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The paper outlines conditions under which the statistical shift of the Fermi level within the density-

of-states (DOS) distribution may result in the Meyer-Neldel correlation. Sufficient conditions have been

found: (i) The DOS should have, around the Fermi level, two competing exponential slopes; (ii) The tem-

perature range for the statistical shift should correspond to kT values higher than at least one of these

two characteristic energies associated with the slopes. Under such conditions, the Fermi level is no

longer the dominant energy for carrier-concentration changes. Relating the Mayer-Neldel correlation to
DOS parameters is an essential step in a correct deduction of Mott s minimum-metallic-conductivity

value from experiment.

I. INTRODUCTION

E~(t) Ec=E~(0} E, +—y T, — (3)

in which the temperature coefficient y incorporates
effects of the Fermi-level and conduction-band-edge
thermal shifts. Such an equation leads to the following in-
terpretation for the EQ and 00 parameters:

E =Ec—E~(0),
crp=o exp(y/k) .

(4)

Only partial success has been achieved, especially with

Over a wide range of temperature, the conductivity of
intrinsic and doped amorphous hydrogenated silicon (a-
Si:H}is thermally activated,

o =o p exp( E /k T—),
in which E is the activation energy and a0 is identified
with the minimum metallic conductivity a defined by
Mott, ' estimated to be between 16 and 100-600
(Qctn) ', but experimentally found to be orders of mag-
nitude different. Many attempts have been made to
explain this discrepancy by considering temperature
shifts of the Fermi level and mobility edge.

Additional complications in the theory arise because of
the existence of an exponential correlation between 0.0
and E~ (Refs. 6—9) of the kind established by Meyer and
Neldel, '

trp o'ppexp(E /kTM&)

The correlation, also known as the Meyer-Neldel rule
(MNR), is found in electrical-conductivity measure-
ments, on differently doped samples, as well as among
various light- and thermal-treatment induced states of the
same sample. It also appears in field-efect and space-
charge-limited-current measurements. The characteristic
energy kT~& values are rather spread out, say between
0.043 and 0.067 eV. '

Attempts have also bee made to explain the Meyer-
Neldel correlation through a linear relation,

regard to the field-effect data, "' and we will show that
even this might have resulted from processing the data
under the assumption that the fastest space-charge
change appears around the Fermi level, whatever the
temperature may be.

Full success of Eq. (3) in accounting for the MNR
would mean that the temperature coefficient y satisfies
the following condition:

y/k =ln(op/o )=in(opp/cr )+E /kTut& . (6)

and the characteristic MN energy

kT~~=1/b, b &0 . (9)

Such a family of curves, which extend linearly down to
T =0, for all possible E+0 is incompatible with a continu-
ous density of states (DOS). But MNR should appear
within a temperature range over which the Fermi-level
shift is well approximated by such a family of curves. If
the band-edge thermal shift is to make a contribution, it
would affect only parameter a, i.e., the ratio o 00/u, but
not the MNR slope, which is related to parameter b.

A successful Meyer-Neldel-type of description using
Fermi-level statistical shift, with a plausible density of
states for a-Si:H, has been proposed by Overhof and
Beyer, ' and subsequently refined by Overhof and Tho-

In other words, this means that the physics behind the
MNR should ensure a thermal coefficient of the Fermi
level which varies linearly, and with a positive slope for
an electron conduction, with the associated activation en-

ergy of the conductivity.
Equation (6) implies that the thermal shift of the Fermi

level should be describable by a family of curves (for vari-
ous Epp} of the type

Et (Epp, T)=Ed+ [a +b(EC Epp)]kT, —

with the constant parameters a and b determining the de-
viation of the experimental value 0.00 from Mott's
minimum metallic conductivity o

o.pp/o =exp(a )
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E' =Ec EF'o and—oo =0 exp(y'Ik) . (12)

The calculated o'Ik dependence on E*,' shown in

Fig. 1, has a positive slope range within which it is ap-
proximated by the required MNR dependence as given

by Eqs. (6) and (7), and can fit experimental MN correla-
tions over about five orders of magnitude in cro(E ).

