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Electronic and optical properties of HgI2
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Empirical nonlocal pseudopotential calculations of the electronic band structure of undoped mer-
curic iodide in its red tetragonal form are presented. Values for the elec.ron and hole efFective masses,
optical matrix elements for interband transitions, and complex dielectric function are reported. Ex-
citonic eÃects on the absorption coefficient near the fundamental band gap are included within the
effective-mass approximation. The resulting absorption spectra and the polarization dependence are
in good agreement with experiment. The dielectric-function spectra for photon energies between 2
and 10 eV are also calculated and they are in fair agreement with available data.

I. IXTRODUCTIOX

Mercuric iodide (HgI2) in its red tetragonal form has
many properties that make it well suited for use as a
p- and x-ray spectrometer that can be operated at room
temperature. i s These properties include relatively large
atomic masses (i.e., Z = 80 and 53 for Hg and I, re-
spectively) which allows for a high stopping power to
energetic photons, a high bulk resistivity (= 1013 P. cm)
(Ref. 6) which ensures a low dark current during detector.
operation, and a high photosensitivity so that the num-
ber of photogenerated electron-hole pairs is proportional
to the energy of the incident photon. Although the po-
tential of HgI~ for fabricating high-resolution x-ray and
p-ray spectrometers has been well demonstrated, " there
continues to be significant problems associated with car-
rier trapping, in which case the amount of charge col-
lected is not a unique function of the p- or x-ray energy.
These transport problems have motivated considerable
research in the optical and electrical properties of HgI2,
particularly those properties that might be related to de-
tector performances.

There have been numerous experimental reports on the
optical properties of HgI2. s ii is i~ However, theoretical
investigations on this subject are still lacking. One dif-
ficulty frequently encountered in interpreting the opti-
cal and electrical measurements is the lack of knowledge
of the electronic band structure of the materiaL. Yce,
Sherohman, and Armantrout reported the First empiri-
cal pseudopotential calculation on HgI~. 5 Unfortunately,
the crystal structure used in their calculations is incor-
rect; thus, their results bear little relation with reality.
Turner and Harmon~6 reported the Erst self-consistent
calculation within the local-density approximation. They
also included the relativistic eÃect and the spin-orbit in-
teraction. The overall band structures obtained by this

method are quite reliable, except that the fundamental
band gap is too small due to the local-density approxima
tion. As a result, the efFective masses predicted by this
calculation are also too small. In this paper, we report
an empirical nonlocal pseudopotential calculation of the
electronic and optical properties of Hglq, including the
effects of the spin-orbit interaction. Values for the effec-
tive masses and real and imaginary part of the complex
dielectic funi. tion are also presented.

II. METHOD

TABLE I. Empirical parameters for Hg and I local pseu-
dopotentials defined in Eq. (1). The units of distances are in
Bohrs and the energy units are in Rydbergs.

Hg
I

Gy

0.35
5.294

a2
1.4
1.7

G3

0.55
0.46

G4
—2.5
—6.5

The method used here is basically the same as that
described in Ref. 27. The local pseudopotentials of the
mercury and iodine are taken to have the form introduced
in Ref, 28. Namely,

VL, (q) = ai(q —a2)/(e" ( ")+ 1).

The parameters aq, as, and a4 for I are taken to be the
same as given in Ref. 28, and those for Hg are determined
by fitting the screened atomic pseudopotential given in
Ref. 29. These paramet;ers for both Hg and I are tabu-
lated in Table I. The parameter ai which determines the
strength of the pseudopotential is treated as an empirical
parameter. The nonlocal pseudopotentials are taken to
have the form given in Ref. 27,
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VNL(k, G —G')

= 4z. ) (2t + 1)Pi (cos 8)

feet of spin-orbit interaction. The matrix elements of the
spin-orbit term for p-like states are given byzs I
(K, s]Ho~K', s') = i—) A~S~(K —K')cr„(K x K'),

x drr V~, r j~Kr j~ K'r 0,
where K = k+ G, cos 8 = K K'/KK', 0 is the atomic
volume, Pi is a Legendre polynomial, ji is a spherical
Bessel function, and Vi(r) = Aie i"~ & . We use R =
2.3a~, where a~ is the Bohr radius. Ai is an adjustable
parameter for each value of t. Since the states of interest
are either s-like or p-like, we only keep / = 0 and 1. In
order to fit the energy spacing between the heavy-hole
and light-hole states due to the tetragonal crystal field,
we introduce an anisotropy factor p„which modifies the
spherical local pseudopotential to describe a tetragonal
one, i.e.,

VI (Qs ~ Qy ~ Qz) ~ VL (Qz ~ Qy ~ PQz)

Thus we have seven empirical parameters: ai, Ao, Ai for
both Hg and I plus the anisotropy factor p. These param-
eters are adjusted to fit the band gap to the experimental
value (2.37 eV) (Ref. 8) and the overall band structure
to the results obtained by a first-principles calculation. zs

The optimized parameters are listed in Tables I and II.
In our calculations, approximately 620 plane waves with
energies less than Ei (=8 Ry) are included in the diago-
nalization procedure. Here Ry denotes a rydberg.

