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Theory of photon-drag effect in bulk magnetic semiconductors
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The theory of the photon-drag effect in magnetic semiconducting crystals is considered using the s-d
(or s f) exc-hange model of interaction between the electron and the magnon. An equation is derived for
the electric Geld generated by this effect. Numerical examples are given for CdCr2Se4 crystals.

I. INTRODUCTION

The advent of the laser has made it possible for us to
investigate many new and interesting phenomena in semi-
conductors, both normal and magnetic. Among others
are phonon' and magnon arnplification, harmonic
generation, and photon-drag effect. ' ' The photon-
drag effect, in particular, arises from the transfer of
momentum from photons to free carriers (either holes or
electrons) in the absorption process through photon
electron-phonon interactions. ' ' As a result of the
transfer of momentum, a net Row of charges appears in
the direction of propagation of the laser wave. That is, a
current of photovoltage effect can be observed. ' '

The theoretical basis of the photon-drag efFect arises
from the first-order terms of the matrix element of the
free-carrier —photon-phonon interaction when the matrix
elements are expanded in terms of the wave vector of the
photons, and was first established by Grinberg' in ger-
manium crystals and later by Yee' for polar crystals.

In the case of magnetic semiconductors, the magnons
provide an additional channel to assist the free-carrier ab-
sorption' of laser radiation; at the same time the photon
electron-magnon interaction may constitute the funda-
mental mechanism for the photon-drag effect in these ma-
terials.

It is the purpose of this paper to investigate theoreti-
cally the photon-drag effect in a magnetic semiconductor
based upon the s-d exchange model of interaction be-
tween the magnon and the electron. The motivation for
such a study is the development of high-mobility rnagnet-
ic semiconductors such as CdCr2Se4 doped with Ag
( —10 cm /Vsec). "

In the calculation that follows, we shall first find the
change of the distribution function of the free carriers
due to the photon-electron-magnon interaction, and then,
using the Boltzmann transport equation, we will deter-
mine the electric field generated by the photon-drag
effect.

II. CALCULATION

Our model for a magnetic semiconductor is that of an
interacting conduction-electron localized-moment sys-

E =p /2m —cr JS/2 (2)

and

firp&=2ZIS 1 —1/Z g e'"
5

denote the electron and magnon energies, respectively,
and

M, ~
= —J(S/2X)'i (3b)

where J is the exchange parameter between the localized
spin and the conduction electron, N is the number of
magnetic atoms, I is the exchange constant between the
Z nearest-neighbor localized spins, and 5 is a vector to a
nearest neighbor. C„and C are the usual annihilation
and creation operators for conduction electrons. Here
a =+ 1 for up conduction-electron moments and cr = —1

for down moments. The bk and bk are the magnon an-

nihilation and creation operators. The last term in

Eq. (1) represents the interaction of the electron and

tern. ' The carriers and the localized moments interact
by their exchange interaction which is taken to have the
familiar s-d contact form. The total Hamiltonian of the
system will comprise the conduction-electron part, the
exchange-coupled local-moment part, and the interaction
terms. %e assume that the localized moments experience
a ferromagnetic exchange interaction only with their
nearest neighbors, and consider only the exchange part of
the conduction-electron local-moment interaction, which
will be represented by a spin-dependent contact potential.
Also, since we are interested in studying the system below
the Curie temperature, we shall introduce the magnon
variables straightforwardly. Thus, in the second quanti-
zation formalism the total Hamiltonian is given by

H= g Ep~C p~Cp~+ g A'rpbqbq

+M, q g (Ct+q tC tbk+c. c. )

p, k

—e/mpc g( Az p)C& C~
P, (T

Here,
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the radiation field with the vector potential
Az = A(r, t)+ A*(r, t), where mo is the electron mass in
free space.

From Eq. (1), we can calculate all the possible transi-
tions which will affect the distribution function of the free
carriers in the conduction subbands.