The statistical-shift interpretation of MNR was called
into question by Irsigler, Wagner, and Dunstan' because
a specific density-of-states distribution was used in the
above-mentioned calculations, which seemed to contra-
dict the finding of the ubiquitous presence of the MNR.

Overhof and Thomas claim that their successful densi-

ty of states is not a singular one, that reasonable y*(E* )

dependencies result for various profiles of deep-level
states (even completely fiat ones), and that such depen-
dencies are a consequence of a sufficiently high ratio be-
tween band- and midgap-state densities. ' But it remains
an open question whether this is the only condition.

Moreover, even if the OT theory of the Meyer-Neldel
correlation, based on numerical calculations covering a
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mas (OT). ' The energy-state distribution that they use
combines exponential tails of states, which extend from
conduction and valence bands (with characteristic ener-
gies of about 0.026 and 0.033 eV, respectively), with

peaked midgap-defect-level distributions, which extend
towards bands with exponential slopes.

The numerically evaluated EF(EFo, T) dependencies
are not linear, as given by Eq. (7), but can be satisfactori-
ly approximated by their average slope y*=dE+/dT at
TM, the center of the (measurement) temperature range
of interest,

EF(z ) =EF'o+y'r,

in which the T=0 extrapolation Ezz is, in some cases,
substantially different from EFo=EF(0), as the calculated
dependencies have a vanishing slope around T=0, even
for high average slopes y*.

Equation (10) leads to a temperature dependence of the
conductivity,

o(T)=oo exp( E*/kT—),
with the activation energy and preexponential factor
given, respectively, by II. THE THERMAL SHIFT OF THE FERMI LEVEL

As is generally known, the thermal shift of the charac-
teristic energy of the occupancy function, i.e., the Fermi
level in thermal equilibrium, is given by a charge-
conservation equation which, in thermal equilibrium, is a
neutrality equation, with the Fermi-Dirac occupancy
function f( ( E EF ) Ik T):—

6 (EF ) = f N (E)[f((E EF ) IkT )—
8(E„E)—jdE =0,— (13)

in which N(E) is the DOS function and e(x) is the
Heavyside unit-step function. For a given N(E), a nu-

merical procedure combines numerical integration with a
root-finder procedure for a solution of Eq. (13).

In order to resolve fully the issues raised by Irsigler,
Wagner, and Dunstan, the exponential profile defined by
Eq. (Al) —(A4) and Fig. 7 in Appendix A has been used.
It retains the essential features of the OT DOS, i.e., disor-
der tails of states fast (exponentially) falling from the
bands, and midgap defect states with various profiles,
from peaked to flat ones.

The essential model parameters to be kept in mind for
MNR analysis, in the electron conduction case, are the
following: (i) the characteristic energies (related to loga-
rithmic slopes) of the tail and midgap states, on the
conduction-band side, which we assign for convenience to
t, =kT, and m, =kT „respectively; (ii} the transition

energy E „from tail to rnidgap defect states, on the
conduction-band side (conduction-band edge Ec taken as

reference); (iii) the midgap peak position EM, if any (with

respect to Ez). The extent of a fiat defect-states profile is

insignificant, as long as its limit is not reached in the tem-

perature range of interest; (iv) the corresponding parame-
ters on the valence-band side, indexed with U instead of c,
are insignificant for the MNR analysis, as wi11 be further
discussed.

wide range of parameters, were convincing, it would still
leave open several questions of even wider interest than
MNR itself. First of all, there is the interpretation of the
activation energies E which are significantly different
from Ec —EF(0). Then there is the problem of the
dependence, between the experimentally determined ooo
value and Mott's minimum metallic conductivity. As
Eqs. (6)—(8) and Fig. 1 suggest, the ratio 0oo/0. depends
on DOS parameters that control the extent of the MNR.

