, (1 /7_)“
where 1/7(E) is determined in the Born approximation,

as in Eq. (17). After making the isotropic approximation
used here, Egs. (3.16) and (3.17) of Ref. 2 become equal to
(1/7),. The GDA result for the resistivity due to im-
purity scattering is equivalent to the lowest order varia-
tional solution to the linearized Boltzmann equation,* in
which one assumes as trial function
g(k)=—(ae&/A)0f /dk. The variational principle
determines the optimum value of a to be (1/7) 1. At
nonzero temperatures, (1/7')“ is greater than 1/(7) w
though they become equal in the degenerate limit. The
ratio of 1/(r), to (1/7), is easily shown to be
37/32=0.29 in the classical llmlt 45 assuming an energy
dependence 7(E)x E3/2, Figure 1 is similar to Fig. 1 of
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FIG. 1. Electrical resistivity vs temperature in silicon for im-
purity scattering only. The donor concentration is 4X 10'8
cm>. The upper curve is the GDA result and the lower curve

is the Boltzmann equation result in the RPA Born approxima-
tion.

Ref. 2 and shows a comparison of the GDA and
Boltzmann-equation solutions for the temperature depen-
dence of the electrical resistivity of Si due to impurity
scattering only. It is evident that significant differences
arise between the two solutions in systems away from the
degenerate limit. A similar observation was made by Lai
and Ting*® for a two-dimensional semiconductor system.
The more accurate result is the one obtained by solving
the Boltzmann equation. The Kubo formula, which is
the exact result for the linear response to an applied field,
reduces to the linearized Boltzmann-equation result in
the weak-coupling limit for the case of elastic scatter-
ing.*”*® The full (nonlinearized) Boltzmann equation for
electron-impurity scattering can be rigorously derived in
the same limit with the Keldysh formalism.** The
“weak-coupling” criterion and the range of validity of the
Boltzmann equation are discussed in the next section.

Figures 2 and 3 show the calculated donor concentra-
tion dependence of electron mobility in silicon at 300 and
77 K compared to experiments>>>! on phosphorus-doped
samples. A few points are immediately noticeable. (1)
The phase-shift method yields electron mobilities in n-
type silicon that are consistently lower than those ob-
tained in the Born approximation. (2) Mobilities calcu-
lated with LTFA screening and phase-shift cross sections
are higher when the screening length is optimized with
the Friedel sum rule. Thus satisfaction of the rule does
not improve agreement with experiment for this case. (3)
RPA yields mobilities that are significantly lower than
the LTFA values for all densities at 77 K and in the
higher concentration range at 300 K. (4) At both temper-
atures, the RPA phase shift results are higher than the
experimental values in the lower concentration range,
while agreement appears to be rather good at the high
end. The experiments determined donor concentration
from Hall measurements, assuming that the ratio of Hall
to drift mobilities is unity at room temperature. There is
evidence®? that this ratio differs from unity in the
10'7-10" ¢m™? concentration range and can be as high
as 1.3 at 108 cm ™3,
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FIG. 2. Electron mobility in n-type silicon at 300 K. The
calculated curves are labeled as follows. TF: LTFA screening;
RPA: RPA screening; F: LTFA screening optimized with the
Friedel sum rule; STLS: screening with A/égris; Born: Born
approximation cross section; ps: phase-shift cross section.
Values from the computer fit to experiment by Masetti, Severi,
and Solmi (Ref. 50) are indicated by X.

