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A microscopic theory for the interaction of intense laser radiation at visible and near-infrared wave-
lengths with free electrons in a wide-band-gap solid is presented. We calculate the free-electron mediat-
ed energy transfer from the laser field to the solid and the electron-multiplication rate due to band-to-
band ionization as a function of laser intensity at wavelengths in the range 250 nm <A <10 pum, using
SiO, as an example. The formalism is based on a Monte Carlo integration of the Boltzmann transport
equation. The electron interaction with the lattice is described in terms of polar and acoustic-phonon
scattering. Band-to-band impact ionization is included using an empirical, Keldysh-type impact ioniza-
tion rate. The interaction of the laser radiation with the free electrons is treated both within the stan-
dard classical approximation and quantum mechanically using second-order perturbation theory. We
find that the classical approach to the electron-laser field interaction is valid for A >2 pum, while reliable
results for short wavelengths, A <1 um, can only be obtained by using the quantum approach. Second-
order perturbation theory is found to fail at long wavelengths, A > 1 um. Both methods are inaccurate
for A=~1 um, yielding only upper and lower bounds for calculated quantities. For A>2 um the calculat-
ed quantities are found to be close to the values obtained in the dc limit, using a dc field equal to the rms
value of the ac field. For A <1 um the electron-multiplication rates decrease dramatically as wave-
lengths become shorter indicating that multiphoton absorption becomes the dominant mechanism for
free-electron generation at visible wavelengths. At all wavelengths the theory predicts efficient free-
electron mediated energy transfer from the laser field to the lattice. It is therefore possible to observe
significant lattice heating caused by free electrons generated via multiphoton absorption in the prebreak-
down regime. These findings are shown to be consistent with recent laser experiments [S. Jones, P.
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Braunlich, R. Casper, X. Shen, and P. Kelly, Opt. Eng. 28, 1039 (1989)].

I. INTRODUCTION

For decades, the breakdown of transparent (wide-
band-gap) solids under the action of an intense laser pulse
at visible and near-infrared wavelengths has been attri-
buted to electron avalanche formation. Since its first ap-
plication, the electron avalanche theory has been
modified and refined by many authors.'”> Most
modifications were geared towards a more realistic treat-
ment of the electron-phonon interactions and their ener-
gy dependence. All theories, however, have the following
basic, simple, and elegant concept in common. Break-
down is assumed to occur above a critical laser intensity
(or laser field) because the rate of energy gain from the
laser field by a few free electrons exceeds the rate of ener-
gy loss to the lattice by phonon scattering. These starting
electrons with density n, rapidly accelerate to kinetic en-
ergies larger than the forbidden band gap, undergo im-
pact ionization, and cause free-electron multiplication,
leading to an exponential increase of the free-electron
density, n(t)=n,2#"" during a laser pulse. Electron
densities of the order of 10'® cm ™3 are quickly reached,
damaging the crystal by excessive Joule heating. The
electron-multiplication coefficient B(F) itself is a strong
function of the laser field, F. These theories predict,
therefore, that the material will go from ambient temper-
atures with n, to high temperatures with n >10'® cm™?
over a very narrow laser intensity range, with no measur-
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able precursor at lower intensities announcing the im-
pending destructive breakdown. The breakdown intensi-
ty (or breakdown field) is thus the only measurable quan-
tity. The detailed nature of the electron-phonon interac-
tion is important only to the extent that it determines the
threshold laser intensity for avalanche runaway.

Recent experimental studies in ultrapure alkali halides
and in SiO, on the nonlinear interaction between high-
intensity pulsed laser beams and transparent solids have
revealed difficulties with the applicability of the electron
avalanche theory of laser-induced breakdown at visible
and near-infrared wavelengths. A detailed discussion of
these experimental results and their implications on
breakdown theories can be found in a review by Jones,
Braunlich, Casper, Shen, and Kelly.® In one experiment,
these authors measured the lattice heating by short single
laser pulses at a wavelength of 532 nm using photoacous-
tic detection. It was determined that the lattice tempera-
ture increases gradually as a function of laser intensity
and that breakdown occurs when the solid reaches a tem-
perature close to its melting temperature. Such a gradual
temperature increase with increasing laser intensity can-
not be explained in terms of the electron avalanche
theories. They concluded that the dominant free-electron
generation process is multiphoton absorption rather than
impact ionization and that simultaneous free-electron
mediated energy transfer from the laser field to the lattice
(referred to as “free-electron heating” below) is responsi-
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ble for the lattice heating. They obtained a quantitative
description of their experiment by combining the theory
for free-electron heating developed by Epifanov and co-
workers*’ with the concept of free-carrier generation by
multiphoton absorption. They also confirmed the results
of their photoacoustic experiments by measuring the
luminescence of the self-trapped excitonic recombination
in the prebreakdown regime. The picture, that virtually
all lattice heating occurs via nonlinear absorption of laser
photons by multiphoton excited free electrons, was fur-
ther supported by a series of two-color experiments per-
formed on NaCl and SiO,. In these experiments free
electrons were generated by a 266-nm pump pulse via
three-photon absorption and a delayed 1.064-um pulse
was used to probe lattice heating in the presence of the
generated electron density. The two-color experiment
gave the researchers independent control over the start-
ing electron density and the lattice heating. In this
manner, they determined that strong lattice heating
occurs due to the 1.064-um pulse, demonstrating that
free-electron heating is an efficient process for energy
transfer from the laser field to the lattice.

Theoretically, the validity of the avalanche breakdown
model has been investigated by Gorshkov, Epifanov, and
Manenkov.” They discussed a breakdown model in
which both impact ionization and multiphoton absorp-
tion are considered as carrier generation processes and
showed that a transition from avalanche-induced break-
down to breakdown triggered by lattice heating via
multiphoton-generated free electrons may occur at near-
infrared wavelengths. At visible wavelengths multipho-
ton absorption is expected to be the dominant carrier
generation process in wide-gap solids. Each of the two
breakdown mechanisms thus has its range of operation
on the wavelength scale and on the laser pulse length
scale. For example, at a wavelength of 1.064 um, seven
to eight photons are required to cross the forbidden band
gap of NaCl and SiO, in a multiphoton process, exclud-
ing multiphoton absorption as an efficient carrier genera-
tion process, while it has been shown to be an efficient
process at 532 and 266 nm.® Mixed cases, where both
carrier generation processes are important, are likely un-
der some experimental conditions. A dependence on
pulse length arises because impact ionization causes the
electron density to increase exponentially with time,
while multiphoton absorption causes it to increase linear-
ly with time.” A theoretical analysis of these issues re-
quires that the multiphoton-absorption cross section, the
impact ionization coefficient, and the free-electron medi-
ated energy transfer rate from the laser field to the lattice
must be determined as a function of laser intensity for the
wavelength and the solid in question. Multiphoton-
absorption cross sections are difficult to calculate, and re-
liable values have been obtained experimentally only for a
few materials at a few wavelengths. The free-electron
heating and the electron-multiplication rate, however,
can be calculated by solving the Boltzmann transport
equation for free electrons in the conduction band in the
presence of the laser field. Unfortunately, in order to ob-
tain an analytic solution, Gorshkov, Epifanov, and
Manenkov’ had to make a number of simplifying assump-
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tions which preclude the possibility of making quantita-
tive predictions.