In trying to answer these questions, we present, in
what follows, results of a combined numeric and analytic
treatment of the Fermi-level statistical shift, for fast-
varying energy-state profiles.

Section II considers the statistical shift of the Fermi
level within a DOS that has the essential features of the
OT DOS, and for which MNR is obtained by a fully nu-
merical evaluation of the shift. At the same time this
DOS allows for analytic treatment and approximations
which reveal the physics behind the MNR. Section III
quantitatively relates the MNR to DOS parameters, and
considers implications of the MNR.
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This DOS profile, which allowed us to make an analyt-
ic treatment, has been explored with the full Fermi-Dirac
function, as well as with two-term and Boltzmann ap-
proximations, Eqs. (A5) —(A7), in Appendix A. A fully
numerical procedure, with use of the Fermi-Dirac occu-
pancy function, has shown that even for a symmetrical
DOS profile, with conduction- and valence-band charac-
teristic energies t„t„of0.026 eV, all OT results can be
reproduced in the temperature range between 240 and
360 K, and for defect distributions characterized as fol-
lows: (i) tail-defect transition energies E „E „within
0.4—0.6 eV of the respective bands, i.e., a transition at
localized-state densities between 2 X 10' and 10'
cm eV ', for band densities of 10 cm eV ', (ii)
characteristic energies m„m„ for the midgap states
within the range of —0.026 eV and infinite (flat defect-
states profile).

The effect of occupancy-function approximations has
been further assessed, for the two-term approximation
(which ensures the right value and slope at EF as well as
far from it) and for the Boltzmann approximation, valid
sufficiently far above or under EF. Details about their im-
plications on the computational procedure are given in
Appendix A.

It has been found that, for the above-mentioned tem-
perature range in which MNR is obtained, the results do
not change appreciably for these two approximations. It
will be further shown that the surprisingly good perfor-
mance of the crude Boltzmann approximation may be as-
cribed to the physics of the MNR itself.

As discussed in Appendix A, when the DOS in Fig. 7 is
used in Eq. (13), the latter can be analytically integrated,
and a number of exponential terms results, corresponding
to the limits of the various exponential regions. These
terms correspond to the space charge accumulated in
various regions of the DOS, with respect to the 0-K case,
while the overall neutrality is conserved, and secured
through a corresponding shift of the Fermi level.

A qualitative examination of the various terms shows
that, within the charge balance determining the Fermi-
level position, besides the region close to this level, a
significant contribution comes only from the states in the
vicinity of the band edges Ec,E~ and the midgap peak
EM (if any). For the Boltzmann approximation of the oc-
cupancy function, Eq. (13) reduces to only five significant
terins, Eqs. (A8) —(13) in Appendix A. Using a root finder
for such a simple equation, one obtains Fermi-level-shift
curves that are very good approximations of the ones ob-
tained by using the full numerical procedure, as shown in
Fig. 2. And this happens over a much wider temperature
range than that of interest from the narrower perspective
of the MNR.

Moreover, even when our interest was restricted to the
temperature range relevant to the MNR, we found that
only three-space-charge terms in Eq. (A8) remain quanti-
tatively significant. For this temperature range, with the
Fermi level on one side of the midgap peak, the terms
corresponding to the space charge on the other side of
the peak are negligible.

As shown in Appendix A, for the three-term equation,
the root-finder procedure for obtaining EF can be re-

E =0
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FIG. 2. Fully numerical EF(T) profiles (continuous lines)
compared with points calculated under various approximations:
(0) Boltzmann approximation (five-term equation) and root
finder; (k) three-term implicit equation; (6) three-term explicit
equation with C(EFp) M(Ego). The model parameters are
kT, = —kT, =0.026 eV, E&= —1.7 eV, E~ = —0.85 eV,
Nc=Ny=10 cm eV ', and N, =10' cm 'eV ', but only
their ratio matters, ensured by E,= —0.479 eV.

placed with a straightforward iterative procedure, or
even an explicit approximate equation, Eqs. (A15)—(A18).
Figure 2 also shows the success of the three-term approx-
imations for describing the Fermi-level thermal shift in
the temperature range of relevance to the MNR, which is
generally about 240-360 K.