The unit cell consists of two Hg atoms and four I
atoms (see Ref. 26). The solid has inversion symme-
try about the midpoint between the two Hg atoms in

a unit cell. If we choose the point as the origin of
the coordinate system, the atomic positions of the two

Hg atoms are (—a/4, —a/4, —c/4) and (a/4, a/4, c/4),
and those of the four I atoms are (—a/4, a/4, —O.lllc),
(a/4, —a/4, 0.111c), (—a/4, a/4, 0.389c), and (a/4,
—a/4, —0.389c). Here, a = ti = 4.37 A and c = 12.44 A..
With the inversion symmetry, the Hamiltonian matrix
elements between any two plane waves are real, and the
eigenvalue problem can be solved efliciently.

When the spin-orbit interaction is included, the Hamil-

tonian matrix becomes complex and its dimension is dou-

bled. This makes the direct diagonalization very time
consuming. We thus elect to include the spin-orbit-
interaction effects by first-order degenerate perturbation
theory. We first evaluate the matrix elements of the spin-
orbit term using the zero-order eigenstates of the lowest-

lying 30 bands (or 60 bands including the spin degener-

acy). We then diagonalize the 60 x 60 complex matrix
to obtain the energy eigenvalues which include the ef-

TABLE II. Empirical parameters for Hg and I nonlocal
pseudopotentials defined in Eq. (2) and the anisotropy factor
squared, p . All energy parameters are in units of Rydbergs.

where the subscript j denotes the atomic species (Hg or
I), S~ is the structure factor, o'» are elements of the
Pauli matrices between two spin states s and s', and A~

is the atomic spin-orbit coupling parameter, which is ad-
justed to give the correct spin-orbit splitting at the zone
center. We found that the most appropriate value for A

is 0.023 (in units of Ryan).
The imaginary part of the dielectric function (ez) is

given bys

III. RESULTS

Figure 1 shows the calculated band structure of Hglz
without including the spin-orbit interaction. The band
structure has been rigidly shifted by a constant so that
the energy of the valence-band maximum is zero after
inclusion of the spin-orbit interaction effects. Since the
space group of the crystal is D4h, , the states with x- and y-
like symmetry are degenerate at the zone center, whereas
states with s-like and z-like symmetry are nondegenerate.
Throughout the paper, we have chosen the z direction to
be parallel to the c axis of the crystal. In Fig. 1 we see

8.0

B.O

0
0.0—

-2.0

~.O ~

4.0

-B.O r

ez(~) =, , ).1(k, il' plk, j)i'
k,ij

xb[E (k) —E,(k) —~], (3)

where ]k, i) denotes the ith electronic state of the solid as-
sociated with wave vector k, e is the polarization vector,
p is the momentum operator, and V is the volume of the
solid. To perform the sum in Eq. (3), we used 75 special
points in the irreducible is section of the first Brillouin
zone, and the b function was replaced by a Lorentzian
function with half-width of 0.1 eV to account for lifetime
broadening of the electrons and holes.

Hg
I

Ap
—0.575
—0.9

Ag

0.0
—0.4

P
1.06
1.06 FIG. 1. Band structures of HgI2 without spin-orbit inter-

action.
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four pairs of doubly degenerate levels at the zone center
with energies between —2 and 0 eV. They correspond to
the I Sp~ and 5p„nonbonding states (see Ref. 26). The
two nondegenerate levels near —1.5 and —2.5 eV corre-
spond to the I Gp, nonbonding states. The two remaining
I 5p, orbitals interact with the two Hg 6s orbitals to form
two bonding states with energies between —4.5 and —3
eV and two antibonding states with energies between 2.3
and 3.5 eV. The I Ss levels are near —ll eV (not shown).
The Hg 6p and I Sd levels are distributed from 3.5 to
10 eV, among which the doubly degenerate ones can be
identified as the Hg p and p„states. Note that the Hg Sd
levels, which are between the I Ss and Hg6s —ISp, bond-
ing states, are considered as core levels in the present
pseudopotential model. Hence, they will not show up in
the band structure.