In this paper we present a theoretical study of the in-
teraction of high-power laser radiation at optical and
near-infrared wavelengths in wide-gap solids using SiO,
as an example. Our method is based on a Monte Carlo
integration of the Boltzmann transport equation for free
electrons in the presence of high-intensity optical radia-
tion. Our numerical approach allows for the inclusion of
the full energy dependence of the various scattering rates
and eliminates many uncertainties arising from approxi-
mations necessary to obtain analytically tractable equa-
tions in previous theories.! >’ The method allows the
simultaneous calculation of the energy transfer from the
laser field to the lattice by free-electron heating and the
calculation of carrier multiplication due to impact ioniza-
tion in a self-consistent manner. We thus obtain two
basic quantities describing the laser-solid interaction
which can subsequently be used in a rate-equation ap-
proach’ to calculate the energy transfer from the laser
field to the solid or the temperature increase during a
high-power laser pulse including the variation of the laser
field in space and time.

We apply two different methods for the description of
the interaction between the laser field and the free elec-
trons. We use a classical approach, where the laser field
is treated as an alternating electric field at the laser fre-
quency, and we use a quantum-mechanical approach by
applying second-order perturbation theory. Second-
order perturbation theory has previously been applied to
semiconductors, for example, to calculate the change of
refractive index due to free carriers.>® In most theories
of laser breakdown, the laser field has been treated as an
alternating electric field. In this approach the quantum
nature of the photon field is neglected and the kinetic en-
ergy changes continuously in time. Such an approxima-
tion is not valid when the average electron energy is small
compared to the photon energy, which is the case at low
fields and short wavelengths. Sparks et al.!° use the clas-
sical approach for the electron-photon interaction at
wavelengths A>1 um in alkali halides. Similarly, Epi-
fanov* and later Gorshkov, Epifanov, and Manenkov’ es-
timated that this approach is valid for E, /%iw <5, where
fio is the photon energy and E, is the band gap of the
material. At shorter wavelengths, Gorshkov, Epifanov,
and Manenkov’ have also used a differential-difference ki-
netic equation to extend their theory to shorter wave-
lengths. Our study will compare the applicability of the
two methods and will show that both methods have limit-
ed applicability at visible and near-infrared wavelengths
in SiO,.

We have chosen SiO, as a subject for our numerical
calculations for a number of reasons. First, the electron-
phonon scattering and impact ionization rates in SiO, are
reasonably well known from direct measurements.!! ™13
This is important since any prediction of the theory de-
pends critically on a detailed knowledge of the electron-
phonon scattering rates and of the impact ionization rate
and their respective energy dependencies.!® Second, the
hot-electron dynamic in SiO, under high dc electric field,
which can be considered as the limit of long laser wave-
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length, has been intensely studied experimentally and
theoretically.’* 17 It is well established that the simple
electron avalanche breakdown model based on polar pho-
non runaway'®~?* is incorrect in SiO,. The electron ener-
gy distribution is known to become unstable and run
away from near-thermal energies at 1.5 MV/cm. Howev-
er, impact ionization does not occur since the electron
distribution is restabilized at average electron energies
well below the threshold for impact ionization, even for
dc electric fields of 6 MV/cm. This happens because the
frequency of electron scattering with acoustic phonons
increases rapidly with the electron energy. Third, some
of the experiments of Jones, Braunlich, Casper, Shen, and
Kelly® were performed on SiO,, allowing a direct com-
parison to our calculations.

In Sec. II we discuss the theoretical models used. We
only briefly summarize the methods used for the calcula-
tion of the electron-phonon scattering rates since our ap-
proach in these respects is identical to the methods previ-
ously discussed in the context of dc transport in SiO,.
The use of second-order perturbation theory for the
laser-field —free-electron interaction is discussed in detail.
In Sec. III we present typical results of the Monte Carlo
simulations in SiO, for both treatments of the laser-
field-free-electron interaction. The two methods are
compared and their range of applicability on the wave-
length scale is discussed. In Sec. IV we present calcula-
tions for realistic laser experiments by incorporating the
Monte Carlo transport results into a set of rate equations
for the evolution of the free-electron density and of the
energy transfer to the lattice. The results are compared
to experimental data, and predictions for feasible laser ex-
periments are made. We also discuss limitations and pos-
sible extensions of our theory.

II. THEORY

A. Monte Carlo simulation
and the electron-phonon interaction

The approach used to solve the Boltzmann transport
equation in SiO, is based on the earlier dc Monte Carlo
transport formalism of Fischetti.'>?* The treatment used
here is modified mainly with respect to the choice of the
phonon scattering rates. The electron states in the con-
duction band are described in the quasi-free-electron ap-
proximation using a single band with one minimum in
the extended zone scheme of Sparks et al.' We thus
neglect the detailed atomic structure of SiO,. This ap-
proximation yields good results for high-field transport
properties even when modeling experiments for amor-
phous SiO,. Several arguments have been presented to
explain this fact. For example, the phonon scattering
rates in SiO, are large, such that the mean free path of
electrons is less than 1.5 nm for kinetic energies above 63
meV, the smallest LO-phonon energy. Since amorphous
SiO, has local order on a length scale of 2—3 nm, hot-
electron transport is believed to be insensitive to disor-
der.?’ Density-of-states effects are approximated by using
an energy-dependent effective mass. The energy depen-
dence of the mass is derived from measurements of the
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energy-dependent electron mean free path.