Now we turn to the physics behind MNR, and explain
the success of the Boltzmann approximation in account-
ing for it.

The quantitative analysis of the Fermi-level thermal
shift, based on the fully numerical treatment and analytic
explicit approximations, has shown that one can account
for the MNR with such a shift, controlled by only two
exponential segments of the DOS, corresponding to tail
states and adjacent rnidgap-defect states. Two interesting
questions remain open, however: (a) is the two slope-
configuration the minimum necessary one for the MNR?
(This brings us to the features of the Fermi-level shift
within a single-exponential-slope DOS, or one-slope
configuration ); (b) if a tw. o slope configuration -is neces-
sary, what are the parameter requirements for a certain
MNR to appear?

The answer to the first question is obtained with the
analytic expressions in Appendix A, and is illustrated by
the qualitative Fig. 3, for the Fermi level on the
conduction-band side of the midgap peak EM.

The one slope configuration solution -offers satisfactory
low-temperature approximation for the thermal shift of a



15 066 CORNELIU POPESCU AND TOMA STOICA 46

&[PF
E)-0

electron, Nc 2 1

centrotion
profile

E
M 1 T7c Fo 5

'='c (.

2] ', EFoy+Fg

T Tc E 6,
I E

EM Emc F,=Q 0

con

t= mc=-kTmc t —k7

FIG. 3. The main EF(T) features resulting from the two-
segment DOS model.

Fermi level situated at 0 K within an exponential seg-
ment of any DOS. The essential parameters for this solu-
tion are the following: (i) the characteristic energy asso-
ciated with the logarithmic slope (t, for points 1 and 2
and m, for points 6 and 7 in Fig 3), .and (ii) the position
at 0 K of the Fermi level with respect to the maximum
value of the segment (Ec and E~, for the tail segment
and midgap segment, respectively). The temperature
coefficient of EF, located within an exponential segment
falling from Ec towards the gap, is negligible around 0 K
and then evolves, around a critical temperature T, (asso-
ciated with t, =kT, ), towards a constant negative value
proportional to Ec —EFp.

But this proportionality does not result in the MNR in
a temperature range we11 above T, . The positive-slope
condition b & 0 imposed on Eq. (7) is not met and the ac-
tivation energy of the conductivity E is zero for all
values of Eg EFp as all curves extrapolate at T=0 to
E~=Ec=0 [Eg =0, according to Eq. (10)]. For a tem-
perature equal to Tc, one has E'=(Ec EFo)I2, and-
the temperature coefficient is proportional to E*, but
again with a negative slope, and so MNR does not ap-
pear.

For an exponential segment falling from EM towards
Ec, similar results are obtained, with —m„—T „and
EFO E~ playing the role of t„T„and Eg Ego respec-
tively.

The conclusion is therefore reached that one-slope solu-
tions cannot account for the MNR But it will b. e shown
in Sec. III of this paper that they correspond to the
negative-slope regions of the y*(E* ) dependence appear-
ing in OT calculations for E* under 0.2 eV or above 0.8
eV.

In order to yield the positive-slope region, i.e., MNR,
in the Fermi-level shift, the contributions of two ex-
ponentia1 segments of the DOS should interact, resulting
in a transition from having one prevailing in the shift, to
the other. This condition is fulfilled by EFo values illus-
trated with points 3—6 in Fig. 3. For temperatures
around Tc, —T „ the corresponding EF(T) curves in

Fig. 3 are well approximated by Eq. (7), MNR appears,
and this fully settles the first question posed above.

The second question posed above will be fully answered
in Sec. III. We will just mention here that even if one-

slope ranges do not account for the MNR, their extent
(minimum and maximum values reached by y*) controls
the quantitative extent of the MNR range (positive
d y* IdE ').

