PHYSICAL REVIEW B

VOLUME 46, NUMBER 1

Low-dimensional quantum antiferromagnetic Heisenberg model studied
using Wigner-Jordan transformations

Y. R. Wang
Xerox Webster Research Center, 800 Phillips Road, 0114-41D, Webster, New York 14580
(Received 26 June 1991; revised manuscript received 13 January 1992)

A Wigner-Jordan (WJ) transformation is used to study the one-dimensional (1D) and two-dimensional
(2D) quantum antiferromagnetic Heisenberg model. The advantage of using the Wigner-Jordan trans-
formation is that it preserves all spin-commutation relations as well as the spin on-site exclusion princi-
ple. In the 1D case a nearest-neighbor covalent-bonding state of the WJ fermions is found to have a
ground-state energy (—0.4351J per site) comparable with that from the Bethe-ansatz solution (—0.4431J
per site), and a linear energy spectrum at low energies with velocity 1.6366J, in close agreement with the
velocity obtained by Haldane for the quantum antiferromagnetic Heisenberg model with 1/d? interac-
tion (1.5708J). The method used for studying the 1D model is then applied to the 2D Heisenberg model
in a square lattice. The resulting state at finite temperature is the in-phase flux state, i.e., a flux state of
the Wigner-Jordan spinless fermions with an in-phase fermion orbital current circulating around each
elementary plaquette. The single-particle excitation spectrum, i.e., the energy dispersion of reversing
orientation of a spin in the system, of the in-phase flux state is overall similar to that of spin waves, with
significant difference near the edge point k=(7,0), at which the excitation energy of the WJ fermion is
zero, whereas that of the spin-wave excitation is 2J. The specific heat of the in-phase flux state predicts a
correct temperature dependence over the entire temperature range, namely a T dependence at low tem-
perature, a peak near T/J =0.6, and a 1/T? decreasing at high temperature. It also gives excellent
agreement with the specific heat calculated from numerical methods. In contrast, the spin-wave theory
only correctly predicts a T? dependence at low temperature. The Raman spectrum of the in-phase flux
state is calculated and shows significant improvement over that from spin-wave theories compared with
the experimental spectrum of La,CuO,. The exchange parameter, J, obtained from the comparison is
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1060 cm ™!, in agreement with that obtained from analyzing the neutron-scattering data.

I. INTRODUCTION

Quantum antiferromagnetism is a well-studied subject,
but many important issues remain unresolved. The sub-
ject becomes particularly pressing because of the
discovery of the high-temperature copper oxide super-
conductors. The undoped copper oxide materials, such
as La,CuQ,, are layered antiferromagnets with local spin
moments S=1. It is generally believed that the antifer-
romagnetic (AFM) behavior of the high-T, materials can
be modeled rather well by the S =1 two-dimensional (2D)
AFM Heisenberg model. Neutron-scattering! ™® and
Raman-scattering*~’ experiments indicate that the in-
tralayer nearest-neighbor exchange parameter is on the
order of 1000 K, whereas that of the interlayer coupling
is about 5 orders of magnitude smaller.® While the small
interlayer coupling is believed responsible for the three-
dimensional (3D) AFM ordering of the spins in La,CuQ,,
the temperature range for the interlayer coupling to have
a major effect is expected to be extremely narrow.

The dimensionality plays an important role in studying
the quantum (S'=1) Heisenberg antiferromagnet. In one
dimension (1D), the Heisenberg model can be solved ex-
actly using the Bethe ansatz.®!® The solution is a liquid
of spin-singlet pairs. In three dimensions, the spins can
be ordered antiferromagnetically below the Néel temper-
ature, and spin-wave theory'! is generally accepted as a
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proper representation of the excitation spectrum at low
temperatures. The situation in 2D is much less clear.
While an antiferromagnetic ordering at T=0 for the
quantum AFM Heisenberg model in a square lattice is
found by many investigators®!>~ !4 a true long-range
AFM order at finite temperature cannot exist according
to the Mermin-Wagner theorem. !> Quantum spins obey'®
an on-site “‘exclusion principle,” i.e. S;'S;”+S, S =1,
at any site i, where S;" and S, are the spin raising and
lowering operators, respectively. This identity is a
unique property of the quantum spins. Any successful
theory has to at least approximately preserve it. When
the spin operators are represented by boson operators,
such as through the Holstein-Primakoff transformation, !’
the identity states that the bosons can only singly occupy
a lattice site. The spin-wave theory for the 3D Heisen-
berg AFM model indeed has a very small probability for
the bosons more than singly occupying a lattice site, but
the probability for the 2D spin-wave theory is too large
to preserve the identity. '¢

In this work we use an extended Wigner-Jordan (WJ)
transformation to study the 2D AFM S =1 Heisenberg
model. Some of the results have been briefly reported in
our previous rapid communications.'®!® The advantage
of using the Wigner-Jordan transformation is that it au-
tomatically preserves all spin commutation relations, as
well as the spin on-site exclusion principle mentioned
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above. In contrast, the Holstein-Primakoff transforma-
tion, for example, only preserves the spin-commutation
relations. Infinite repulsive interactions at every lattice
site have to be added to the Holstein-Primakoff transfor-
mation in order to preserve the spin on-site exclusion
principle.'® A detailed description of the WJ transforma-
tion will be given in Sec. II. In Sec. III, we show that the
1D quantum AFM Heisenberg model can be described as
a liquid of interacting WJ fermions. A nearest-neighbor
covalent bonding state of the WJ fermions is shown to
have a correct excitation spectrum and a good ground-
state energy compared with that of the exact Bethe-
ansatz solution.®!® In Sec. IV, we study the 2D AFM
Heisenberg model in a square lattice using a method simi-
lar to that used for the 1D case. The 2D Heisenberg
model can be viewed as, in the mean-field sense, a liquid
of interacting WJ fermions moving in a self-generated
gauge field. The resulting state, with a linear dispersion
spectrum at small excitation energy and no true long-
range AFM order at finite temperature, is the in-phase
flux state. The single-particle excitation spectrum of the
in-phase flux state is overall similar to that of spin waves,
but significant differences exist and therefore could be ex-
amined by neutron-scattering experiments. The specific
heat of the in-phase flux state predicts a correct tempera-
ture dependence over the entire temperature range, and
gives excellent agreement with that calculated from nu-
merical methods. In Sec. V, we present the calculation of
the Raman spectrum of the in-phase flux state and show
that it agrees very well with the experimental spectrum of
La,CuO,. A summary and discussion will be given in
Sec. VL.