The interactions of the free electrons with the phonons
are treated with time-dependent first-order perturbation
theory using experimental values for the coupling con-
stants. Polar optical scattering, acoustic phonon scatter-
ing, and impact ionization are included. The interaction
with the polar optic phonons is treated with the Frohlich
Hamiltonian,'>?® including the two dominant LO-
phonon modes with phonon energies of 63 and 153 meV.
Acoustic phonons are included using the deformation-
potential theory!>?¢ but with the deformation potential
going to zero at large wave numbers.'>?’ The electron-
phonon coupling constant was determined to be 6 eV
from transport experiments. Impact ionization is includ-
ed via the Keldysh formula:2®
2

R,=P|-L—1|, E>E, . (1)
Ey,
Here, R;; is the impact ionization rate and E is the elec-

tron kinetic energy. We have chosen a value of 1.3X 10"
s ! for the prefactor P and a value of 9 eV for the thresh-
old energy E.'>* This choice is in reasonable agree-
ment with the impact ionization rate derived from the
dielectric function.”® The resulting energy dependences
of the various scattering rates are summarized in Fig. 1.
At energies below 2 eV, the interaction of the electrons
with the lattice is primarily via longitudinal-optical (LO)
phonons. At higher energies, acoustic scattering rapidly
increases and becomes the dominant scattering mecha-
nism. Impact ionization becomes possible at energies
above 9 eV. The energy dependences of the phonon
scattering rates are similar to those calculated for alkali
halides by Sparks et al. 10 However, the absolute magni-
tudes of the various scattering rates, based on direct mea-
surements in SiO,, differ considerably from those in alkali
halides. We also use a soft threshold for impact ioniza-
tion in accordance with experimental data.'®

The Monte Carlo formalism, in combination with the
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FIG. 1. Electron-phonon scattering rates as a function of ki-
netic energy. The solid curve is the acoustic-phonon scattering
rate, the dot-dashed curve is the LO scattering rate for 153-meV
phonons, and the dotted curve is the LO scattering rate for 63-
meV phonons. The impact ionization rate is shown by the
dashed curve.
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scattering rates shown in Fig. 1, has successfully de-
scribed a wide variety of dc transport experiments in
SiO,. These include the average energy as a function of
dc electric field measured by electroluminescence,'* car-
rier separation,'® vacuum emission,!” ballistic transport
in thin SiO, films,?® high-energy tails in the electron dis-
tribution measured by vacuum emission,!”?’ electron es-
cape lengths from soft x-ray photoemission,!! '3 and sub-
strate currents in n-channel metal-oxide-semiconductor
field-effect transistors (MOSFET’s).2"3® Therefore, the
Monte Carlo formalism can be expected to give a reliable
description of hot carrier transport in the presence of
strong alternating electric fields due to laser radiation.

An alternative model for dc transport in SiO, has been
proposed.’! This theory employs a model band structure
which includes satellite valleys in the conduction band.
The dominant scattering mechanism is intervalley
scattering via transverse optical phonons rather than
acoustic scattering. It is likely that the simple single-
band approximation for the SiO, conduction-band struc-
ture is not correct. We believe, however, that the
effective mass described above compensates to a large ex-
tent for poor knowledge of the actual band structure and
that the use of experimentally confirmed energy-
dependent scattering rates is responsible for the success
of our model.

B. Laser-field —free-electron interaction

We use two approximations for the interaction of the
laser field with the free electrons in the conduction band.
The first is the standard classical approach.!”™>!°® The
photon field of the laser is treated as a sinusoidal electric
field in which the electrons move. The implied assump-
tion is that the photon energy is small compared to the
kinetic energy of the electron so that the energy gains and
losses from the field may be treated as continuous in time
rather than as a series of discrete transitions. We will
show later that electrons typically have kinetic energies
of about 5 eV for the laser intensities of interest. There-
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fore, the classical approximation is expected to be valid
for long wavelengths only.

To overcome the limitations of the classical approach
at short wavelengths, we adopt a quantum-mechanical
approach, using second-order time-dependent perturba-
tion theory. The absorption and emission of one photon
by a free electron require the simultaneous absorption or
emission of a phonon, in order to conserve momentum.
We take all phonon modes into consideration. The Ham-
iltonian for the electron-photon interaction is

e

H=—Ap. (2)
m

Here, e is the electron charge, m * is the effective electron
mass, p is the electron crystal momentum, and A is the
vector potential of the laser radiation. The total electron
energy change, due to both the photon and the phonon, is
#iw,, where # is the reduced Planck constant and w, is the
angular frequency. A general expression for the
electron-photon—phonon interaction rate can be derived
if w, is constant. This can be realized either if the photon
energy is large compared to the phonon energy or if the
phonon energy can be taken as constant. The free-
electron absorption or emission rate W can then be ex-
pressed as a function of wave vector k (Ref. 26):

. etin, A k"3
327e (#iw, ) ’m *(r +6)
X{Gmax(wt’E’B)_Gmin(wt’E’B)} . 3)

W(k)

Here, n, is the photon density, €, is the optical permit-
tivity, and w, is the photon frequency. Equation (3) is
valid if the matrix element for the phonon scattering
event can be represented as

[{(k+ql#,|k)*=A4,q", )

where q is the phonon wave vector, r is an integer, and
F, is the phonon scattering Hamiltonian. The functions
G,, are given by

r+4
Im

k
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r+4 + ar, —41n‘Im

+8, _,lng,, | , (5)

and momentum considerations. For the case of photon
absorption (+) and emission (—), the minimum and max-
imum phonon wave numbers are given by
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172 2
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Here, fiw o is the LO-phonon energy, n* is the phonon
In both cases, #iw, is a positive quantity and for emission  occupation number for phonon absorption and the occu-

it must be less than the kinetic energy. pation number +1 for phonon emission, V is the crystal

Given the matrix elements corresponding to the vari- ~ volume, and 1/e,=1/¢,, —1/¢,, where ¢, and g, are the
ous electron-phonon interactions, one can determine the  high- and low-frequency permittivity, respectively. We
corresponding optical absorption and emission rates. Us- neglect the dispersion in the LO-phonon energy. Insert-
ing the Frohlich Hamiltonian for the interaction of elec-  ing Eq. (9) into Eq. (3) thus yields for photon absorption
trons with polar phonons gives for 4, and 7, (+) or emission (—)

_ e4nvﬁwLO(2E)l/2

* T 256me,m *12fiw, ),

16 | | 9max ’ 9 min ’ 9 max ) Tmin | [#0, 1 9 max " din ||
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2
+4| =" | n % ‘ . (10)

Acoustic phonons are treated by the deformation-potential theory. We consider a linear phonon-energy dispersion
for normal processes and use the zone-edge value for phonons with larger wave numbers.!®!> The matrix element for
normal acoustic phonons using equipartition is

. ClpT

= S - (11)
2pcV

Agq

C is the deformation-potential constant, kp is Boltzmann’s constant, T is the absolute temperature, p is the crystal den-
sity, and ¢, is the speed of sound in the material. Using this matrix element in Eq. (3) yields for photon absorption (+)
and emission (—),

6
_ eZnVCZkBT(2m*)”2E3/2 9 max 4_ 9 min * +(3COSzﬁ—1) 9 max ’ 9 min
* 1927 (#iw, ) #2pc? k k k k
4 4
co T L] [ dmax | _ | Gmin
2E ~ 3 k k
2 2 2
+3 ﬁwt 9 max _ 9 min
E k k

(12)
In Eq. (12) it was assumed that the phonon energy is small compared to the photon energy. This assumption is clearly
fulfilled in circumstances for which second-order perturbation theory is valid. For acoustic umklapp processes, we in-
stead take the zone-edge phonon wgz:
. #C?
= n

2pc32V
The photon absorption (+) and emission (—) rate is given by
eln C*m*E?