IV. LINEAR SCREENING
AND THE FRIEDEL SUM RULE

In this section it is shown that, for fixed nonzero tem-
perature, the dimensionless Coulomb coupling constant
of an interacting electron gas is nonmonotonic in density
and that, whenever it is large, the LTFA and RPA
theories predict that the electron-ion interaction is
strong. In this case, linear screening theory, the Born ap-
proximation for the electron-ion scattering rate, and the
electron-impurity Boltzmann equation are all question-
able. Strong violations of the Friedel sum rule can be in-
terpreted as a signal of the breakdown of perturbation
theory in the electron-ion coupling on which all three ap-
proximations are based.
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FIG. 3. Electron mobility in n-type silicon at 77 K. Calculat-
ed curves are labeled as in Fig. 1. The experimental values of
Yamanouchi, Mizuguchi, and Sasaki (Ref. 51) are indicated by
X (Ry /p) and O (1/nep).
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The dimensionless measure of the importance of
electron-electron coupling in an interacting electron gas
is the ratio of Coulomb to kinetic energies.>> In the clas-
sical limit of high temperature and low electron density,
this ratio is

eZ
€.4a

oo

/Gy =31,

where a =(3/4mn)!/3 is the radius of a sphere of volume
1/n, referred to as the Wigner-Seitz radius. When quan-
tum effects are important as in a degenerate doped semi-
conductor, the kinetic energy is measured by E; and the
energy ratio is

2/3
2 /
———e :r’=2
€.aEp °

4n val
9

rs ,

where r,=a /ag, and apy =#’¢,, /m*e’. Notice that T in-
creases with density, whereas r; decreases with density.
In passing from the classical to the degenerate limit, the
electron-electron coupling strength is not a monotonic
function of density. The expressions for the classical and
degenerate limits are equal at kzT=2/3E;. Thus,
viewed as a function of density for constant temperature,
the coupling strength is expected to have a maximum
near ©=2. A function which describes the electron-
electron coupling strength for arbitrary degree of degen-
eracy is

eZ

cee=———ewa(KE) , 1)
where
“g |- |NE)aE
0 aE 611'92 n
(KE)= == - @2
%|_of o 4TF
J, l op |V(EME

The last form for (KE ) follows from Eq. (12). Dandrea,
Ashcroft, and Carlsson'® have proposed a similar func-
tional form for the coupling strength of an electron gas of
arbritrary degeneracy. However, they chose for (KE)
an average over the entire electron distribution function,
f(E), rather than only over the part describing electrons
available for interactions, —df /dE. Therefore, their ex-
pression differs in the degenerate limit.

The function C,, together with its degenerate and clas-
sical limits is plotted in Fig. 4 for 300 and 77 K. The plot
shows that C. > 1 for heavily doped silicon at 300 K and
for a broad range of concentrations at 77 K, indicating
that the electron-electron interactions cannot be con-
sidered weak in these regions.

The electron-electron coupling strength defined above
may be written as

Cee=2g%ra’, (23)

an exact relation for arbritrary degeneracy, showing that
strong electron-electron coupling implies g small com-
pared to a, equivalent to strong screening in the LTFA.
This is the “dilute-gas limit,” but does not correspond to
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FIG. 4. Electron-electron coupling constant C,, vs electron
concentration for 300 and 77 K. Also shown are
r,=2(8/37)**r, and I'"=2/3T at the two temperatures.

the lowest impurity concentrations since gqp increases
rapidly with decreasing density as the system moves to-
ward nondegeneracy. In the extreme degenerate and
nondegenerate limits, ¢g1f ~a and impurities should be
thought of as overlapping. However, for doped silicon in
the semidegenerate regime, this is not the case.

To define a convenient dimensionless measure of the
electron-ion coupling strength, C,, one can choose the
LTFA impurity potential ¢;rpa(r) evaluated at g1¢ to
represent the electron-ion potential energy. Then, for
zZ=1,

2
< drexp(—1)

Cei (KE) : (24)
When C,, is large, C,; is large as well. Comparison of
Egs. (21), (23), and (24) shows that C,;=0.78C2/%. In the
strong screening limit, electrons and impurities are most
strongly interacting. Since €gpa(q) < €;1ra(q), impurities
are screened less and the electron-impurity coupling is
stronger in the RPA than in the LTFA for the same
value of C.. The difference should be greatest when
g1 /k is large for interacting electrons, since then the
RPA differs most from the LTFA. It is shown next that
C,; is the Thomas-Fermi measure of validity of linear-
response theory for screening of impurities by electrons
and for scattering of electrons by impurities.