Before proceeding further with the MNR analysis, we
make one more comment related to the characteristic en-
ergies (and temperatures) of exponential segments of the
DOS. The equations in Appendix A, and Fig. 3 show
that, for the Fermi level within such a segment,
significant changes in the occupancy of the states appear
around T = T, . While at low temperatures an occupancy
maximum and significant space charge appear close to
the Fermi level, around T, they move further, towards
the highest end of the exponential segment. At T =T„
the electron concentration profile is constant at energies
above EF.

Now, the physical reason for the success of the
Boltzmann approximation in the evaluation of a
significant thermal shift of the Fermi level, for exponen-
tial DOS profiles, becomes obvious: (i) at low tempera-
tures, where significant space charge is around Fermi lev-
el, the latter remains in close proximity to EFo., (ii) only
around and above the characteristic temperature T = T,
the Fermi-level shift becomes significant, being then con-
trolled by space charge far from its position.

III. N(E) DEPENDENCE
OF THE MEYER-NELDEL PARAMETERS

and

E"(EF)=Ec EF(Eq)=Ec —E(EF) . — (16)

A general equation can also be obtained for the MNR
slope, related to the slope of the dependence y*(E' ),

1 lkTM~ =8() */k)ldE* =(1/kT)[1 (dEF'IdEr) '],—
(17)

which gets close to 1/kT when ~dEF*/dE+
~

&&1. We can
now examine the physical meaning of an activation ener-

gy, given by Eq. (12), which is significantly different from

E& —EFO. The analytic expressions in Appendix A
show —and Fig. 3 illustrates —that EF*, the extrapolation
energy for the linear approximation, is close to EFo only
at low temperatures, and then it evolves towards Ec,
passing through the value (Ec EFo) l2 at T = T, . —

The above-mentioned physical considerations are sup-
ported by the parametric equations of the dependence
y*(E'), with parameter EF, which can be obtained
through straightforward differentiation of Eq, (10) with
respect to kT,

y*(EF)lk =k 'dEF/dT= —[E(EF) EF]lkT, —(14)

with

I EN(E)f'((E E~)lkT)dE—
E(EF)=EF*(EF)=

f N (E)f'((E EF ) lkT )dE—

(15)
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Equations (15) and (16) show that EF* and E' are both
related to Ez, the momentum of the electron-
concentration variation, a kind of dominant energy for
space-charge accumulation. At temperature T„ for
which the charge is uniformly distributed within the tail,
E~ =EF is not a dominant energy but just the middle of
the energy range within which the charge is constant.
The evolution of E* from E& —

EFO to zero is similar to
that for the usual extrinsic conduction when the
conduction-band edge becomes the dominant energy for
charge-carrier density, which is temperature indepen-
dent.

For the exponential profile of DOS given by Eq. (Al)
(Fig. 7) reduced to a ttoo-slope one and the Boltzmann ap-
proximation for the occupancy function, explicit para-
metric equations are given in Appendix B.

Figures 4(a) and 4(b) show calculated normalized
curves y'(Eg 0 ), respectively, for fiat and peaked distribu-
tions of the midgap states. The conclusion which can be
drawn is that a simple DOS, with only two exponential
segments, can quantitatively account, by use of various
analytic expressions, for all kinds of y'(E" ) obtained by
Overhof and Thomas. ' .

The curves in Figs. 4(a) and 4(b) show that the two-

slope MNR range (positive dy*/dE') is just a transition
between tail and midgap one-slope ranges. The transition
character is brought out even more clearly in Fig. 8 in
Appendix B, which shows the dependence of EFO (or

E* for E—C=O) on E~. The slope dEF'oldE+ in the

transition range determines [through Eq. (17)] the devia-
tion from kT of the MNR slope kTMN.

As Fig. 4(a) suggests, a significant MNR range is ex-
pected only in the temperature range around and above
the tail characteristic temperature T, . It increases when
tail-midgap transition energy gets deeper into the gap,
and when midgap peak is more pronounced ( —T, as
compared to T, ).