= n
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FIG. 2. The electron-photon interaction rate for a wave-
length of 250 nm, an intensity of 1 TW cm™2, and the electron
crystal momentum parallel to the vector potential of the laser
radiation calculated in second-order perturbation theory. The
dotted curve is the photon absorption rate assisted by acoustic
phonons, the solid curve is the photon emission rate assisted by
acoustic phonons, the dot-dashed curve is the photon absorp-
tion rate assisted by LO phonons, and the dashed curve is the
photon emission rate assisted by LO phonons.

In the Monte Carlo simulation, all these scattering rates
must be calculated for each laser intensity and laser
wavelength at all possible values for the angles B between
the laser field and the electron momentum. As a typical
example, we show in Fig. 2 the optical interaction rates
for a laser wavelength of 250 nm and an intensity of 1
TW/cm? The electron crystal momentum is parallel to
the vector potential. For kinetic energies larger than
about 1 eV, the dominant terms are due to acoustic-
phonon-assisted interactions. This remains true for all
combinations of laser intensity, wavelength, and angle B.
Note that the optical interaction rates and the corre-
sponding electron-phonon scattering rates have a some-
what similar dependence on kinetic energy.

The Boltzmann transport formalism is valid only if the
distance between collisions is sufficiently large such that
the scattering can be treated as independent events.
From Eq. (3) one can see that the optical interaction rates
increase with the third power of the wavelength. There-
fore, above some critical wavelength, the total photon
emission and absorption rates become too large and the
quantum-mechanical interference between collision
events can no longer be neglected. A quantitative com-
parison of the two approximations will be made in Sec.
IIIC.

III. MONTE CARLO TRANSPORT RESULTS

In this section we present typical steady-state transport
results of free electrons in the conduction band of SiO,.
We calculate the electron energy distribution, average
electron energies, the energy transfer rate from the laser
field to the lattice (free-electron heating), and the impact-
multiplication rate self-consistently. These quantities are
calculated as a function of laser intensity and laser wave-
length. We will show that the use of a steady-state calcu-
lation is justified for laser pulses of durations longer than
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about 100 ps. For shorter pulses the electron energy dis-
tribution will not follow the time variation of the electric
field or the photon field in a quasi-steady-state fashion.
For longer pulses, the variation of the laser pulse in time
and space can subsequently be included in a rate-equation
approach which uses the values of our steady-state calcu-
lation as input parameters. Examples are presented in
Sec. IV.

A. Classical results

The instantaneous Kinetic energy of a sample electron
in an alternating electric field is shown in Fig. 3. This
calculation was done for a laser wavelength of 10 um and
the zero-to-peak electric-field amplitude of 20 MV/cm,
which corresponds to an intensity of 770 GW/cm? using

I=%F2ny R (15)

where F is the zero-to-peak electric-field amplitude, n is
the refractive index, and y is the admittance of free space
(0.002 66 Fs~!). Figure 3 demonstrates that the energy is
well randomized on the time scale of 1 ps. The electron
energy distribution will therefore adjust to a change of
the laser field on the ps time scale in a quasi-steady-state
fashion, and quantities calculated under steady-state con-
ditions allow an accurate description of effects by laser
pulses on the order of 100 ps or longer. The laser field
also varies in space, and strong heating and damage
occurs in a region where the laser is most strongly fo-
cused. Typical dimensions of laser beams are on the or-
der of 1 um. Separate calculations show that this dis-
tance is large compared to the electron diffusion length,
and spatial variations of the field can be reliably deter-
mined from steady-state, spatially invariant calculations.
The electron density functions are calculated from the
time average of one sample electron over a time period of
typically 1 ns using a homogeneous field in space. Re-
sults for A=10 pm and for peak electric-field amplitudes
of 2, 10, 20, and 30 MV/cm are shown in Fig. 4. In all
cases, the majority of the electrons are below 5 eV in en-
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FIG. 3. The calculated instantaneous kinetic energy of a
sample electron as a function of time. The classical approach is
used for the laser-field—free-electron interaction. The laser
wavelength is 10 um and the zero-to-peak electric-field ampli-
tude is 20 MVcm ™.
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FIG. 4. The calculated density of electrons as a function of
kinetic energy for a laser wavelength of 10 um. The classical
approach is used for the laser-field—free-electron interaction.
Curves are shown for zero-to-peak fields ranging from 2-30
MVem™!

ergy. However, a high-energy tail starts to form for fields
of about 10 MV/cm or larger, and impact ionization be-
comes possible. This can also be seen in Fig. 3, where
three impact ionization events occurred at times of ap-
proximately 0.05, 0.5, and 0.85 ps. Due to the soft
threshold for impact ionization, the electrons can have
kinetic energies above the ionization threshold of 9 eV.
The electrons gain such large amounts of energy by
chance in-phase scattering with the electric field. Only
such rare events contribute to the high-energy tail of the
electron distribution above the impact ionization thresh-
old and can excite electron-hole pairs.

In Fig. 5 the average electron energies are shown as a
function of electric field at wavelengths of 1, 2, 4, and 10
pm. These data show that there exists a threshold field
for strong electron heating which rapidly shifts to higher
field values at shorter wavelengths. The electrons remain
at near-thermal energies, simply moving back and forth
at the frequency of the electric field, until the field ampli-
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FIG. 5. The calculated average kinetic energy as a function
of zero-to-peak electric field (or equivalent laser intensity). The
classical approach is used for the laser-field—free-electron in-
teraction. Curves are shown for wavelengths of 1-10 um.
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FIG. 6. The calculated power transfer from the electron pop-
ulation to the lattice as a function of zero-to-peak electric field
(or equivalent laser intensity). The classical approach is used
for the laser-field—free-electron interaction. Curves are shown
for wavelengths of 1-10 um.

tude becomes large enough to accelerate the electron to
energies at which the acoustic scattering rate is apprecia-
ble (see Fig. 1). At these higher energies, large-angle
scattering in phase with the ac field becomes possible
since acoustic scattering, unlike polar-phonon scattering,
randomizes the momentum of an electron. We find that
the distribution functions in Fig. 4 and the average ener-
gies for the 10-um case are quantitatively similar to dc re-
sults using field values equal to the corresponding root-
mean-square (rms) electric fields. This indicates that the
dc limit is essentially reached for large electric fields at 10
pm. This is not surprising, since the period of the elec-
tric field, 3.3X 107 s, is large compared to the total
phonon scattering time (see Fig. 1).