II. THE 2D WIGNER-JORDAN TRANSFORMATION

The original WJ transformation®® transforms the 1D
S =7 spin operators into spinless fermion operators. The
2D extension of the transformation has been discussed by
several authors.!®!%21723 Here we follow the method
given in our previous reports. '3 Using the original 1D
transformation as a guideline,?”?* we define a spinless
fermion annihilation operator, d;, at site i, by
di=e ¥s7, (1)

1

and assume the phase, ¢;, to be of the form
¢z:2j¢iddejBij’ where B;; is a c-number matrix ele-
ment. It is immediately observable that ¢; commute with
d;, and hence with S;”, and that [@;,@;]=0 for any site i
and j. The spin on-site exclusion principle mentioned in
the Introduction is automatically satisfied since the d;’s
are assumed to be fermion operators. The matrix element
B;; can be determined by the spin-commutation relation,
[S, ,8; 1=0, for any site j7i. Substituting Eq. (1) into
the commuta'tion relation and noticing the following
identity:

iB..
e ide'i=c"a, 2)
w% obtain the equation for determining B;; to be
B, 7: . .
e i=—e"J Obviously the relative angles of the 2D

spin coordinates satisfy this equation. We therefore have
B;;=ImIn(7;—;), and

=3 ddImn(r;—7,), (3)
Viall

where 7;,=x; +tyj is the complex coordmate of the jth

spin. Fmally, since S, S, =8§2— Sz +S7, we have
Si=dld,— 1. @)

Equations (1), (3), and (4) constitute the complete 2D
WJ transformation. The transformation is exact since all
the other spin-commutation relations, such as
[SES j+ ] =S,—+8,-j, are also satisfied by the transformation.
It is also worthwhile to notice that the choice of the
phase in Eq. (3) is not unique. There is a local gauge in-
variance, namely, that one could replace ¢; by ¢, +C,,
where C; is any ¢ number. This gauge invariance will be
explicitly seen when we later express the phase factor in
terms of a vector potential [cf., Eq. (16) below].

There are two intrinsic properties of this WJ represen-
tation of quantum spins with antiferromagnetic interac-
tion. First, by summing over all the spin sites, we have
S,d}d,=N/2+3,S%. Since 3,(S?)=0 for an antifer-
romagnetlcally ordered or a paramagnetic (disordered)
spin state, the thermally averaged number of WIJ fer-
mions for the two cases is always half of the total spin
sites. Since there are N states available for the WJ fer-
mions, they fill exactly half of the total states at 7 =0.
We therefore can speak of the spectrum of WJ fermions
as consisting of a particle band, referring to the unfilled
half of the total states, and a hole band, referring to the
filled half of the total states. Second, let us start with a
state which satisfies 3,S7=0, and then flip one spin from
down to up, so that now 3 ,S7=1. Accordingly we have
>.d; d =N /2+1, meaning that one WJ fermion is added
to the system. We can carry the same process of flipping
a spin from up to down, and show that it corresponds to
subtracting a WJ fermion from the system. The two pro-
cesses must have the same excitation energy if the spins
are interacting through the Heisenberg Hamiltonian. We
thus can assert that the energy spectrum of the WJ fer-
mions must possess a particle-hole symmetry. In the fol-
lowing sections we shall see that these two properties are
observed by our mean-field solutions.

The transformation in Egs. (1), (3), and (4) could take a
slightly different form for the case of a bipartite lattice.
In this case we can define two kinds of fermion annihila-
tion operators, A4; and B, for sublattices 4 and B, re-
spectively. For sublattice 4, we define A,’s to be the
same as that given in the above equations, i.e.,

S, =e'%4, Si=dala—1, (5)
with
=3 4/ AB,+2 (1—B! B, )B,, , (6)
1+

whereas for sublattice B we make a particle-hole transfor-
mation, i.e.,

S :ein;y 7)
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with

= 3 (1-B}B, )B,,,,+2A ABy . (8)
m¥*j

The advantage of this transformatlon is that the number
of operators, A A; and B; 'B. j» NOW can be interpreted as
the deviation from the max1mum antiferromagnetically
ordered value, and therefore A ’s and B jt s are the excita-
tions of the antlferromagnetlcally ordered state (i.e., the

Néel vacuum).

III. ONE-DIMENSIONAL AFM HEISENBERG MODEL

In this section we study the S =4 1D AFM Heisenberg
model using the WJ transformation. Since there is an ex-
act solution from the Bethe ansatz in this case, our re-
sults can be compared, and the approximation techniques
can be examined.

The 1D WJ transformation can be viewed as a special
case of our 2D transformation with the replacement of
B;; by either 0 or 7 in all the equations in the above sec-
tion, since the relative angle between two spin sites in a
1D chain can only be one of the two values. The Heisen-
berg Hamiltonian, H=J3; S;-S; ;, is transformed into
the one given below

H=J 2 di)rdi+x+-’ 2 (ddei_%)(diTﬂdiH—%) . 9)

The first term of Eq. (9) comes from the XY part of the
spin Hamiltonian, whereas the second term corresponds

to the Ising part. The phase factor dlsrappears from the

i ) ind.d
Hamiltonian because e '*! #'=¢""% {oes not have

any effect when operating before d,-. It is immediately
obvious from Eq. (9) that the 1D S'=1 Heisenberg model
corresponds to the 1D gas of interacting WJ spinless fer-
mions.