For a given tail, the most significant condition is
T=T„under which very simple approximate expres-
sions can be deduced (Appendix B), which correlate the
DOS and MNR parameters. Some of these expressions
are illustrated by characteristic limit lines in Figs. 4(a),
4(b), and 8. Perhaps the most interesting result is that
the natural logarithm of the ratio between the extrapola-
tion conductivity 0.

00 and Mott conductivity o is
around E,/kT, .

Figure 5 illustrates the dependence on DOS parameters
of the MNR correlation parameters, under some of the
most favorable conditions for the latter to appear,
T=T, = —T, . Deviations from the dashed limit lines
in Fig. 5 increase under T & T, and T, & —T, condi-
tions.

We note that, in order to deduce correctly Mott's
minimum-metallic-conductivity value from data on the
temperature dependence on the conductivity with
Meyer-Neldel correlation, one has to consider some addi-
tional information on DOS parameters, as well as one-
slope regions of the y'(E' ) dependence, whenever possi-
ble.

Figure 6 is in the same format as OT s Fig. 8.5 in Ref.
14. It shows that experimental results on MNR, and the
curve calculated by OT for a 0. value of 150 0 ' cm
are fully compatible with 0. values between 15 and 1500
0 ' cm ', provided that the tail-midgap-state transition
energy E, and midgap-state parameters EM and T, are
judiciously chosen. But important information may also
be given by the MNR slope, which decreases (TMN in-
creases) when the fit is attempted for higher o values.
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FIG. 4. Normalized dependencies y /k on E*/t„ for (a) Bat
midgap-defect-state profile and (b) peaked profile, and various
normalized model parameters.

FIG. 5. Midgap energy dependence of MNR parameters;
T=T,= —T, case.
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terized by the equations

N(E)=Nc for Ec&Ec=0, (Al)

We will only mention here that the slightly higher
slope of the OT-calculated curve, with respect to experi-
mental data, might suggest that an underevaluated
Mott s minimum-metallic-conductivity value has been
used. But a more detailed exploration of DOS parameters
would be needed to settle this matter. We will return to
discuss these issues in a separate paper.

Nc Nw exp( E~/m, —), EM &E &Ec

N(E) =N, (E)=NM exp[(E EM )Im, ]— (A2)

+N~ exp[(E Ev)/t—,],Ev &E &EM,

(A3)

N (E)=N, (E)=NM exp[(E EM ) Im—, ]+Nc exp(E/tc )

=Nc exp(E/m, )+Nc exp(E/t, ),

IV. CONCLUSIONS N(E)=NV for E &Ev, (A4)

We have shown that when one finds the Meyer-Neldel
correlation within a certain temperature range, centered
on a T value, one can safely assume that exponential tails
of states, with a characteristic energy around kT, control
the thermal shift of the Fermi level within that range.
Such Meyer-Neldel tails also appear in doped single crys-
tals, where they account for transitions involving levels
far from the quasi-Fermi-level. ' '

When MNR is present, use of the dominant-energy ap-
proximation should be carefully reconsidered, if analytic
treatment and experimental data processing are per-
formed, because it may not be valid for some tempera-
tures and the states around the Fermi level may not play
a major role. Fully accounting for MNR parameters in
terms of DOS parameters also allows for more reliable in-
formation to be obtained on Mott's minimum metallic
conductivity.
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f (x)=1/[1+exp(x)] (A5)

or a two-term approximation that ensures correct
f (0),f'(0),

exp( —x)—
—,
' exp( —3x/2), x ~0,

1 —exp(x)+ —,
' exp(3x/2), x &0f(x)= '

or a Boltzmann approximation

exp( —x), x &0,
1 —exp(x), x &0, satisfactory for 1X1&3 .

(x)= '

in which t =kT, t, =kT„m, =kT „n,=kT „where
the absolute values of T„T„T„and T „are charac-
teristic temperatures for the exponential dependencies of
the model.

The exponentials with t, t, correspond to disorder tail
states, while those with m„m, correspond to deep local-
ized defect states. The parameters m„m, can be either
positive or negative, with the case of m, = t„m, = t, cor-
responding to the absence of deep levels with a nature
different from that of tail levels.