An important quantity is the rate at which electrons
transfer heat to the lattice. In steady state this is also the
rate at which electrons absorb energy from the laser radi-
ation. This power transfer per electron is shown in Fig. 6
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FIG. 7. The calculated impact ionization rate as a function
of zero-to-peak electric field (or equivalent laser intensity). The
classical approach is used for the laser-field-free-electron in-
teraction. Curves are shown for wavelengths of 1-10 um.
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as a function of field and wavelength. There are two con-
tributions to this transfer. The contribution due to
polar-optic phonons is almost constant with electron en-
ergy, though actually slowly decreasing. In contrast, the
contribution due to acoustic phonons increases rapidly
with energy above 1 eV and peaks at about 6 eV, in a
manner consistent with the scattering rates in Fig. 1. The
combined result is a transfer of power to the lattice which
increases with electron kinetic energy and shows a func-
tional dependence on the peak field similar to that found
for the average electron energy. The impact ionization
rate as a function of electric field is shown in Fig. 7 for
laser wavelengths of 1, 2, 4, and 10 um. Again, the 10-
pum data approach the results of dc calculations at the
corresponding rms fields.

B. Quantum-mechanical results

Section III A concentrated on the long-wavelength re-
sults where the classical theory is most valid. The
quantum-mechanical theory is most valid at short wave-
lengths where the optical absorption and emission rates
are low. In Fig. 8 the instantaneous kinetic energy is
shown for a time interval of 1 ps at a zero-to-peak
electric-field intensity of 20 MV/cm. In this example the
electron absorbs photons (L=250 nm) at approximately
0.35 and 0.7 ps. In between absorption events, the kinetic
energy decreases due to phonon emission. Here optical
interactions are infrequent compared to phonon scatter-
ing events, but the interactions result in a dramatic
change in the kinetic energy. This is considerably
different from the classical results at 10 um shown in Fig.
3. The large and relatively infrequent jumps in energy
seen in Fig. 8 are reflected directly in the energy densities
shown in Fig. 9. Well-defined drops in the density of
electrons can be seen near the conduction-band
minimum, and again at an energy equal to one photon en-
ergy. The rapid decrease near zero kinetic energy occurs
because the electrons must absorb a photon to get
significantly above thermal energies. To get above 5 eV
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FIG. 8. The calculated instantaneous kinetic energy of a typ-
ical electron as a function of time. The quantum approach is
used for the laser-field—free-electron interaction. The laser
wavelength is 250 nm and the zero-to-peak electric-field ampli-
tude is 30 MVcm ™.
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FIG. 9. The calculated density of electrons as a function of
kinetic energy for a laser wavelength of 250 nm. The quantum
approach is used for the laser-field—free-electron interaction.
Curves are shown for zero-to-peak fields ranging from 2-30
MVcm™!.

of energy, the electron must absorb a second photon be-
fore it loses its energy due to either phonon or photon
emission. These sudden drops in the electron density are
less dramatic at larger electric-field amplitudes since the
optical interaction rates increase quadratically with the
electric-field amplitude. Again, a high-energy tail begins
to form at peak electric fields larger than about 10
MV/cm.

The power transfer from the electron to the lattice is
plotted in Fig. 10 as a function of field amplitude at wave-
lengths of 250 nm, 500 nm, and 1.0 um. The strong
dependence of the power transfer on wavelength reflects
the cubic dependence in the optical interaction rates in
Eq. (3). This strong wavelength dependence is even more
noticeable in the impact ionization rates shown in Fig.
11. The dramatic reduction of the impact ionization rate
and the corresponding shift of the ionization threshold
towards higher fields at short wavelength gradually elimi-

Laser Intensity (TW/cm 2)
0.0 0.1 0.5 1.0 15
15 T T T T
:g‘ ®—e 1000 nm
g ¢--4500 nm ’.’._.’._
O 4o 4 420m - ° B
N e o
2 ot
3 / .
c Y *
S gL . -
= / .
o . *
2 .
*
Do- /./ ’." aa-t A
P —A- AT
0 2 8184 -a-a-a9" ‘ I 1

0 5 10 15 20 25 30
Peak Electric Field (MV/cm)

FIG. 10. The calculated power transfer from the electron
population to the lattice as a function of zero-to-peak electric
field (or equivalent laser intensity). The quantum approach is
used for the laser-field—free-electron interaction. Curves are
shown for wavelengths of 250 nm—1 um.
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FIG. 11. The calculated impact ionization rate as a function
of zero-to-peak electric field (or equivalent laser intensity). The
quantum approach is used for the laser-field—free-electron in-
teraction. Curves are shown for wavelengths of 250 nm—1 um.

nate impact ionization as a free-electron generation pro-
cess.

C. Comparison of classical and quantum results

Based on the qualitative discussion in Sec. II, it is ex-
pected that the classical model will fail at short wave-
lengths and the quantum-mechanical model will fail at
long wavelengths. These trends are quantitatively
confirmed by our simulations as summarized in Figs.
12-14. In Fig. 12 the average kinetic energies calculated
by the two methods are compared at various wave-
lengths. The dashed curves show data using the classical
approach at zero-to-peak electric-field amplitudes of 10
MV/cm (squares) and 30 MV/cm (circles), respectively.
The dotted curves show data using the quantum-
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FIG. 12. The calculated average kinetic energy as a function
of laser wavelength. Results due to both the classical and the
quantum-mechanical treatment of the electron-photon interac-
tion are shown for zero-to-peak electric fields of 10 and 30
MVcem™!. The transition from the quantum regime at short
wavelengths to the classical regime at long wavelengths is inter-
polated qualitatively, as shown by the heavy line.
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FIG. 13. The calculated power transfer from the electrons to
the lattice as a function of laser wavelength. Results due to
both the classical and the quantum-mechanical treatment of the
electron-photon interaction are shown for zero-to-peak electric
fields of 10 and 30 MV cm™!. The transition from the quantum
regime at short wavelengths to the classical regime at long
wavelengths is interpolated qualitatively, as shown by the heavy
line.