The Thomas-Fermi expression for the electron density
in the presence of ¢,,, has the same functional form as for
the unperturbed density, but with the chemical potential
i shifted by e¢(r). The screening density is then
dn(r)=nl{uted(r)/kgT]—n(u/kgT). In the LTFA,
8n is calculated by Taylor expanding the perturbed densi-
ty and retaining only the linear term. Using Eq. (22) to
write C,; =qg3rexp(—1)/6mn shows that a small C,; im-
plies a small linear term compared to the unperturbed
density, that is, eddn /3u =g pexp(—1)/47 <<n. At 77
K, the linear screening density is actually larger than the
unperturbed density from 5X 10'7 to 5X 10" cm 3, indi-
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cating that linear screening theory is not reliable in this
range. In a study of the nonlinear Poisson equation in
the Thomas-Fermi approximation, Meyer>* established a
similar criterion that if the quadratic term is small com-
pared to the linear one, the linear screening approxima-
tion is adequate. Both criteria require that the electron-
impurity potential energy be weak in comparison to a
characteristic electron energy in order for the linear
theory to be valid.

The Born cross section is also a first-order approxima-
tion. Figure 5 shows the concentration dependence of
Hp /My the ratio of Born to phase shift mobilities for 300
and 77 K in the LTFA and RPA. The Born results ap-
proach the phase-shift results in the most nondegenerate
regime studied, low densities at 300 K. In this limit one
finds also from Fig. 5 that (grg/k )*=#q%:/2m*(KE)
is small, consistent with the fact that the Born approxi-
mation is  valid for  high-energy  scattering
electrons. In the semidegenerate regime (gyg/k )? is gen-
erally not small for silicon. From the definition of C,

# ‘I%F P 9TF43B
2m* (KE) “2exp(—1) °

(25)

Since grpag ~1 when C,; is maximum, (g1p/k)? cannot
be small unless C; is small.

For low-energy scattering from the LTFA potential,
the criterion for the validity of the Born approximation is
2/agqrr << 1, roughly the condition that the screened
potential not be attractive enough to form a bound state.
Equation (25) shows that if 2/aggrr <<1, then C; can-
not be very large, even if (gpg /k)*> 1. Therefore, in this
case also, the Born approximation cannot be valid if C,;
is large. Figure 5 shows that the Born results differ
significantly from the phase-shift results at 77 K. As ex-
pected, ug /p, is greater for the RPA than for the LTFA
when g /2k is large.

If the Born approximation for the phase shifts is valid,
the LTFA ion potential exactly satisfies the Friedel sum
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FIG. 5. Ratio of Born to phase-shift electron mobilities for
n-type silicon calculated in the RPA and in the LTFA. The
upper set of curves is for 77 K and the lower set is for 300 K.
For comparison, g /k is indicated by the dotted lines.



46 THEORY OF SCREENING AND ELECTRON MOBILITY: ...

rule.’® The right-hand side of Eq. (1) is plotted in Fig. 6
as a function of concentration for 300 and 77 K. If the
rule was perfectly satisfied, the curves would have a con-
stant value of unity. The strongest violation of the sum
rule does not necessarily occur precisely where C,; is
maximum. In all cases studied, it occurs when the im-
purity potential is just strong enough to form its first
bound state. As the density is decreased for fixed temper-
ature, more bound states develop, but the sum rule be-
comes increasingly well satisfied as grra becomes small.
These facts indicate that in order for the rule to be
strongly violated, grra must be large and the potential
must be strong enough to form a bound state. This is in
accord with Friedel’s observation that, for a strong and
localized perturbing potential, the rigid band model for
the energy spectrum of an alloy or a doped semiconduc-
tor fails near a band edge since bound states are formed
there from extended states.® In this case, doping is not
well described by a small, rigid shift in energy of the
whole curve of the density of states, because the bound-
state energies vary much more rapidly with the perturba-
tion than do those of the extended states.