In order to compare fully numerical-procedure results
with analytic approximations we have used, for the occu-
pancy function f (x) [x =(E EF)/kT], eith—er the full
Fermi-Dirac function

APPENDIX A

The exponential DOS profile, which essentially accom-
modates OT-type DOS, is shown in Fig. 7, and is charac-

(A7)

When Fermi-Dirac f (x) is replaced through the men-
tioned two-term approximation, the integral in Eq. (13)
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can be analytically evaluated and split into 18 terms con-
taining exponentials, out of which 10 correspond to the
Boltzmann approximation of f (x). One can now com-
bine this analytical integration with the root-finder pro-
cedure and compare results with the full numerical pro-
cedure, and they nearly coincide even if only Boltzmann
terms are retained.

Now, for the Boltzmann approximation and conditions
imposed on N (E) by OT (sufficiently high ratio between
NC, N& and N „N „,Nsr), only five terms remain
significant (for electron conduction) in Eq. (13), which
reduces to

The first term corresponds to the charge associated
with the Fermi level sweeping the states, and the follow-
ing three to the charge redistributed in deep states (m, ),
conduction- (t, ), and valence-(T„) band tails. The last
term represents a correction to the charge around the
Fermi level, with a significant contribution only when

~ m, ~
))t„NM =Nc, (fiat midgap profile).

The symbols Q, M, C, V, and 0 are given by the equa-
tions

Q = Net, [exp(E~/t, ) —exp(E&0/t, ) ]

+Norm, [exp[(E~ —Esr )m, ]
—exp[(E+0 —EM )/m, ]],

C =t,'[1—exp(E~It,')]+t, 1/t, =1/t, —1/t,
M =m,"[1—exp[(E~ Esr )/m, "—

] ] +m„",

1/m,"= 1/m, —1/t, 1/m„' = 1/m„+ 1/t,

(A9)

(A 10)

(Al 1)

V = t„"[ 1 —exp[EM E„)lt„"]] + t—, 1/t„' = 1/t, + 1/t,

G (EF ) -=Q NMM—exp[(EM EF )Ir]+NcC exp(EF /r)

Nv V—exp[(EV Ez) l—t]+NCO exp(E~/t) =0 .

(A8)

which is only apparently an explicit one, as the symbols
Q, C, and M are functions of E~, Eqs. (A9}—(A13). But a
closer examination of Eq. (A9) shows that the depen-
dence of the space charge Q on E~ is either negligible or
only linear, with an insignificant effect on the solution
within the range of interest. When significant for Ez(T),
the charge Q is essentially dependent only on E&0, and
can be approximated by QQ, which is given only by the
terms with E+0 in Eq. (A9).

As a consequence, Eq. (A14) can be used for fast ap-
proximate evaluation of EF(T) dependence, through an
iterative procedure,

EFi E~ ( t—(,Q 0, C (EF; i ),M ( EF, , )), (A15)

starting from T, t =0 for which E+=E+p.
Depending on the E~Q position with the two slope-

DOS, there are situations when Eq. (A8) reduced to only
two terms: (i) when the space charge around E+0 is bal-
anced only by the space charge in the same DOS segment
as E~a (one slope b-ehaviors); (ii) when the space charge
redistributed within the two DOS segments balance each
other, with space charge around Epp having a negligible
effect.

Two-term approximations allow for very simple equa-
tions to be written in such cases for Ez(T), which allow
for the simple and clear picture of this dependence, quali-
tatively illustrated in Fig. 3 for various situations. The
equations demonstrate the significance of the characteris-
tic temperatures T, and —T „through the expressions
C(Ez} and M(E~). The latter control Ez behavior un-

der T„—T „keeping it close to Epp then have more
than an insignificant contribution, as EF further moves
only to keep the space charge constant at Ez or E~.