mechanical approach at the same field values. The re-
sults show a qualitatively similar wavelength dependence
at both field values. We discuss the 10-MV/cm case
which shows the differences between the two methods
more clearly. In the classical calculation, the average en-
ergy saturates at long wavelengths at the value in the dc
limit. Below 2 um, the classical results rapidly deviate
from the long-wavelength limit and the average energy
decreases to near the thermal equilibrium value. In sim-
ple terms, this rapid transition occurs because the laser
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FIG. 14. The calculated impact ionization rate as a function
of laser wavelength. Results due to both the classical and the
quantum-mechanical treatment of the electron-photon interac-
tion are shown for zero-to-peak electric fields of 20 and 30
MVcem™!. The transition from the quantum regime at short
wavelengths to the classical regime at long wavelengths is inter-
polated qualitatively, as shown by the heavy line.
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frequency becomes much larger than the acoustic-phonon
scattering rate, making large-angle scattering in phase
with the electric field impossible. The electrons simply
oscillate at high frequency near thermal equilibrium
without gaining energy. The strong energy dependence
of the phonon scattering rate complicates this simple pic-
ture. At higher field amplitudes (see the 30-MV/cm case
in Fig. 12), the energy oscillations at the same frequency
are large enough to accelerate the electrons to sufficiently
high energy (and sufficiently high acoustic scattering
rates) that in-phase scattering becomes more likely. At
high fields, the transition to the dc limit gets shifted to
shorter wavelengths. This behavior cannot be obtained
properly from an average electron model since the energy
dependence of the scattering rates would not then be fully
included. At all wavelengths, the quantum-mechanical
method gives a higher average energy than the classical
method. Clearly, the large average energies obtained at
long wavelengths are not physically reasonable since
these values exceed the result in the dc limit. As dis-
cussed above, this divergence is due to the fact that the
scattering rates become so large that an adequate descrip-
tion of the electron transport with the semiclassical
Boltzmann equation is no longer possible. At short wave-
lengths, the scattering rates are low enough for the
quantum-mechanical treatment to be valid, and the
higher values for the average electron energy as com-
pared to the classical results are accurate. At 10
MV /cm, both approximations fail at wavelengths of the
order of 1 um since the quantum-mechanical method be-
comes inaccurate with increasing wavelength before the
classical method yields correct values and there is no
overlapping wavelength range in which both methods
yield the same results. Therefore, only estimates for the
average electron energy can be derived in the wavelength
range around 1 um. The two methods yield an upper and
lower bound to the actual average energy. In Fig. 12 we
assume the quantum-mechanical results to be valid up to
wavelength A=500 nm and the classical results down to
A=2.0 um, and we interpolate the results in the inter-
mediate range as shown. It is interesting that the two
methods tend to converge in the intermediate-wavelength
range at high fields (see the 30-MV/cm calculations in
Fig. 12). This happens because the validity range of the
classical method is extended to lower wavelengths. The
reason is that at large fields, electron heating is stronger
and the average energies remain large in comparison to
the photon energy down to lower wavelengths. Ap-
parently, the criterion of E, > 5fiw for the range of validi-
ty suggested by Epifanov and co-workers*’ for the classi-
cal treatment of the electron-photon interaction is not
strict enough. Requiring E,,. > 5fio would be more ap-
propriate. This latter condition is observed for 1-um ra-
diation in SiO, only for the largest intensities considered
in this study.

The above discussion on the wavelength dependence of
the average energies essentially applies to the power
transfer shown in Fig. 13 as well. The failure of the
quantum-mechanical method at long wavelengths can be
seen in a more dramatic way here. The values for the
power transfer become much larger than the values ob-
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tained by the classical method. The quantum results even
appear to diverge in the dc limit. This effect is due to an
overestimation of the energy transfer by the second-order
photon-phonon-electron interactions. If the power
transfer is determined only from the first-order phonon
scattering processes, then the power transfer is virtually
identical to the values obtained by the classical method at
long wavelengths. The calculated values for the impact
ionization rates are summarized in Fig. 14. Results are
shown for field values of 20 and 30 MV/cm. Again, the
discussion given for the average energies applies to the
results for the impact ionization rate except that the field
dependence is more pronounced as it depends on the
high-energy tail of the energy distribution rather than the
peak of the distribution. Therefore, we find an extremely
strong decrease in the impact ionization rate at short
wavelengths which is more pronounced than the decrease
found in the power transfer. Lattice heating by free elec-
trons remains fairly efficient at wavelengths where impact
ionization is dramatically reduced. This last finding is
important for the understanding of experimental results
as illustrated in Sec. IV.

IV. COMPARISON WITH EXPERIMENTS

In this section we calculate the effects of high-intensity
laser pulses in SiO, by solving the rate equation for the
evolution of the free-electron density, n (¢), during a real-
istic laser pulse, including the variation of the zero-to-
peak field with space and time. From the evolution of the
free-electron density, we calculate the total-energy
transfer AE and the corresponding temperature increase
in the solid. As shown in Sec. III, the impact ionization
rates and the energy transfer rates obtained from steady-
state calculations can be used in rate equations for pulse
durations of the order of 100 ps or greater and a focal
waist radius of the order of 1 um or larger. We consider
pulses of about 100 ps here, and neglect heat diffusion
during the pulse.

The evolution of the free-electron density #n (¢), and the
energy transfer from the laser field to the lattice by free
electrons AE(t), during a laser pulse under the above
conditions can be obtained from a set of rate equations of

the form*’
%2 m(F)+y(F)n—R(F,n) (16)
and
4dAE _ b gy | (17)
dt

where y is the ionization rate, W,, is the m-photon gen-
eration rate, R is the carrier recombination rate, and P is
the power transfer per electron. Note that ¥ is related to
the ionization coefficient B, as y =In(2)8. W,, can be ex-

pressed in terms of the generalized multiphoton-
absorption cross section o™ as®
W,,=o'™nom (18)

Here, n; is the active ion density with a value of
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2.1X10%*' cm™3 and ® is the photon flux. The net tem-
perature increase AT is simply calculated from the total-
energy transfer using the equation AE =cpAT, where c is
the specific heat and p is the density.

The differential equations are solved numerically using
a fourth-order Runge-Kutta method. The spatial varia-
tion of the laser intensity is modeled as a focused beam
with a Gaussian profile described by a waist radius w,
and the confocal parameter z,=2mw’n, /A, where n, is
the refractive index and A the laser wavelength. A
Gaussian intensity profile is also used in the time domain
with a 1/e width of 7,. For the integration over space,
the equations are solved for small volume elements with
constant zero-to-peak field. The power transfer per elec-
tron and the impact ionization rate at the instantaneous
peak field are interpolated from data similar to that
shown in Figs. 10 and 11.