We next study Eq. (9) using a mean-field theory with
proper inclusion of second-order corrections. The Ham-
iltonian is separated into a mean-field part, Hyg, and a
fluctuation part, H, i.e., H=Hyy+H, where

Hyp=J 3 djd; ,+J 3 (2A)d[d; . ,+NJA?, (10

and N is the total number of lattice sites. A={d,d], ) is
the mean field. This definition of A implies a nearest-
neighbor “covalent bonding” of the WJ fermions, analo-
gous to the chemical bonding of the electrons. We shall
call the resulting state of Eq. (10) the nearest-neighbor
covalent-bonding state of the WJ fermions because of this
analogy. It is easy to see that the single-particle energy of
momentum k from Eq. (10) is

E,=J(1+2A)cosk , 11

and that the self-consistent solution of A is

=-%2nF(Ek)cosk , (12)
k

where ng(Ey) is the Fermi function of energy E,. (We
use the units i=kz =a =1 throughout this paper, where

a is the lattice constant.) The lowest-energy state is ob-
tained by filling up all “negative-energy” states (i.e.,
E, <0) with the WJ fermions. This filling creates a Fer-
mi “surface” at the Fermi wave vectors k,==*7/2. Ain
this case can be evaluated to be A=1/7=0.318 31, and
the mean-field energy at T=0 is Epg=—0.4196J per
site. The total energy is further lowered by fluctuations
around the mean field. To second order, this lowering
can be calculated by the standard formula

AE— |Ol(H — Hye )| f )2
? EO—Ef ’

(13)

where |0) and |f) are the ground state and the excited
states of Hyy, respectively. The state |f) has two excit-
ed particles at wave vectors k;+¢q and k,—gq, and two
holes at wave vectors k; and k,. Straightforward evalua-
tion of Eq. (14) gives
2 cos’q —cosq cos(k, —k,+q)
AE=-25 3 E : +Eq “E —2Eq ’

ky.q ki+q ky—q ky ky

172

(14)

where the prime in the summation means that the sum-
mation is restricted by the conditions E K, +q >0,

E, _,>0,E, <0, and E; <0. Numerical evaluation of
ky—q ky 2

Eq. (14) gives AE =—0.0155J per site. The total energy
including the second-order correction at T=0 is there-
fore E,,, = —0.4351J per site. This value is only 1.8%
higher than the exact Bethe-ansatz value of
E =({—1n2)J = —0.4431J per site.

The solution we described above has no long-range an-
tlferromagnetlc order since it 1s easy to show that
(dld;)=1 (recall that (S7)=(dd;)—1). The excita-
tion given by Eq. (11) near the Fermi surface is gapless in
agreement with the Bethe-ansatz result. The energy spec-
trum near the Fermi surface is linear with velocity
v=(14+2A)J=1.6366J, in quantitative agreement with
the exact result obtained recently by Shastry?® and Hal-
dane? on the 1D Heisenberg model with 1/d? interac-
tion where Haldane finds?’ the velocity of the low-energy
particles to be (7/2)J=1.5708J. We also notice the
resemblance between our energy spectrum in Eq. (11) and
that of the 1D extended?® resonating-valence-bond (RVB)
state of Baskaran, Zou, and Anderson? (BZA). The
resemblance can be further examined by dividing the 1D
lattice into two sublattices and using the WJ transforma-
tion given in Egs. (5)-(8). The mean-field, A, now is
defined by A=( A4,B,,,), and the interactions between
the A-type and B-type WJ fermions as seen from the
Hamiltonian now becomes attractive. Thus, A can be
viewed as the order parameter of the nearest-neighbor
RYVB state, and our solution discussed above describes a
1D gapless “superfluid” of the WJ fermions. Despite the
resemblance, our solution and the RVB state of BZA are
different in many aspects. For one, the particles in our
solution are WJ fermions which are spinless, whereas the
fermion objects in BZA’s RVB state are electron opera-
tors. While A describes the “bonding” of the nearest-
neighbor WJ fermions, each WJ fermion involves many
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spins in the system, and therefore A corresponds to more
than nearest-neighbor spin bonds. The zero-temperature
energy of our solution is also much lower than that of the
RYVB state of BZA, presumably because of the long-range
“bonds” formed between the spins in our solution.

It is interesting to notice that, at mean-field level, a
state with combined covalent bonding (A) and spin or-
dering ({d,'d;) =(1%A,)/2, where the + sign is for one
sublattice and the — sign for another) has a lower mean-
field energy (—0.4322J per spin) than the covalent-
bonding state we described above. This state breaks the
translational symmetry, and the excitation spectrum has
a gap of order 2A,J. The energy correction from
second-order perturbation of this symmetry-broken state,
however, is only —0.0042J per spin because of the
gapped spectrum in the energy denominator [cf., Eq.
(15)], significantly smaller than that of the covalent-
bonding state. The total energy including the second-
order correction of this state is therefore nearly the same
as that of the covalent-bonding state. We believe that
higher-order corrections actually prefer the covalent-
bonding state since similar energy denominators will also
appear in the higher-order corrections.

IV. TWO-DIMENSIONAL AFM HEISENBERG MODEL
IN A SQUARE LATTICE

With the 1D results in mind, we now study the 2D
quantum AFM Heisenberg model in a square lattice.
After substituting the WJ transformation into the
Heisenberg Hamiltonian, we have

H=J (2) diTei“pj_‘Pi)dj +7 (2) (d,—Td[_%)(ddej_%) s
y U

(15)

where the summations are over pairs of nearest neigh-
bors. In contrast to the 1D case, the WJ phase factor,
"% _(p"), now plays an important role in determining the
energy spectrum. In the Appendix it is shown that the
phase factor corresponds to that created by a gauge field
with the vector potential given by

(r,‘ v )

Alr;) dfd 2x (16)
r;)= —_— .
Ef o (r,—r1;)?