The criterion that C, be small in order for linear
screening theory to be valid is derived from the Thomas-
Fermi theory, which breaks down when ¢(r) is not slowly
varying compared to the scattering electron wavelength.
It does not account for the polarization of the screening
electrons by the colliding electron and hence is not as ac-
curate as the RPA for the large-angle scattering charac-
teristic of potentials that are short range in comparison
to the scattering electron’s wavelength.”’ Linear screen-
ing can be valid when the Thomas-Fermi theory is not.
This explains why RPA gives better results when g /k
is large and the potential is not strong enough to form a
bound state. On the other hand, the strong violations of
the Freidel sum rule by the RPA screened potentials in
the 10'8-10"-cm ™3 range at 77 K are a signal that linear
screening theory is not valid under these conditions.

The criterion for the validity of the Boltzmann equa-
tion for transport in normal metals is usually stated as

a
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FIG. 6. Friedel sum vs concentration. The set of curves
which are upper at the left side are for 77 K and the lower set is
for 300 K. For comparison, g /k is indicated by the dotted
lines.

15 131

#i/T(Ep) <<Ep or kil >>1, where I denotes the mean free
path of the electron.®® Chester and Thellung*’ showed
that, when this criterion is satisfied, the Boltzmann equa-
tion for elastic scattering is an accurate approximation to
the exact Kubo formula for the electrical conductivity of
a metal. Their method was to expand the conductivity in
powers of A, where A measures the strength of the
scattering potential. They found that the higher-order
terms are negligible when #/7 <<Eg. In the present dis-
cussion, C; plays the role of A. A natural generalization
of the validity criterion for arbritrary degeneracy is

~li—<<(KE), (26)
(1),

where (7), is as defined in Eq. (19). Figure 7 shows that
the criterion is not well satisfied when C,., and conse-
quently C,;, are large. (See Fig. 4.) When inequality (26)
is violated, the momentum #k can no longer be con-
sidered a good quantum number, the scattering events be-
ing too frequent for it to become well defined between
them. This breakdown of the description in terms of
electrons undergoing independent scattering events is due
to the fact that the electron’s de Broglie wavelength is
long relative to the spacing between impurity potentials.
Recalling that C,; < (gga)’, it is clear that the condition
is violated when the screening length is small compared
to the spacing between impurities, not when the impurity
potentials are closer to overlapping. A similar conclusion
was reached by Meyer and Bartoli*® on the basis of the
equivalent criterion 75, /7 <<1, where 7, is the duration
of the collision and 75 is the relaxation time.

If grra << 1, one expects again a breakdown of the pic-
ture of quasiparticles with well-defined momentum
scattering from one ion potential at a time, since in this
case the ions overlap. An intuitively clear criterion
which includes both types of breakdown has been pro-
posed:*

3

S1. (27)

1 3

2gypa

T T T T T T T T T

h/(7)./(KE)

PR |

10" 10
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FIG. 7. Validity criterion for the Boltzmann equation.
1/{r),is an average RPA phase-shift relaxation time as defined
in Eq. (19). (KE) is as defined in Eq. (22).
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Setting k =k and using the definition of C,, this expres-
sion can be rewritten as
32

0.01 c.sl. (28)

et

a
+0.45 |2

The highest value of C,; of the cases considered in the
present work is 2.8 for a concentration of 6X10'® cm™>
at 77 K. The second term on the left-hand side of (28)
then has the value of 0.52, suggesting that the validity of
the Boltzmann equation is becoming questionable in this
situation, despite the apparently good agreement with ex-
perimental results shown in Fig. 3. Inequality (27) does
not explain why agreement with experiment is poor for
the lower concentration range at 300 K where C, and
(gpp/k)? are small. At 10" cm™3, grpa=1.5 and
C,.;=0.28, making the left-hand side of (28) very small.
It appears that the discrepancy in this range cannot be
explained in terms of a breakdown of the theory due to
strong coupling, and random potential fluctuations asso-
ciated with overlapping impurity potentials appear ir-
relevant. However, a criterion for well-defined quasipar-
ticle momenta derived from an energy spectrum analysis
more sophisticated than the rigid band model used here
might show a violation in this region.