As a consequence, one can write explicit approximate
expressions for Ez(T) that use the limit C(E+0), M(E+0)
values. For E~ controlled only by tail states (points 1 and
2 in Fig. 3) one has

(A12)

O=m,'[1—exp(E~/m, )], 1/m, =l/m, —1/t . (A13)

EF~r~=EFQTIT, kTln[C(E—+)/(kT, )],
C (Ep ) =C (E~0)

(A16)

The parameters t,', m,', m,", and m„", help demonstrate
that significant changes in the occupancy of the states ap-
pear around T =T„T= —T „and T = —T, .

Quantitatively exploring Eq. (A8), one finds not only
that it gives practically the same results as the fully nu-
merical procedure (Fig. 2} but that E~(T) behaviors,
which result in MNR, are controlled, within the tempera-
ture range of interest, by the first three terms of the equa-
tion. This means that only the two exponential slopes of
the DOS, which are close to the band prevailing in con-
duction (in our case conduction band) are significant for
MNR.

Reduced to its first three terms, Eq. (A8) can be rewrit-
ten as a simple quadratic equation, with the solution,

exp( E~ /r ) =——( Q /2NC C )

X [1+[1+(4NCNMCMIQ )

X exp(E~/t) ]' ], (A14)

with kink temperature T = T„independent of Ezp.
For EF controlled only by midgap states (points 6 and

7 in Fig. 3),

EF( t ) =EM + ( EM EF0 ) T/ T~, —

+kTln[ M(E~)I(kT—, )], M(E~)=—M(E~0),

(A17)

with kink temperature T= —T „independent of Ezp.
For EF controlled by tail and flat midgap states

E~( T)=E~0 (t,'+t) exp[E~/kT E~0—/kTL ], —
(A18)

TL T EI;o/E

with the kink temperature at TI, proportional to Ezp.
The approximations C =C(E~0) and M =M(E~0) can

also be used in Eq. (A14), which becomes an explicit one,
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still giving satisfactory results in evaluating EF(T) over
the range of interest for MNR, as shown in Fig. 2.

30

APPENDIX B

For a two-slope DOS and Bo1tzmann approximation,
Eq. (A8) can be rewritten in the following form, con-
venient for the MNR range, i.e., temperatures around
and above T, :

G(EF)—=Q+NctM exp(EFlm, ) NctC—exp(EF lt, )

20

+NctO exp(E~/m, ), (B1)
1P

with the symbols C, M, and 0, given by the expressions

C = t,'[1—exp( EF /—t,') ]It,
M=m,"[1—exp[(Est EF)lm—,"]]It,
O=m, '[1—exp( E+Im,—')]It .

(B2)

(B3)

3Q

By differentiating Eq. (Al) with respect to temperature,
and also using for convenience the symbols

FIG. 8. The normalized dependence E IkT, on EF/kT, .

G =t,'[Ct/EF exp( —E~lt,')—]lt . (B&)
U =m,'[Ot /E~ —exp( EFIm,' )

—
]It, (B7)

W=m,"[Mt l(EF EM )
—ex—p[(EM EF ) Im,"—

] I It,
(B6)

one obtains the parametric equations of the y'(E*)
dependence,

( GEF It ) exp[(EF —E, ) It, ]+[ UEF It + W ( Est EF ) It] e—xp [(EF E, ) Im c ]-
y'(EF ) =

C exp[(EF —E, )/t, ]+(1+0—M) exp[(EF E, )/m, ]—
E~ (EF) Ec Eg (EF), EF'(E„)=EF ty'(EF ) . —

(B8)

(B9)

Equations (B8) and (B9) have been used to calculate
normalized dependencies between y" /k and Et*;olt„ in

Figs. 4(a) and 4(b), and the curves oo(E') in Fig. 6.
Equation (B8) has also been used to calculate curves in
Fig. 8.

This figure, as well as Fig. 3, shows that MNR is due to
significant changes in E' (or Ego), and the slope of
EF(T) dependence, which appear for small changes in

Ego around the E „the tail-midgap transition energy in
the DOS.
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