This gauge potential generates long-range interactions be-
tween the WJ fermions, and clearly relates the 2D quan-
tum spin problem to the anyon problem. In the mean-
field treatment, which we adopt following Laughlin®® and
Mele, ! this vector potential corresponds to that of a uni-
form background gauge field (see the Appendix). The re-
sulting Hamiltonian then describes a gas of WJ fermions
moving in a uniform “magnetic” field and interacting via
two-body potentials. It would be desirable to estimate
the effect of fluctuations of the gauge field around the
mean-field approximation. Unfortunately, this is quite
difficult. Appropriate inclusion of the gauge-field fluctua-
tion presents a major theoretical challenge to our
method. It is nevertheless worthwhile to proceed the
mean-field solution, and to find out whether the mean-

field solution presents an appropriate starting point. A
somewhat different, but related, difficulty is also encoun-
tered in the conventional spin-wave approach based on
the Holstein-Primakoff transformation. There the opera-
tor__corresponding to the WIJ phase factor is
\/1—~ni\/1—nj, where n; is the number operator of
Holstein-Primakoff bosons at site i. In the conventional
spin-wave approach, it is assumed that the number of the
bosons is small, and that the operators in the square roots
are expandable as a power series of n; (usually only the
zeroth order is retained). For a three-dimensional sys-
tem, this approximation is indeed justified, but for the 2D
square lattice, the averaged boson occupation number is
in the order of unity at any finite temperature even for a
finite system with linear size £, where £ is the spin corre-
lation length (for an infinite 2D lattice, the averaged bo-
son occupation number diverges logarithmically at any
finite temperature. '®

We consider the case where no true long-range AFM
order is present, i.e., (d,-Td,»)=%. This implies that the
lattice size under consideration will be much larger than
the spin correlation length. This case is most important
at finite temperatures because it satisfies the Mermin-
Wagner theorem. The vector potential in this case corre-
sponds to that of a uniform magnetic field of half flux
quanta per elementary plaquette. By choosing an ap-
propriate gauge, the phase factor can be adsorbed by
redefining a bond-dependent exchange parameter J;;. In
Fig. 1 we show the distribution of J;; in one such gauge.
Each heavy bond in the figure corresponds to a
J;;=Je™'", and each light bond to a J;;=J. Following
our discussion of the 1D AFM Heisenberg model, we
define a bond-dependent mean field, Aij, by

AijzAlefe,j:(didjT) , 17)

where i and j are nearest neighbors. The resulting mean-
field Hamiltonian is

Hyp= 3 Jydld;+J 3 Qad]d;+7 3 8,7, (8)
{ij) (ij) ijy

It is easy to see that the phase ©,;, having the lowest en-

ij»
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FIG. 1. The distribution of the phase factor in the gauge used
in the text. Each heavy bond corresponds to a phase factor of
e'™, and each light bond to a phase factor 1. This distribution
insures that each of the elementary plaquettes encloses a net flux
of half quanta. The dashed lines indicate the primitive unit cell.
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ergy, is the one equal to the averaged gauge phase,
@;={@;—@;). Therefore, ©,; can be interpreted as be-
ing generated by the “gauge-field-induced” orbital
currents which circulate around each elementary pla-
quette. The resulting state of Eq. (18) has been termed as
the in-phase flux state. '31°

Following the notation and the distribution of J;; in
Fig. 1, Hyf can be expressed in terms of the WJ fermion
operators, a; and b i of the two sublattices

HMF=§(H-2A1)
X Zla/(bi—r —bjs, +bis, +b; )+H.e.]
i

+2NJA?, (19)

where 7, and 7, are the vectors connecting two nearest
neighbors. This Hamiltonian can be easily diagonalized
and the energy spectrum of the in-phase flux state is

Ef =+J(14+2A)V sin’*k, +cos’k, . (20)

[Had we used the conventional asymmetric gauge,
A=By%, sink, in Eq. (20) would be replaced by cosk, .]
The advantage of using the gauge shown in Fig. 1 is that,
in this gauge, the distribution of the phase factor has a
unit cell equal to the magnetic unit cell. As in the 1D
case, the negative-energy states of the spectrum are filled
by the WJ fermions, whereas the positive-energy branch
is empty in the T—0 limit. This filling self-consistently
insures the absence of the long-range AFM order. The
spectrum given in Eq. (20) obviously satisfies the two in-
trinsic properties of the WJ representation described in
Sec. II.

The “bonding” amplitude, A;, can be calculated from
its definition in Eq. (17),

A= 3 V/sin?k, +costk, [ng(Ef )—np(E{ )] .
aN 2
1)

This gives A;=0.2395 in the T—0 limit. The tempera-
ture dependence of A, is shown in Fig. 2. Unlike the tem-

0.3

Ay

0 1 1 1
0 1.0 20 30 40

T

FIG. 2. The temperature dependence of the in-phase orbital
current amplitude A,.

perature dependence of most mean fields, A;(7T) has no
critical point at any finite temperature. This peculiar
temperature dependence of A; reflects the fact that the
in-phase flux state describes a paramagnetic state as the
Mermin-Wagner theorem requires. It also indicates that
fluctuations in the gauge field may not destroy our mean-
field solution, since usually fluctuations have devastating
effects only near the critical point.

The mean-field energy of the in-phase flux state in the
T —0 limit is Ep=—0.297J per bond. The mean-field
energy does not include the corrections from the virtual
transitions between the lower and the upper band. The
second-order correction from the S? component alone
can be calculated following the same procedure as that
giving in the 1D case, and the energy of the in-phase flux
state including this correction is —0.324J per bond.
There are corrections also from the fluctuations in the
gauge fields. While the precise value of correction from
the fluctuations in the gauge field is difficult to evaluate,
it is clear from Eq. (15) that it is opposite to the correc-
tions from the S? component. The two, therefore, will
partially cancel each other; hence, make the overall con-
tribution from fluctuations relatively smaller. We believe
that this partial cancellation makes our mean-field solu-
tion rather robust, as one could see from the predicted
properties below.

The energy spectrum of the in-phase flux state as given
in Eq. (20) is similar to that of the flux state discussed by
Affleck and Marston.?? The two phases, however, are
significantly different from each other in the sense that, in
the case of the in-phase flux state, the “bonds” are
formed between nearest-neighbor WJ fermions, whereas
in the Affleck-Marston flux state, the ‘“bonds” are formed
between the Gutzwiller projected nearest-neighbor elec-
trons.