Figure 1 shows the possible transitions which satisfy
the conservation of energy Ef =E;+Rro+JS+ficok (ar-
rows labeled 1 and 2) and Ef =E; %co—+JS+ficok (arrows
labeled 3 and 4). Here, E;=R k, /2m, Ef=fi kf/2m,
and JS is the energy gap between spin subbands. The
Feynman diagrams shown in Figs. 2 and 3 give the possi-
ble alternatives in which an electron can absorb (or emit)
a photon with the participation of a magnon. The matrix
elements for the processes shown in Fig. 1 are obtained
using second-order perturbation theory given by the gen-
eral expression

ELECTRONS

P HOTONS

MAts NON 5

FIG. 1. Energy-band diagram showing the possible transi-
tions that affect the distribution function of the electron at the
energy state E(k~, $)=E+hE/2. hE= J, d &S).

(F1~0), (4a)

where H, and H, „are given by the third and fourth
terms of Eq. (1), respectively. Arrow 1 in Fig. 1, for in-

stance, represents the absorption of the photon q by the
electrons from an energy state (E; +JS/2) to
(Ef —JS/2) with the participation of a magnon k. In
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FIG. 2. Feynman diagrams for M'f '-M'f ' given by Eq. (4a).
Time increases from left to right.

FIG. 3. Feynman diagrams for M,'f '-M'~ ' given by Eq. (4a).
Time increases from left to right.
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this case we can write, with the help of Eq. (4), one of the
four possible matrix elements associated to this transi-
tion, namely

M'f'=(eA/mc)M, d(nq)' (A, fik;)5i, i, +q+i,

X [E(k, +q, 1)—E(k;, l) —fico] (4b)

X 5(Ef E, i' i„co—fico —JS)—, — (6)

where A, is a unit polarization vector of the vector poten-
tial, A is the amplitude of the vector potential, and q is
the wave vector of the photon. The other matrix ele-
ments for the electron transition processes shown in Fig.
1 can be constructed in a similar way.

In what follows, we will make use of the matrix ele-
ments as given by Eq. (4) to write the kinetic equation for
the free-carrier distribution function due to the interac-
tion of the photon, the magnon, and the electron from
which the electric field generated by the photon-drag
effect will be derived.

Accordingly, the following partial derivative of the
electron distribution function in, say, the subband T is
given by

af(T)/at=(2~/f)y g y df, /at
kf k i=1

df, IBt = [f(kf, T)[1—f(k, T)]IM'f" +M'f'I'
—f(k, , 1)[1 f (kf& T)—]IM;f +Mfl'I'

cifildt = [f(kf, T)[1—f(k;, t)]1M';j" +M',f" I'

—f(k;, l)[1 f—(kf, T)]IM',f'+M~f'I ]

X5(E, E—f +fico', fi—co+JS),

Bf, /at= [f(kf, T)[1—f(k, , l)]IM,'f'"+M,'f' 'I

—f(k, , 1)[1 f (k—f, , T)]IM("'+M~' ~

I I

X 5(Ef E; +—iiicoq —fico —JS),

Bf IBt =
[f(k/, , T )[1—f(k, , $ ) ] IM',. '+M," '

I

—f(k;, l)[1 f (kf—, T)]IM',f'+M') 'I ]

X 5(E; Ef—fico—i, fico—+JS) . (9)

In Eqs. (6)—(9), the processes in which an electron
(kf, T) is created are subtracted from the processes in
which an electron (kf, $) is destroyed. This difference
gives the increase in f(kf, T). Also, in Eqs. (6)—(9), we
assign the factors f or 1 f (wher—e f is the probability
distribution function) as appropriate for each transition
to accommodate the Pauli exclusion principle.