V. LOCAL-FIELD CORRECTION
AND COMPRESSIBILITY

The RPA dielectric function accounts for electron-
electron interactions only via the Coulomb potential of
the average charge density. Beginning with Hubbard,*
generalizations of the RPA have represented short-range
effects as a local-field correction to the average field. In
the approximation of a static LFC, G(q), the frequency-
dependent dielectric function, €; g, for a multiple-valley
semiconductor is

nvalvq‘”P(”(q,w)

€Lpclg,0)=1— , (29)
Lrcid 1+0,°G(9)P (g, 0)
where
(E)—=f(Eyiq)
P (g, 0)= 2 fd3k fE—f ktq)
(27)° E,—Ey qtfio+i8
is the noninteracting electron polarizability. Singwi

et al.® developed a method for including exchange and
correlation effects by expressing G(q) as a functional of
the static structure factor S(q),

3 e’
Glg=—L1 [42 (2909 (5q1q)-1]. GO
n< (2m) q'
Using the fluctuating-dissipation theorem to relate S(q)
and e(q,w), they iteratively solved three coupled equa-
tions to find € pc at T=O0. Tanaka, Mitake, and

Ichimaru* generalized the method to nonzero tempera-
tures. In this case, the relation between S and € is

1

1
1—e ~BAw Tm

elg,w)

’

#i o do
S(g)+ N8, o=——— [~ 22
q 4,0 nvqoo f—w T

(31)
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The fast converging method presented in Ref. 4 was used
in the work presented here to solve Egs. (29)-(31).
Though €;gc can differ dramatically from egp, when
the electron-electron interaction is strong, the local-field
correction does not have a large effect on the electron-
impurity interaction for the following reason. An elec-
tron scattering from an impurity interacts with the
screened potential v,"(pey+8p) =6, /€(q) plus an
exchange-correlation potential ¢,.(q) due to its interac-
tions with the other electrons.®’ Therefore, the cross sec-
tions and mobility are determined by the electron-test
charge interaction potential ¢, rather than the test
charge-test charge interaction potential ¢, = ¢, /€,

Bl D=0/ @+ b =bula) G L G2
where

Alg@)=[1+v,°G(q)P ()] " .

In the RPA, the local-field factor G =0 and therefore the
vertex function A(q) is equal to unity. The results of the
present study show that values of A /egyyg are similar to
those of 1/€gpa, leading to only slight modifications of
mobilities® as seen in Figs. 2 and 3.

Nevertheless, the dielectric function € ¢ itself differs
significantly from egp, when the electron-electron cou-
pling is strong, reflecting changes in important properties
of the system when the interaction is turned on. As was
shown in the last section, the coupling is strongly temper-
ature and density dependent. The weak-coupling RPA is
exact in the high-density limit for the degenerate electron
gas, but in the low-density limit for the nondegenerate
case. In the intermediate regime, €gp, is not accurate.

The RPA gives the noninteracting electron value of the
isothermal compressibility K. =g3p€,/4me’n?. Fig-
ure 8 shows the ratio of the noninteracting gas compressi-
bility K 4. to K for 300 and 77 K. Taking the g —0 limit
of €. rc(¢,0) and comparing to Eq. (2) shows that the ratio
is
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FIG. 8. Ratio of noninteracting to interacting electron-gas
compressibilities vs concentration. The vertical lines on the
curves are at ©=1.
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— =1y ||, 33
K Y1z 33)
where
1 @
=—— - 34
S T S dals(@—1] (34)

is a measure of the electron-electron interaction energy
per particle,

_znvl 82
Eint=—1r . ;:kﬁ . (35)

Comparison of Egs. (33) and (35) with Eq. (22) for the
average kinetic energy of interacting electrons shows that

Kfrec Eint
=1+ .
K (KE)

(36)

Therefore, K., /K is minimum when —E;, /(KE) is
maximum.