We now calculate some properties of the in-phase flux
state. In particular, we shall compare these properties
with those of the linear spin-wave state since the two
states are comparable in the approximation level, al-
though their starting points are very different. The calcu-
lation of the spin Raman spectrum requires significant
efforts, we therefore devote it to the next Section (V).

A. Single-particle excitation spectrum

As shown in Sec. II, reversing the direction of a single
spin corresponds to adding (or subtracting) a WJ fermion
from the system. Since the lower band of the in-phase
flux state is filled, the single-particle excitation energy in
the WJ fermion representation is Ey;(k)=E;". The en-
ergy spectrum given in Eq. (20) is for the particular gauge
chosen in Fig. 1. In order to compare it with the spin-
wave excitation spectrum, we uniformly shift all wave
vectors by (0,7/2). The WJ fermion excitation spectrum
is, therefore, in the new gauge,

Ew;(k)=J(1424,)V sin%, +sin’k, .
This is to be compared with the spin-wave spectrum

Esw(k)=2J1/1—L(cosk, +cosk, )* .
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We first notice that the two spectra have identical k
dependences at small excitation energies, namely, that
they all predict E, to be linear in |k| for small |k|. The
velocities of the two spectra are also comparable, i.e.,
vwy=1.48J in the T—O0 limit whereas vgy =1.41J.
Since the two spectra are the result of mean-field or
equivalent approximations, the velocities can be renor-
malized by high-order corrections. Second, the two spec-
tra are identical along the [11] (k,=k,) direction,
E, =sink, apart from a slightly different prefactor. This
k dependence in the [11] direction has been confirmed re-
cently by neutron-scattering experiments.>®> The
significant differences between the two spectra are near
the zone edge point (1,0), at which the WJ fermion has a
zero excitation energy, whereas the spin wave has 2J.
The energy spectrum of the WJ fermions along the [10]
direction, E, =J(1+2A)sink,, suggests that the spin ex-
citations along this direction behave as those of the 1D
chain [cf., Eq. (11)]. It would be interesting to see if this
difference can be resolved by neutron-scattering experi-
ments. The comparison of the two spectra is summarized
in Fig. 3.

B. Specific heat

The internal energy, U(T), of the in-phase flux state is
U(T)=(H)=—2NJA(1+A)) .

The specific heat can be obtained by taking derivatives of
U(T) with respect to T. The result is shown in Fig. 4 by
the solid curve. Also given in Fig. 4 are the numerical
values of the specific heat of the Heisenberg model calcu-
lated from Monte Carlo methods.** The excellent agree-
ment between the two is more than expected. More im-
portantly, the in-phase flux state predicts a correct tem-
perature dependence over the entire temperature range,
namely a T? dependence at low temperature, a peak near
T/J=0.6, and a 1/T? dependence at high temperature.
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FIG. 3. Spectrum of single-particle excitation, i.e., excitation
energy of reversing orientation of one spin in the system, pre-
dicted from the in-phase flux state of WJ fermions (solid curve)
and that from spin-wave theories (dashed curve) along several
symmetry directions.
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FIG. 4. Specific heat of the in-phase flux state of WJ fer-
mions (solid curve). The solid circles are the numerical values
of Ref. 34 calculated for the quantum Heisenberg model using
the Monte Carlo method.

The correct T dependence at high temperature is a result
of the fermionic nature of the excitations. While the
spin-wave theory also predicts a T2 dependence at low
temperature, it neither predicts the peak near T/J=0.6
nor the 1/T? falling at high temperature.

V. RAMAN SPECTRUM
OF THE 2D AFM HEISENBERG MODEL
IN A SQUARE LATTICE

Besides the single spin excitation, there is another ele-
mentary excitation process in a quantum spin system,
that is to flip two oppositely oriented spins simultaneous-
ly, leaving the total spin of the system unchanged. In the
spin-wave approach, this process is described by creating
two spin waves with opposite momentum, whereas in the
in-phase flux state of the WJ fermions this process is de-
scribed by exciting a WJ fermion from the lower (filled)
band to the upper (empty) band. Raman-scattering ex-
periments precisely measure such excitations, and are
therefore imperative for understanding the dynamics of
the quantum AFM Heisenberg model. Comparison of
theoretical results with experimental spectra will be indi-
cative of the nature of the excitations. Raman-scattering
experiments* 7 on La,CuO, and YBa,Cu;Oq, 5 have re-
vealed the very dynamical nature of the 2D spin-; AFM
Heisenberg system. The frequency shifts span a broad
energy range from 1500 to 8000 cm™' in La,CuO, and
from 1000 to 6000 cm ™' in YBa,Cu;04, . It is also in-
teresting to notice that the high-energy excitations have
been shown to persist in the superconducting samples of
YBa,Cu;04, 5 and are highly correlated with the carrier
density. In this section we calculate the Raman spectrum
of the in-phase flux state of WJ fermions.

The Hamiltonian describing the interaction of light
with pairs of spins is given by*> 37

HR =4 2 (Einc'a )(Eout'aij )SIS
ij)
where E, . and E_, are the electric fields of the incident

y I 22)
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and scattered light, respectively, and o; is the unit vec-
tor connecting nearest-neighbor spin sites i and j. To be
more specific we consider the case where E; . is along the
x' direction, and E, along the y’ direction, where x’ and
y' are the axes along the diagonals of the square lattice.
This configuration gives the B,, symmetry as given in the
literature.*~7 Substituting the WJ transformation into
Hp, we obtain, for the B, spectra,

Hp=B3 [diT(PHry,idHry+Pi—ry,idi-ry
i

—Pi+rx,idi+-rx _Pi—?x,idi—fx)
+(difdi_%)(dif+fydi+ry+diT~‘rydi~Ty
"diT+rxdi+rx_diT—rxdi—fx)] ’
(23)

@,y —@;) .
where P, ,=e "7 7" is the phase factor, and

B=AE; E . The phase factor is treated by the mean-
field method described in the previous section. Using the
notation in Fig. 1, we have