Substituting Eqs. (6)—(9) into Eq. (5) and carrying out
the summation for k, neglecting the magnon dispersion
(coi, -——co~) and changing the summation on kf to an in-

tegral, we obtain

Bf( T ) Ic)t =(2m lf't) V/(2m) [f(E, JS/2+ftco+f—'ico )[1 f (E, JS/—2—)](n&+ I )

f (E; —JS/—2)[1 f (E, —JS/—2+ iiico+ ftcoM ) ]n„]
X(iii J S/2N)leA/mcl JdkfM, 5(Ef E; fico Aco—~ ——JS)—
+(2irlft) V/(2m ) [f(E; JS/2+—fico ficoM )[1—f (E; —JS/2—)]ni,

f(E; —JS/2)—[1 f(E, JS/2—+—%co ficoM )—](n„+1)]

X(fi J SI2N)leA Imcl J dkfM, 5(Ef E, Aco+ficoM———JS)

+(2m. lfi) V/(2n. )3[f (E, —JS/2 —fico+ ficoM )[I f (E; —JS/2) ]—ni,

f (E; —JS/2) [—1 f (E; JS/2 —fico+ fico—~ ) ](ni,
—+ I ) ]

X(fi J S/2N)le A /mcl f dkfM25(E; Ef ftco+ficoM—+JS)—
+(2irlk) V/(2m. ) [f (E; JSI2 fico —ftcoM )—[1 f—(E, —JS/2)]n„—

f(E, —JS/2)[1 —f(E; JSI2 fic—o —fico)]—(n +i1)]—
X(fi J S/2N)leA Imcl fdkfMi5(E, Ef fico ficoM+—JS)—,

—

where

AcoA /k~ T
n&=1/(e " —1), f(k, , T)=f(E, —JS/2),

and

M& = l[k.k;/(E(k;+q, $)—E(k; $)—fico)]+[A,.kf/(E(kf —q, T) E(kt )T+'i')co]l—

M, = l[A, k, /(E(k, —q, &)—E(k; &)+fico)]+[A, kf/(E(kf+q, 1) E(kf T ) fico)]—l—

(10)

(1 la)
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Proceeding further, provided the wave vector of the light q is small when compared to the average momentum of the
electrons, we can expand M, and M2 in terms of q in a series and retain only the zero- and first-order terms in the ex-
pression. One gets

M =M, =M, =(1/fico)'[A, .(kf —k;)]'+2(1/A'to)'[l, .(kf —k, )lmfico][(A, kf )(q.kf ) —(A, k, )(q k, )] . (12)

We now assuine that the excitation energy of the photon is much higher than that of the magnon (i.e., fico »@co~). Us-
ing this assumption, the approximation given in Eq. (12) for the matrix elements and using the coordinate systein of Fig.
4, we obtain for the rate of change in the electron distribution function, after solving the integrals given in Eq. (10), the
expression

Bf( 1 ) IBt =(2irliit') V/(2m) (2n ) (iit' J S/2N) ~eA /mc
~

[(2nk+1)fiuBf IBE, ]

X [2m(1 /fico) [(2m/k ) /3)[(E,. +Rto+JS) (E; —A—co+JS) / ]

+(2m/i ) [E,(E, +Aco+JS)'/ E, (—E, A'c—o +JS)' ]cos 8

+[64irm IA'"(1/%co) ]q[E; / (E;+fico+JS)' E; (—E; fico+—JS)'/ ]cos 8sin8 sing],
where use has been made of the approximation

+ficuBf /BE; =f(E, JS/2+—fun) f(E; ——JS/2) .

(13a)

(13b)

Similarly, we can obtain an equation for the change of the electron distribution function in subband J, , Bf($)IBt,
which is the same equation as for the subband f except that now the energy term JS in Eq. (13) is replaced by —JS.