Figure 2 shows the calculated band structure of HgI2
with the spin-orbit interaction. All bands are rigidly
shifted by a constant so that the valence-band maximum
is at zero. The main difFerence between this figure and
Fig. 1 is that the doubly degenerate levels at zone cen-
ter in Fig. 1 are now split by the spin-orbit interaction
with a splitting of = 0.7 eV. With the adjusted parame-
ters listed in Tables I and II, the fundamental band gap
becomes 2.37 eV and the splitting between the first two
valence bands (i.e., heavy-hole and light-hole bands) is
0.2 eV, which both agree with the measured values at 4.2
K.s s The overall band structures are also in qualitative
agreement with those obtained by Turner and Harmon. zs

Figure 3 shows the closeup view of the band struc-
tures of Hgiz near the zone center. In the left part the
wave vector k is along the [110] direction, and in the
right part it is along the [001] direction. The unit of k
is in 2z/a. We have found that the conduction band
is nearly isotropic, whereas the valence band is more
anisotropic. The effective masses deduced from this plot
are shown in Table Ill, together with the experimen-
tal values. The agreement between theory and experi-
ment is fairly good. The polaron masses (m' and m")
are obtained by an intermediate-coupling polaron theory
with the use of LO-phonon energies and high-freqency
and low-frequency anisotropic dielectric constants as pro-

4.0

FIG. 2. Band structures of HgI~ with spin-orbit interac-
tion.
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FIG. 3. Band structures of HgIq near the zone center.

vided in Ref. 11. The theory predicts that m,
~~
) m, ~,

while the cyclotron-resonance measurements found the
opposite. On the other hand, the values deduced from
optical measurementsir seem to support our prediction.

Figure 4 shows the squared optical matrix elements
Pz for interband transitions involving the topmost five
valence bands and the lowest conduction band near the
zone center. Here P2 is defined as

l (k &Ie ' pl» i& I'.

The solid curves are for the in-plane polarization (e J z)
and the dashed curves are for polarization along the c axis
(ellz). The labels vl, ..., vS denote the first to fifth valence
band. We see that for the vl curve, the z-polarization
component is very weak for all values of k and vanishes
at the zone center. This is consistent with the heavy-
hole character, since the heavy-hole state transforms like

(z+iy) t'. Here 1' denotes an up spin. For the v2 curve,
the z component is strong and the x (or y) component
is about s of that for the vl curve. This is consistent
with the nature of the light-hole state, since the light-
hole state is the linear combination of states transforming
like (x + iy) i and z t' with a majority component in
z t'. It should be noted that the optical matrix elements
calculated by using the pseudo-wave-functions are not
precise, because the corrections due to orthogonalization
to the core electronic states are not included. The size
of the correction is difficult to estimate. However, based
on a comparison between the experimental value and the
calculated value within the pseudopotential method for
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TABLE III. Effective masses for motion perpendicular to (m~) and parallel to the c axis (ml). The subscripts and
superscripts e and h denote electron and hole, respectively. The subscripts apply to the bare effective masses and the superscript
apply to the polaron effective masses.

Theory
Experiment

me,
0.22
0.29

me II

0.30
0.25

emJ
0.29
037

m'
II

0.37
0.31

mh, J
0.59
0.56

mh
II

1.02
1.72

mJ
0.89
103

II

1.43
2.06

PJ
0.22
0.24

0.29
031

Reference 28.
b Reference 17.

typical semiconductors (see Ref. 31), the error in optical
responses is about 10—20%.

Knowing the optical matrix elements and effective
masses near the zone center, we can model the absorption
coefBcient near the fundamental band gap, including the
excitonic effect. This is done within the efFective-mass
approximation. The effective-mass Hamiltonian for the
exciton in an anisotropic medium is

where r is the electron-hole relative coordinate, e, is

some average dielectric constant, which will be deter-
mined later, and p~ and y,

~~

are the in-plane and c-axis
reduced efFective masses, respectively. They are related
to the corresponding electron and hole polaron masses
via

1 1
m' +m

»II &,II

(2 + —
i

3.
va &Pz P~~ )

In this approximation, the exciton binding energy is given
by Ex = (p~/mow )13.6 eV. We choose a value for
&a such that Ex is equal to the experimental value of
0.032 eV. ' We found that e, - 10.1, which is between
the average low-frequency and high-frequency dielectric
constants. tl In the spherical effectiv~mms theory, the
absorption coefBcient for each pair of conduction and va-
lence bands is given byst

5.0

40

3.0

The predicted reduced polaron masses are also shown in
Table III.