Hpy=~2BS [skeie"azbk-i-H.c.]
K

4B

’ T
+7 > ahqakbp_qbp(cosqy—cosqx) ) (24)
k,p.q’
where g, =1sin’k, +cos’k,, and e O —( cosk,

+isink,)/e,. The prime in the second summation
means that the =0 term is excluded. Equation (24) in-
dicates that Hy corresponds to light scattering by single
and pair excitations of the spinless fermions from the
lower subband, E, , to the upper subband, E,", or vice
versa. We first consider the contribution from single in-
terband excitations of the spinless fermions, since it is the
dominant effect for not-too-high frequency shifts. The
contribution from pair excitations will be discussed later.
The effective Raman Hamiltonian for single interband ex-
citation, Hgg, can be shown to be

Hyps=2B(1+24) S [alb,(cosk,+i sink,)
k

+bia,(cosk, —isink,)],  (25)
where we have used {aja, )=(bb, ) =1, and
(alb,)=—1e'"tanh(E, /2k,T) ,

which are the basic properties of the in-phase flux state.
The extinction coefficient’® of the Raman scattering is
proportional to the correlation function, R (w),

R(o)=Im{ Hgl|Hg M 4.5 » (26)

where o is the frequency shift in the Raman scattering,
and ((Hg|Hpg ), ;s is the Fourier transformation of the
correlation function,

Ut,t')=—0(t—t'){[Hg(t),Hg(t)]) .

In order to obtain the Raman spectrum contributed from

single interband excitations, R (w), we first define the fol-
lowing Green’s functions:

Gy (t,t)=—iO(t—1t"){[bL(t)ay(t),Hg ()]} ,

(27)
Fy(t,t)=—iO(t—1t"){[al(t)by(t),Hg(t)]) ,

(28)
Iy(t,t)=—i0(t—t"){[b](1)by (), Hg(t)]) ,

(29)

and

Ly (t,t')=—i0(t—t"){[af(t)a,(t),Hg(t")]) .

(30)

The equations of motion of these Green’s functions can
be established using Zubarev’s method. *®

The Hamiltonian of the spin system is defined in Eq.
(15). While the phase factor in Eq. (15) is approximated
as a uniform gauge field as discussed in the above section,
we shall retain the interaction between the WJ fermions
as given by the second term in Eq. (15) in establishing the
equation of motion of the above Green’s functions. The
spin Hamiltonian is most conveniently expressed in the
momentum space,

H=J Y [ge _ie"albk+H.c. ]
K

+2 3 X(@aliquib] by - 31)
k,p,q

where X(q)=cosg, +cosq,. The interaction between the
WIJ fermions manifests itself in the higher-order Green’s
functions. For example, we have

ka(w):Jske_ie"[lbk(w)—lak(a))]

+ 2 E'X(q)[((blak#qb*

N P—q R
Pq ’

- «al;-%qapbz—qaleR »w] .
(32)

We next truncate the higher-order Green’s function to
get a set of integral equations. The method used is remin-
iscent of the self-consistent random-phase approximation
(RPA). Thus, for example,

(bray_obl_bo|Hp M =8y [{ay_gbl_ My (w)
—(blb,)Gy_g(@)] .
(33)
Using the relation

~ S X(@ ey gbl ) =280 %, G4
q

we obtain
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—io,

oG (w)=E/e (@) =1 (@)] . (35)
Similar manipulation gives
Flo)=—e %Gy (o) , (36)
oly(0)=B(1+2A e (e’ *—e " )tanh(E{ /2k5T)

+2E e "Gy (0)— Oy (w)tanh(E{ /2k,T) ,
(37)

and

Lo)=—I(0), (38)
where
0y(w {5% (k—q)e ¥ +e )G (0) . (39)

This set of integral equations can be solved exactly by
postulating that
J 0
v 2X(k—q)G Pk flo)
q

Jlo)=¢gee (40a)

and

T 3 X(k=q)Gglole " =—ere % flw),  @0b)
q

and solve for f(w) self-consistently. The contribution

from the single interband excitations, R (w), can be ob-

tained from G, () and Fy(w) by proper summation over

k, as can be easily seen from its definition. The final re-

sult is

(w+id)
R,(0)=4B(1+2A,)m | —XCTIO0 4
S@)=4B“(1+24A)°1 [+ y(0+i5) ] (41)
where
J 8E coszkysinzkx N
=— tanh(E, /2kgT) . 42
N % 2 —aE?) anh(E, /2kpT) (42)

The weighting factor in y(w) favors excitations at the
band edge, and suppresses excitations at the band center
(Ei ~0), confirming the fact that Raman-scattering ex-
periments are not sensitive to long-wavelength excita-
tions. It is also interesting to note that Raman-scattering
does not simply measure the density of states of the exci-
tations. For example, the density of states of the excita-
tions has a Van Hove singularity at 0=2J(1+24A)),
which, however, is cancelled in Eq. (42) by the weighting
factor. The denominator, 1+y(w), in Eq. (41) comes
from the interaction between the spinless fermions, i.e.,
the second term of Eq. (31). Since Imy(w—+i8) is largest
at the band edge, it is obvious that the interaction be-
tween the spinless fermions (or quantum fluctuations) is
very important for the Raman spectrum to peak at a
value below the band edge excitation. In fact, the peak
position of the Raman spectrum is determined by the
vanishing of the real part of 1+ y(w).