Accordingly, by summing up the two contributions for both the two-spin subbands, we may obtain the final expres-
sion for the change in the distribution function of the electrons, namely,

Bf/Bt =Bf(1)/Bt+Bf(1)/Bt,

BfIBt =(2mlfi) V(2n ) (A' J S/2N)(eA Imc) [(2nk+1)ficoBf IBE; ]

X [2m( 1/iiico) [(2m/irt )
/ /3][(E;+%co+JS) /2 (E; R—co+JS)i/—

(14a)

+(E;+%co—JS)~ 2 —(E;—&co—JS) ]
+(2m/k' ) [E;(E,+Rco+JS)' E, (E, Ac—a+JS)' —+E,(E, +fuu JS)' E—(E Rc—o J. S)' —)cos—8

+ [64~m 2/fg4( 1/$~)3]q [E3/2(E +g~+JS )1/2 E3/2(E /to+ JS )I/2+E3/2(E +iii~ JS)1/2

E3/i(E; R—to —JS)'/—]cos 8sin8sing] . (14b)

Having obtained the rate of change of the electron distri-
bution function, Eq. (14), we can now write the
Boltzmann equation for the photon-drag effect as fol-
lows

K) Ki

elfi[E Vkf (Ek)] (f fo)lr+—Bf&IBt=—0, (15)

where Bf~ IBt is that given in Eq. (14). In Eq. (15), fo is
the equilibrium distribution function of the electrons, v. is

the relaxation time of the electrons in the magnetic semi-
conducting crystal, and c, is the electric field.

We assume the distribution function f does not deviate
very much from the equilibrium function fo by putting

f=f0 in Eq. (14). This assumption was found to be a
good approximation in previous work. ' ' We now as-
sume that a constant uniform electric field c. is setup in-
side our semiconducting sample.

Under the foregoing assumptions the resulting current

j can be written as

j= ehlm g [( rim—)e(—e.k;)(Bfo/BE; )k;

—r(Bf o/Bk )k; ], (16)

FIG. 4. Coordinate system used for the ca1culation.

where kf labels the electron wave vector and E; as before
labels the bare electron energy. Substituting Eq. (14) with
the f replaced by fo and doing the respective angular in-
tegrations, we obtain for the current along the y axis (the
direction of propagation of the light wave) the expression
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jy —(2m'/3)(e film ) V/(2ir)3

X(2m lfi } ' JdE;E; r(E; )8 (Bfo/BE; ) ——,", [ V/(2') ](me/f'i )J S l(N/V)(eA/mc) q(2nk+1)(%co)/(%co)

X JdE, E, .~(E, )(Bf /BE, )[(E,+fico+JS)' (E,—fico—+ JS )'

+(E, +fico JS )'~ —(E, —fico J—S )' —] (17}

In Eq. (17),
~
A

~

=2m CI /e'„co, I being the intensity of the laser light, and c the velocity of light.
If we now put j =0, we obtain the electric field generated by the photon-drag effect at the distance y in the crystal,

namely,

[2 ~ em'~ J Sq(2n„+1)I]/[(N/V)e'„%co(fico )]J dE, E, ~ r(E;)(Bfo/BE; ) F,
F:JdE;E;—r(E; )(Bf IBE;)[(E;+fico+JS )' —(E; %co—+JS )' +(E; +fico JS )' —(E;——%co—JS)' ] .

(18)

Let us now evaluate Eq. (18) for the case of a degenerate magnetic semiconductor. In this case the electron distribu-
tion function is the Fermi distribution function which may be approximated by a step function. This is correct if the
electron distribution function is not very much affected by the temperature which is valid at low temperatures. In order
to perform the energy integration, we also need to know the energy dependence of the electron relaxation time r(E; }.

In what follows we will determine this electron relaxation time due to the s-d interaction. This calculation is analog
to those derived in the theory of resistivity.

Accordingly, the kinetic equation for the electron distribution due to the s-d interaction is given schematically by

Bfp(1)IBt=
—K

p, t p, f

-K

p', k p, I

( p + K — p' (19)

In Eq. (19) the processes in which an electron with spin t is created are subtracted from the processes in which an elec-
tron 1 is destroyed. This schematical equation can be converted to a mathematical equation with the help of the Fermi
golden rule. One gets
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c)f (T)/c}&=(2ir/iii)g IM, dl'[[nk(f +k i f—&)+f +k(1 f—&)]5(E +k E— —Acok+JS)
k