The eigenstates for an anisotropic Hamiltonian can be
solved by numerical methods. sz However, for our pur-
poses here, it sufBces to use a spherical approximation
in which the anisotropic reduced mass is replaced by a
spherically averaged reduced mass given byss
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FIG. 4. Optical matrix elements near the zone center for
interband transitions.

FIG. 5. Absorption spectra of HgIq near the fundamental
absorption edge. Top: theoretical prediction; the solid curve
is for unpolarized light and the dashed curve is for light po-
larized perpendicular to the c axis. Bottom: data from Ref.
26; both curves are for unpolarized light.
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a(u)) =

x P (2m/h ) ~ srExe"/ sinh u

+) ig„(0)i 6(fuu —E +Ex/n ),
n

(6)

where P2 is the squared optical matrix element de-
fined in Eq. (4) and evaluated at the zone center, u =
+[Ex/(h~ —Es))i~, Eg denotes the band gap, n denotes
the principal quantum number for the exciton bound
states, and P„(0) is the exciton envelope function evalu-
ated at the origin for the nth bound state. Using Eq. (6)
and including the n = 1 and 2 exciton bound states, we
obtain an absorption spectrum for Hglz near the fun-
damental gap as shown in Fig. 5. Both the transitions
from the heavy-hole and light-hole bands to the lowest
conduction band are included. The binding energies of
the heavy-hole and light-hole excitons are both taken
to be 0.032 eV.s The solid curve shows the absorption
spectrum for an unpolarized light, and the dashed curve
shows the contribution due to the in-plane polarization
alone (i.e. , sa~, where a~ is the absorption coefficient
for a linearly polarized light with e i z). Note that here

a = (2ag+ a(()/3,

where a~~ is the absorption coefficient for a linearly po-
larized light with e~~z. The broadening parameter used
is 0.008 eV. In Fig. 5 we have also included for com-
parison the experimental absorption coefficient for un-

polarized light from Ref. 9. The calculated spectrum
for the heavy-hole exciton agrees very well with exper-
iment, while for the light-hole exciton, the calculated
spectrum is about a factor of 2 too low compared to the
experiment. %e notice that the heavy-hole exciton ab-
sorption is nonzero only for light polarized perpendicular
to the c axis, while the light-hole exciton absorption is
nonzero for both polarizations with a~~ much stronger
than a~. This is in qualitative agreement with the re-
Hectivity measurement. 9

Figure 6 shows the calculated dielectric-function spec-
tra of Hglz. The solid (dashed) curve is for polarization
perpendicular (parallel) to the c axis. The sz spectrum
shows two major structures, centered around 4 and 7 eV,
respectively. This is in qualitative agreement with the
experimental results. io However, the height of the first
structure is about a factor of 2 too small compared to
data, whereas the integrated strength of the second stru-
cure is too high. The calculated results shown here did
not include the excitonic and local-field effects, which
tend to enhance the lower-energy structure and reduce
the higher-energy structure. These effects can be in-
cluded approximately and empirically by using a "con-
tact" excitonic potential with adjustable strength. s4 The
corrected dielectric function (s) (i.e. , including the exci-
ton and local-field effects) 'is related to the "bare" dielec-
tric function bys

Here go is an empirical parameter.
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FIG. 6. Dielectric Amctions of HgI2. Solid: e 3 z. Dot-
ted: e~~z. Top: imaginary part. Bottom: real part.

FIG. 7. Comparison of the imaginary part of the dielectric
functions of Hg12 between theory (bottom) and experiment

(top). Data are taken from Ref. 27. For the bottom two

curves, solid is for e J z and dotted is for e~~z.
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We found that with go —0.003 eV 2, the corrected
dielectric function is in better agreement with the ex-
periment. This is shown in Fig. 7, in which we also in-
clude the experimental results obtained by Anedda et al.
(Ref. 10). However, after including the exciton effects,
the second structure becomes peaked at 6 eV, which is
about 1 eV lower than the experimental value. The first
structure is still too low compared to data, but the in-
tegrated strength is roughly correct. The real part of
the dielectric constant is also slightly enhanced near the
fundamental band gap. We get e~ = 5.4 and e~~

- 5.8
near the band gap, wheras the experimental values are
ez 5.15 and e~~

—6.8.

of HgI2, including the spin-orbit interaction. Both the
conduction-band minimum and valence-band maximum
are found to occur at the zone center. The conduction
band is nearly isotropic, whereas the valence band is
much more anisotropic. The curvatures of the bands near
the zone center are used to calculate electron and hole
efFective masses, and comparisons with experiment are
noted. Calculated values for the absorption coefficient
and real and imaginary parts of the dielectric function
are also presented.
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