The calculated spectrum is compared with the experi-

mental Raman scattering intensity of La,CuQ,, as shown
in Fig. 5. Below the frequency shift of about 4000 cm ™!,
our calculation agrees very well with the experimental
data. The calculated spectrum shape depends only on the
parameter a=J(1+24A,), which we obtain from the com-
parison to be 1568 cm™!. For such a large value of a, A,
hardly changes between zero temperature and room tem-
perature. For example, A, is calculated from Eq. (21) to
be 0.2365 at T=300 K. The exchange energy, J, thus
can be determined using the zero temperature value of A,
to be 1060 cm ™. This value of J agrees remarkably well
with the previous estimated value from the light scatter-
ing spectrum® and from analyzing®3%*° the neutron-
scattering data.!~® The fact that the exchange parameter,
J, obtained from the Raman-scattering and the neutron-
scattering data agrees with each other is significant, since
neutron scattering measures the long-wavelength excita-
tions. Because of the large value of J, our theory predicts
very little change in the Raman-scattering spectrum be-
tween zero temperature and room temperature, which is
indeed experimentally observed. We have also calculated
the extinction coefficient for the case where E; . and E_,
are both along the Cu-O bond (the xx or yy spectrum),
and find that it is the same expression as that given in
Egs. (41) and (42). That the xx (or yy) and the x'y’ spec-
tra are the same can be proven exactly from the symme-
try consideration of Eq. (22), assuming that the interac-
tion of light with pairs of nearest-neighbor spins de-
scribed by Eq. (22) is the only interaction. Our theory
preserves this symmetry. (The diagonal-next-neighbor
spin pair scatterings may give rise to the 4,, and B,,
spectra.® The experimental xx component then contains
the 4,, and the B, spectra.)

Since Eq. (41) only includes single interband spinless
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FIG. 5. Comparison of the theoretical Raman spectrum con-
tributed from single interband excitations of WJ fermions, i.e.,
Eq. (41) (solid curve), with the experimental data of La,CuO,
(dotted curve). The experimental curve is from Ref. 6 for which
all instrumental responses have been corrected. The dashed
curve is calculated from the spin-wave theory of Parkinson (Ref.
36).



fermion excitations, the maximum frequency shift it pre-
dicts is 2V/2J(1+24,), or 4434 cm ™! for La,CuO,. The
experimental spectrum shape has a long tail extending up
to about 8000 cm !, approximately twice the maximum
frequency shift predicted from single spinless fermion ex-
citations, suggesting that the pair excitations of the spin-
less fermions are important at large frequency shifts.

The evaluation of the Raman intensity contributed
from the pair excitation of the spinless fermions is very
complicated. We shall simplify it by using the mean-field
Hamiltonian for the spin system, i.e., Eq. (19). This is
tantamount to neglecting fluctuations around the in-
phase flux state. While the fluctuations are expected to
be important for determining the shape of the spectra, as
we have seen in the evaluation of R (w), we expect the re-
sulting order of magnitude of the pair contribution rela-
tive to the single contribution to be correct. When the
approximation is adopted, the evaluation is most con-
veniently done in the representation which diagonal-
izes the mean-field Hamiltonian. By using the trans-
formation, a,=(C,+e 'e"Dk)/\/E, and b, =(D,
— ' C,)/V'2, Eq. (19) becomes

Hyr= 3 (D{D,—Cl{COE{ . (43)
k
J
2 : — —
Rz(a))=4m’? b [cosqu(1+e'(e"+‘1+e" ©,_,~9,)
N k,p.q

—2cosg,cos(k, +q,—p,)e

for >0 and at T=0. Obviously Eq. (45) extends the
Raman frequency shift up to 4V 2J(1+24,). It is com-
putationally difficult to handle Eq. (45) because of the
six-dimensional integral implied in the summation. We
shall further simplify R,(w) by setting q=0 in the &-
function argument, corresponding to approximating all
pair excitation processes as vertical in the energy dia-
gram, and O, ,—©,~q-VO,. These approximations al-
low the summation of q to be done analytically. For
o <<2J(1+2A,) we find

R,(0)=~(8/37")BHw/2J(1+2A))}/(14+24,) .

This is compared with the similar result for R (w) in Eq.
(41) at the same frequency region,

R (0)=(14+24,’Bw/2J(14+2A)13/(1+24)) .

This gives R,(w)/R,(w)=0.04. Therefore, as expected,
the interband pair excitations are not important at small
frequencies. The calculated Raman spectrum,
R(w)=R,(w)+R,(w), is shown in Fig. 6. As can be
seen, R(w) reasonably accounts for the asymmetrical
shape of the experimental spectrum, and R,(w) has the
correct order of magnitude compared with the intensity
at the tail of the experimental spectrum. The sharp sepa-
ration at the single-particle band edge, i.e., near 4400

i(©,~6,)
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The pair excitation term in the Raman-scattering Hamil-
tonian, i.e., the second term in Eq. (24), also needs to be
transformed. This creates 16 different terms correspond-
ing to various ways of exciting the pairs. Many of them
have a one interband and one intraband excitation, and
therefore in the region @ <2V'2J(1+2A,) they can be
considered as effective single-particle excitations. These
pair excitations contributed the factor (1+2A,) in Eq. (6).
In addition to these pair excitations, there are two terms
corresponding to interband pair excitations, and they
cannot be considered as effectively single excitations over
the entire frequency region. More explicitly, the pair ex-
citation part of the Raman Hamiltonian, i.e., the second
term of Eq. (24), is

_B <
Hgp= Nk’zp’q[e

i(© +0,)
T Dl DY (€ Cp+H.C. ]

X(cosg, —cosg, ) +other terms . (44)

In the mean-field approximation, the ‘“other terms” in
Eq. (44) are effectively single excitations, and their contri-
butions have been taken into account in R (). The pair
excitation contribution to the Raman intensity, R,(w),
can be obtained by establishing the equation of motion
for Hyp. Using Eq. (43), we obtain

8(w—Ef —E/_—Ef—E]), (45)

cm ™!, is caused by the different approximations used for
calculating the single interband excitation and pair exci-
tation contributions.