+[n —k(f, +k, &
f—,, &

}—f,, &(1 —f,+k, &)]5«p+k Ep ~~ —k+JS)] (20)

where the interaction vertex is given by Eq. (3b). It follows that Eq. (20) provides us with the mean lifetimes (assuming
an equilibrium distribution for both electrons and magnons) given by

I/r=(2m/A') g ~M, z~ [[nk+f +k]5(E +k E —ficok—+JS)+[n k+(1 f —+k)]5(E +k Ep—+A'co k+JS)} . (21)
k

Since we are mainly interested in the mean time of the
electrons near the Fermi surface, the magnon energy and
the JS energy terms are smaller than that of the elec-
trons. Under this assumption we may admit elastic
scattering for the latter, so that we may write Ep+k Ep.
Assuming further that the magnon energy is smaller than
the thermal energy, we may write (cok =conc )

nk =ksT/f—icoM ) 1. Under the foregoing simplifying as-
sumptions, Eq. (21) is written approximately as

I/r =(4'/R—) g ~M, d ~ nk5(Ep+k Ep) . —
k

(22)

Upon transforming the summation over k into an in-
tegral and performing the respective integrations, we
finally obtain for the relaxation time of the electrons

r(E; }=A' cok/(8V~M, d~ k&Tm E' ) (23)

Having obtained the electron relaxation time [Eq. (23)]
which is a function of the bare electron energy, we are
now able to evaluate Eq. (18) for the electric field due to
the photon-drag effect. Accordingly, by substituting Eq.
(23) into Eq. (18), approximating the electron distribution
function by a step function, assuming as before that the
final carrier energy differs sightly from the initial energy
[Eq. (13b)] and doing the indicated integration we obtain

s =
—",, (2 )[VIem' J Sq(2nk+1)EF](Ncs'„A co )

X [(EF+fico+JS}'~ (EF fico+ JS—)'~—
+(EF+fico JS )'~ (EF fico —JS—)'~ ],— —(24)

where EF is the Fermi energy.

III. DISCUSSION AND CONCLUSIONS

Equation (24) is the expression for the electric field in-
side the magnetic semiconducting crystal due to the
proton-drag effect. This field arises as a result of the
transfer of momentum from photons to the free carriers
through the photon free-carrier magnon interaction. The
electron-magnon interaction here was assumed to be the
s -d (or s f) interaction. To get an o-rder-of-magnitude es-

timate of the strength of this effect, we apply Eq. (24) to a
semiconducting magnetic sample such as CdCr2Se4. '

Using m = 10 g, c.„=10, S=—'„J=-10 ' ergs,
E+=5X10 ' ergs, N/V=10 ' cm, A'co=2X10
ergs (10.8-pm COz laser), T =50 K (T, =-128 K),
ficok = 10 ' ergs, and I= 1 MW/cm, we find the electric
field is

s =25 mV/cm .

By increasing further the laser intensity by, say, two
orders of magnitude, we use Eq. (24) and find that in this
case the electric field is

s =0.25 V/cm .

Because of the present-day available pulsed high-power
lasers, the strength of this photon-drag effect can be made
very large. In deriving the matrix elements M,'f"-M,'f
we have left out the exact form of the electron-magnon
interaction M, . As a result, these matrix elements can
be transformed to the case where the electron-magnon in-
teraction is either the dipolar or the spin-orbit interaction
(dropping the spin terms), respectively, by making a
proper substitution for M, . Therefore, the theory
presented here is much more general than we indicated in
the beginning. Furthermore since c~ is directly propor-
tional to J, this photon-drag effect could be useful as a
tool of investigating the electron-magnon interaction in
these materials. We finish by pointing out that, although
our calculations presented above are for bulk magnetic
semiconductors, the theory can easily be extended for the
interesting case of quantum-well layered structures. In
these structures the carriers are confined so as to behave
as a quasi-two-dimensional electron gas, and size quanti-
zation effects begin to play an important role in determin-
ing their properties. The photon-drag effect in this case
will accompany the free-carrier magnon-assisted absorp-
tion from electrons in these confined systems. This prob-
lem is being considered for a forthcoming paper.
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