The critical condition for diverging compressibility is
Eft=—(KE) . 37

Figure 8 shows the result that K. /K <0 for a broad
range of electron densities at 77 K in n-type silicon.
These results are not unlike those found in the classical
and degenerate limits of the electron-gas problem scaled
so that m*=e_=n,, =1. For the zero crossing at lower
density, we find that the critical coupling value lies at
I'=2.2 between the STLS value of I'=1.3 found by Berg-
gren'! and the Monte Carlo value of I' =3 found by Han-
sen.!® For the upper crossing, we find a critical coupling
of r,=1.1, smaller than either the STLS (Ref. 3) value of
r,=3 or the Monte Carlo value of r,=5.4 found by
Ceperley.!” Except for the fact that the zero crossings
observed for silicon at 77 K occur when the system is not
quite in the classical or degenerate limits, the difference
between our results and the previous STLS calculations is
due to the n, factor, the only nonsimple scaling parame-
ter in the problem.

Negative values for the total compressibility of a sys-
tem signal an instability.®* However, two qualifying re-
marks should be made here. First, the free energy of the
system may be found through a coupling-constant in-
tegration over the interaction energy.® Consistency re-
quires that the second derivative of the free energy with
respect to volume give the same answer for the compres-
sibility as obtained with Eq. (2). For T=0, Vashishta
and Singwi* found that K. /K becomes negative at
lower electronic densities with the free-energy method
until they introduced an improved LFC. Second, even if
the two methods give the same result of negative elec-
tronic compressibilities, it should not be concluded that
an instability could take place in an ordinary bulk-doped
semiconductor. When the contribution of the neutraliz-
ing background is properly included, the total compressi-
bility may not be negative.'>>* The local electric field
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created by a density fluctuation prevents it from building
up indefinitely.!* Nevertheless, the negative K values do
indicate that the model used for the study of transport
properties may be inadequate to describe the real system
for low temperatures and densities. In the previous sec-
tion it was shown that strong electron-electron coupling
can imply an even stronger electron-ion coupling in linear
screening theory. In the presence of ionized impurities
the strong-coupling electrons should prefer to occupy the
bound impurity states than to spontaneously compress to
a liquid state. This suggests that the assumption used
throughout the calculations presented here, that all im-
purities are ionized, is not valid. However, there is exper-
imental evidence® that free-electron densities at 77 K in
doped silicon are nearly the same as at room temperature
for this impurity concentration range.

VI. CONCLUSION

Combination of phase-shift cross sections with RPA
dielectric screening of impurity potentials yields calculat-
ed electron mobilities for n-type silicon that agree with
experiment better than LTFA phase-shift or RPA-Born
results do. Inclusion of exchange and correlation effects
through the finite-temperature STLS dielectric function
does not alter the electron interaction with RPA screened
impurity potentials by much. A significant discrepancy
between theory and experiment persists near 10'® for
both 300 and 77 K. An examination of the conditions for
validity of linear screening theory has shown that the
largest discrepancies with experiment occur at lower con-
centrations than where the theory appears to be most
questionable. This fact suggests that simply revising the
present model to incorporate nonlinear screening will not
eliminate the disagreement with experiment. Improve-
ments over the approximate deformation-potential treat-
ment of electron-phonon scattering used here would cer-
tainly be worthwhile, especially at 300 K in the lower im-
purity concentration range. However, the disagreement
with experiment is not well explained by inaccuracies in
accounting for electron-phonon effects, since phonons
have a negligible influence compared to impurities at 77
K.

In the light of Friedel’s remark®® that the rigid-band
model fails near the formation of bound states, it is likely
that a more realistic density of states for doped silicon
would alter the mobility results. In fact, calculations by
Serre and Ghazali® and Lowney®’ show that the density
of states of doped silicon is significantly altered from the
simple model used here, particularly at and below the
dopant concentration where the first bound state forms.
Also, their analyses of the spectral density of the electron
states under these conditions show that momentum is not
a good quantum number near the conduction-band edge.
Therefore, electrons in these states should have lower
mobilities than the values obtained with the Boltzmann
equation and the unperturbed dispersion relation. It
would be very interesting to see an application of a realis-
tic density of states to a study of transport properties for
doped silicon.
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