In a first example, we examine the importance of im-
pact ionization as a free-carrier generation process at a
wavelength of 500 nm. We neglect carrier recombina-
tion. In Fig. 15 the calculated temperature increase in
the focal point is shown as a function of photon flux (in-
tensity) for typical values of the four-photon absorption
cross section o'.® The dotted curves show the results
without impact ionization, y =0; the solid lines show the
result with both carrier generation processes included.
This simple calculation allows several interesting con-
clusions regarding the high-power laser interaction with
SiO,. First, the temperature increase and the total-
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FIG. 15. Calculated temperature increase in SiO, as a func-
tion of peak photon flux (or equivalent laser peak intensity) due
to a 100-ps laser pulse at a wavelength of 500 nm using different
values of the four-photon generation cross section, o'*’. The
solid curves were obtained with both multiphoton absorption
and impact ionization included as carrier generation mecha-
nisms. The dotted curves show results without impact ioniza-
tion. The dashed curve (labeled zero) is the result for the
avalanche breakdown model, o'*'=0.
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energy transfer to the lattice (calculated but not shown
here), and consequently the photoacoustic signal (assum-
ing that it is proportional to the total-energy transfer), all
follow approximately a fifth-order power law. This is
surprising considering that the carrier generation mecha-
nism is fourth order. This fifth-order dependence arises
simply from the combined effect of the fourth-order gen-
eration rate and an approximately first-order dependence
of the energy transfer rate on photon flux, as shown in
Fig. 10. In alkali halides, a fourth-order flux dependence
for the photoacoustic signal was observed for materials
with a four-photon band gap.® We can only speculate on
the origin of this difference. Carrier recombination may
play an important role. Also, the power transfer may
have a weaker photon flux (intensity) dependence in the
alkali halides. The important point is that the power
dependence of the temperature increase (or the pho-
toacoustic signal) does not necessarily reflect the order of
the multiphoton excitation process. For reasonable
values for o4 of the order of 1 X107 "% cm®s® [in NaCl,
KBr, and KI, values of 1.5X 10714 (2+1)x 107 ' and
(2+0.8)X 10~ 1* cm®s® have been measured, respective-
1y%], the calculation in Fig. 15 predicts that the solid will
reach its melting point at intensities that are far too low
for any significant carrier multiplication by impact ion-
ization to occur. This conclusion is perfectly consistent
with several experiments of Jones et al.® which show that
impact ionization plays at most a minor role in four-
photon band-gap materials at 500 nm wavelength.® Only
for much lower values of o'¥ do we predict significant
carrier generation by impact ionization, leading to a clear
deviation from the fifth-order laser energy dependence in
the data shown in Fig. 15. Also shown in Fig. 15 is the
result of a calculation (dashed line labeled “zero”) with
impact ionization as the only carrier generation mecha-
nism. One starting electron per cm? is used in all cases.
As can be seen, the temperature increases extremely fast
in the absence of multiphoton absorption, leaving no
measurable precursors at sub-breakdown pulse energies.
All these calculations strongly suggest that multiphoton
absorption and free-carrier heating play a dominant role
for breakdown in SiO, at wavelengths of 500 nm or short-
er and that energy deposition and lattice heating should
occur well below the impact ionization threshold.

In a second example, the temperature increase in SiO,
due to a 100-ps laser pulse at A=1 um is estimated.
Again, carrier recombination is neglected. We further
neglect multiphoton absorption by the 1-um pulse since
SiO, has a seven-to-eight-photon band gap at this wave-
length. We are thus left with the avalanche breakdown
model. We use the quantum results for the power
transfer. The calculated temperature increases as a func-
tion of peak intensity for different values of the starting
electron density, n,, are shown in Fig. 16. A density of
1X10"”® cm™3 or smaller is typically assumed in
avalanche breakdown models. Clearly, the temperature
increase is explosive, and little lattice heating at pre-
breakdown laser intensities is predicted under this condi-
tion. For higher starting electron densities, the situation
dramatically changes. The power transfer per electron is
large enough to cause a significant temperature increase



46 THEORY OF LASER-INDUCED FREE-ELECTRON HEATING . ..

1500

1000

500

Temperature Increase (K)

0

0 50 100 150 200 250 300
Peak Intensity (GW/cm?)

FIG. 16. Calculated temperature increase in SiO, as a func-
tion of laser peak intensity due to a 100-ps pulse at a wavelength
of 1 um using different values for the starting electron density,
no. The dashed curve was obtained by neglecting impact ioniza-
tion with n,=10"% cm 3.

at fairly low peak intensities, as shown by the solid lines.
At about 130 GW/cm?, impact ionization sets in and the
temperature increase is enhanced due to carrier multipli-
cation. The dotted line shows the hypothetical evolution
of the lattice temperature in the absence of impact ioniza-
tion for a starting carrier density of 1X10'"® cm™3.
Without carrier recombination, the temperature increase
is proportional to the starting electron density. From
Fig. 16 it can thus be seen that it is necessary to generate
a free-electron density of ~2X10'® cm™® by a pump
pulse in a two-pulse experiment in order to melt the solid
by a subsequent laser pulse at 1 um without any assis-
tance of carrier multiplication by impact ionization.

In a last example, we compare our calculations directly
with the two-pulse experiments of Jones et al.® Their re-
sult is shown in Fig. 17. The pump pulse alone produces
a photoacoustic signal which is about ¢ of the signal at
breakdown, and the signal increases approximately with
the third power of the heat pulse energy. These data
were measured under the following experimental condi-
tions.’? The energy and the waist radius of the 266-nm
pump pulse were 5.5X 107 J and 4 um. For the 1.064-
pum heat pulse, these parameters were 23X 107 J and 26
pm. The pulse length was approximately 100 ps. These
parameters imply a maximum zero-to-peak field of 8
MV/cm for the pump pulse and of 3 MV/cm for the heat
pulse. Comparison of these field values with the ioniza-
tion rates in Fig. 11 shows that impact ionization does
not occur and that the lattice heating is not related to im-
pact ionization. We calibrate the photoacoustic signal as
follows: We assume the signal to be proportional to the
total deposited energy. We also assume that the crystal
breaks down thermomechanically due to excess Joule
heating or melting. A net temperature increase in the fo-
cal volume of 1200 K is assumed to be necessary for this
to happen. The uncertainty in the temperature increase
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FIG. 17. The temperature increase and the corresponding
energy transfer from the laser field to the lattice as a function of
laser peak intensity or equivalent pulse energy for the pulse con-
ditions in the two-wavelength experiment described by Jones
et al. in Ref. 6. The experimental data (dots) show the pho-
toacoustic signal generated by a 1.064-um heat pulse following a
266-nm pump pulse used for free-carrier generation. The calcu-
lations shown by the solid (dashed) line were obtained by using
a three-photon absorption cross section of 2X107%' cm®s?
(5X107% cm®s?) and neglecting (including) electron-hole pair
recombination. For details see the text.

required for breakdown to occur leaves the calibration of
the acoustic signal uncertain within a factor of about 2.
We then solve the rate equations using the Monte Carlo
results obtained with the quantum approach, neglecting
recombination. The above temperature condition at
breakdown can be satisfied with a value of 2X107%!
cm®s? for the three-photon generation cross section, as
shown by the solid curves in Fig. 17. This value falls well
within the range of measured three-photon cross sections
in other materials.’ Lattice heating is much less efficient
at 266 nm than at 1.064 um, as can be seen from Fig. 11,
but still efficient enough to yield the measured offset in
the photoacoustic signal in the absence of the heat pulse.
If we use the power transfer per electron as calculated by
the classical approach for the laser field, lattice heating
can be neglected for the experimental conditions used
above and the two-pulse experiments cannot be ex-
plained. This is not surprising. At low intensities, the
average electron energies are comparable to the photon
energies even at 1 um, and the classical approach is inac-
curate.