The experimental Raman spectrum has been previous-

= —— PRESENT
THEORY

B eeseee EXPERIMENT

RAMAN INTENSITY

0 X i I 1 L epeens
0 1000 2000 3000 4000 5000 6000 7000 8000

ENERGY SHIFT (cm™1)

FIG. 6. The theoretical Raman spectrum including both sin-
gle excitations [Eq. (41)] and pair excitations [Eq. (45)] of WJ
fermions. The sharp separation near the single excitation band
edge (~4400 cm™!) is caused by the different approximations
used in deriving the two contributions (see the text).
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ly interpreted in terms of two-magnon (spin-wave)
scattering theory of Elliott and Thorpe,** and of Parkin-
son,® and has also been analyzed using perturbation
theory around the Ising limit.® The two magnon theory
is expected to be valid for classical spins (S = 1), and its
applicability to quantum spins is questionable, as men-
tioned in the Introduction. The prediction of the spec-
trum shape of the two-magnon theory is shown in Fig. 5
by the dashed line. The width of the spectrum predicted
by the two-magnon theory is too small compared with
that of the experimental data. The apparent improve-
ment of the present theory over the two-magnon theory
indicates the importance of the quantum nature of the
spin-1 system. The analysis® of Singh et al. using the
Ising-limit perturbation theory gives good agreement be-
tween the calculated frequency moments and the experi-
mental ones, and their calculation also concludes that the
quantum fluctuations are very important for the 2D
spin-1 Heisenberg antiferromagnet. A direct comparison
of the present theory with their calculation is difficult
since the spectrum shape is not calculated in their
analysis. The Raman spectrum has also been discussed
by Hsu*' in the context of the generalized Affleck-
Marston flux state. In his treatment, the excitations are
projected spin waves which cannot be simply expressed as
spin operators and therefore explicit calculation of the
Raman spectrum cannot be done. Our treatment of
transforming spin operators into Wigner-Jordan fermions
offers distinct advantages for calculating the spectra.

VI. SUMMARY AND DISCUSSION

The advantage of using the W1J spinless fermion repre-
sentation in studying low-dimensional quantum antifer-
romagnetism is that it automatically preserves the spin-
commutation relations, as well as the spin on-site ex-
clusion principle. We have shown that the 1D S=1
AFM Heisenberg model can be viewed as a 1D liquid of
W]J fermions. A mean-field theory, corresponding to the
covalent-bonding state of WJ spinless fermions, is found
in quantitative agreement with the exact results from the
Bethe-ansatz solution. The mean-field state has no long-
range AFM order, the zero-temperature energy including
second-order correction is —0.4351J per site, compared
with the exact value of —0.4431J per site, and the excita-
tion spectra is gapless and linear in momentum at low en-
ergies. The velocity of the particles near the Fermi sur-
face is 1.6366J, compared with 1.5708J obtained by Hal-
dane for the 1/d*interaction Heisenberg model. The
method used for studying the 1D model is applied to the
2D quantum AFM Heisenberg model in a square lattice.
The resulting state at finite temperature is the in-phase
flux state. This state satisfies the Mermin-Wagner
theorem; i.e., it does not have a long-range AFM order at
finite temperatures. The dispersion of the single-particle
excitation spectrum of the in-phase flux state is similar
overall to that of spin waves with significant differences
near the edge point (m,0) of the Brillouin zone. The
specific heat of the in-phase flux state has a correct tem-

perature dependence over the entire temperature range,
namely, a T? dependence at low temperature, a peak near
T/J=0.6, and a 1/T? decreasing at high temperature.
In contrast, the spin-wave theory only correctly predicts
the 7% dependence at low temperature. The Raman spec-
trum of the in-phase flux state is calculated and found
that it significantly improves the Raman spectrum of
spin-wave theories compared with the experimental spec-
trum of La,CuO,, suggesting that the short-wavelength
excitations of the quantum AFM Heisenberg model can
be well described by that from the in-phase flux state.
The exchange parameter, J, obtained from the compar-
ison of the experimental spectra with the theoretical cal-
culation is 1060 cm !, agrees remarkably well with that
evaluated from analyzing neutron-scattering experimen-
tal data. These evidences suggest that the in-phase flux
state of WJ fermions corresponds very closely to the true
eigenstate of the quantum Heisenberg model in a square
lattice.

Our calculation indicates the vital importance of the
spin correlation in the spin-} AFM Heisenberg system.
A spinless fermion at site j represents a vortexlike spin
excitation with the “vortex core” at site j and all the
spins at other sites circulating around it. Thus, reversal
of the spin direction at any site necessary involves corre-
sponding changes of the whole spin system. We particu-
larly notice that the excitations in our treatment are fer-
mionic. This fermionic statistics reflects the phase
change in the many-spin-wave function when a spin in
the system reverses its orientation. Whether the
difference in the statistics of the excitations, fermionic in
our approach and bosonic in the spin-wave approach, is
significant is not clear theoretically, since the statistics of
2D interacting particles tends to be obscure. Neverthe-
less, it would be interesting to see whether the difference
could be resolved experimentally.
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APPENDIX

In this appendix, we show that the phase factor in Eq.
(15) is that of the vector potential in Eq. (16), and that in
the mean-field approximation and in the continuum limit
the vector potential corresponds to that of a uniform
magnetic field. Equation (16) is obtained by writing the
phase difference between site j and site i in the following
form:

;=@ = [ldrv.pr (A1)

and taking the derivative of ?i with respect to r;. In the
mean-field approximation, d;d; is uniform and therefore
can be taken out from the summation in Eq. (16). The
summation over / in Eq. (16) is done in the continuum
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limit. In this limit, we can replace 3., by 4 "' [dx dy,
where A is the area of an elementary plaquette. The in-
tegral is bounded by a square of linear dimension a, and
we will take the limit @ — o at the end of integration.
Without loss of generality, we assume r; =x;%. After in-
tegration over dx, we obtain

(@a/2—x;)*+y?
n——_ ’
(@a/2+x;)*+y?

(A2)

n a/2
V. olr;) S A2 X% f_a/zdy 1

where n= (d,Td, ). The argument within the log is now
expanded as a power series of x;/[(a /2)*+y?], and we
only need to retain the first order. The integration over
dy can be easily done. Generalizing to arbitrary r;, we
have

vrl_¢(r,.)=—§%%BXr,. ,
where @ is the unit flux quantum, and B=(n/A4)®? is
the uniform gauge field. In the in-phase flux state, n =1,
B then represents a self-generated uniform gauge field of
strength half flux quanta per elementary plaquette.
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