The dependence of the deposited energy on the laser
intensity, shown in Fig. 17, does not agree with the func-
tional form of the photoacoustic signal. This incompati-
bility is most likely due to the neglect of electron-hole
recombination in the calculation, as demonstrated with a
delay experiment.® Lattice heating was found essentially
to vanish at a delay of 200—300 ps between the two pulses
due to the rapid decay of the free-electron density via
electron-hole recombination. Little is known of the
recombination rates in SiO, under strong electric fields at
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optical frequencies. Williams, Klein, and Marquardt™3
showed that electron-hole recombination in alkali halides
occurs on a picosecond time scale and that the carrier
lifetime is a strong function of the carrier concentration.
A similar behavior can be expected in SiO,. To illustrate
the effect of carrier recombination in such an experiment,
we use the electron capture cross section of trapped holes
(Coulombic trapping centers) under strong dc fields in
Si0,, as measured by Buchanan, Fischetti, and DiMaria**
as an estimate for electron-hole recombination and its
field dependence. These authors showed that electron
heating at high dc fields strongly reduces the capture
cross section. Since the electron heating at 1 ym is com-
parable to electron heating in a dc field with a field value
equal to the rms field of the ac field, as shown in Sec. III,
the absolute values for the capture cross section can be
expected to depend on field in a similar fashion in both
cases. In SiO,, the mobility of holes is much smaller than
the mobility of electrons. We assume the holes to be sta-
tionary and use first-order kinetics for the electron-hole
recombination. The recombination rate is given by

R(F)=0,(F)v,n,n, . (19)

Here, o, is the Coulombic capture cross section with a
field dependence of F~!% for F<1.2 MV/cm and F 3
for F>1.2 MV/cm.** The quantity v, is an effective ve-
locity (the drift velocity in the dc case at low fields). The
hole density n, is equal to the electron density », in our
case. The velocity term in Eq. (19) is not known. The
high-field drift velocity which is of the order of 10’ V/cm
can be taken as an upper limit. Using this recombination
model, we obtain the dashed lines in Fig. 17 using
5X1078" cm®s? for the three-photon cross section and
10° V/cm for the velocity term. For an absolute compar-
ison of deposited energies, the scale in Fig. 17 has to be
multiplied by a factor of 2 in this case. The important as-
pect of this qualitative result lies in the fact that field-
dependent recombination is necessary to reproduce the
functional shape of the photoacoustic signal. The recom-
bination rates used above are also consistent with the de-
lay experiment mentioned. The high fields of the heat
pulse prevent carrier recombination only if the two pulses
overlap. We find that maximum heating occurs at a de-
lay of about 50 ps, which is consistent with the experi-
mental data. In this calculation we have ignored the at-
tenuation of the laser pulse due to free-electron absorp-
tion. As can be seen from Fig. 17, this is not justified for
the conditions used by Jones et al.® A more quantitative
investigation would thus require that the laser attenua-
tion be included.

We have not included the temperature variation during
the laser pulses. This variation is expected to change all
scattering rates (except the impact ionization rate) used
in the Monte Carlo integration of the Boltzmann equa-
tion. Therefore, the energy transfer rate and the high-
field electron-multiplication rates would become tempera-
ture dependent. We have previously studied the implica-
tions of the temperature change during a laser pulse on
the breakdown process at 1 um wavelength.’> These cal-
culations were based on the assumption that the change
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of the scattering rates can be predicted within first-order
perturbation theory. Since the LO-phonon energies are
large, the LO rates are not expected to change much.
The largest change would be expected for acoustic-
phonon-related rates because the phonon energies are low
and their population changes strongly with temperature.
Recently, direct measurements of the acoustic-phonon
scattering rate have been performed.’® Unexpectedly,
these experiments show no appreciable temperature
dependence of the acoustic rate when the temperature is
raised from 300 to 1200 K. This is most likely due to
strong quantum effects at high electron energies where
the scattering rates are large. Since the acoustic rate is
by far the dominant scattering mechanism at energies
above 2 eV, we are confident that the neglect of the tem-
perature change during a laser pulse yields more accurate
results in SiO,.

V. CONCLUSIONS

We have demonstrated the use of a methodology for
quantitative studies of single-shot, laser prebreakdown
and breakdown phenomena at visible and near-infrared
wavelength in wide-band-gap insulators. The dynamics
of free electrons in the presence of the strong electric field
of a laser pulse (or alternatively in the presence of a dense
photon population) was formulated by a Monte Carlo in-
tegration of the Boltzmann transport equation. Using the
Monte Carlo method, accurate values for the energy
transfer rate from the laser field to the lattice by free elec-
trons (free-electron heating) and for the electron-
multiplication rate by impact ionization can be calculated
in a self-consistent manner if the proper approach for the
laser-field -free-electron interaction is chosen. At long
wavelengths the standard classical approach, whereby the
laser field is implemented as a sinusoidal electric field,
should be used. At short wavelengths the electron-
photon interactions must be treated quantum mechani-
cally such as with second-order perturbation theory.

We calculated the electron-multiplication rate and the
energy transfer rate in SiO, and we compared in detail
the results of the two different methods for the modeling
of the electron-photon interaction. This comparative
study showed that the classical approach is valid at wave-
lengths of 2 um and higher, while the quantum approach
is reliable at wavelengths of 500 nm and below. The two
methods give upper and lower bounds for the calculated
quantities at intermediate wavelengths. At wavelengths
above 2 um the calculated quantities approach the values
in the dc limit. This is expected because the momentum
relaxation rate becomes larger than the laser frequency.
At long wavelengths, the calculated values for the power
transfer saturate at values of about 10 pW/electron.
With decreasing wavelength, both impact ionization and
free-electron heating become less efficient. The impact
ionization threshold rapidly shifts to higher fields at sub-
micrometer wavelengths. Since multiphoton absorption
becomes more efficient as the wavelength becomes small-
er (as fewer photons are required to bridge the band gap),
multiphoton absorption will become the dominant mech-
anism for free-electron generation at submicrometer
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wavelengths. We find that free-electron heating at these
wavelengths is still efficient enough to allow for strong
lattice heating and melting at laser intensities well below
the impact ionization threshold.

We have used the various quantities calculated with
the Monte Carlo method as input parameters to rate
equations which describe the evolution of the free-
electron density, the total-energy transfer from the laser
field to the lattice, and the increase in lattice temperature
during realistic laser pulses in SiO,. These calculations
allow a semiquantitative discussion of the two-pulse laser
experiments at prebreakdown laser powers in SiO,.® We
confirm that multiphoton-generated free-carrier heating
accounts for the prebreakdown lattice heating in the
two-pulse experiment. Our calculations indicate that a

15115

complete description of prebreakdown lattice heating due
to high-power lasers requires, in addition to the calcula-
tion of multiphoton-absorption cross sections, the in-
clusion of the electron-hole recombination. At strong dc
electric fields, the Monte Carlo method has been success-
fully used for the latter purpose,** and it should be possi-
ble to extend our method in this respect.
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