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A technique for obtaining rigorous solutions to the single-electron Schrodinger equation for solids
and molecules, the Green-function cellular method (GFCM), is described. The technique is similar

to full-potential multiple-scattering theory in that basis functions which are locally exact solutions
to the Schrodinger equation within each potential cell are used to represent the wave function.
Unlike multiple-scattering theory, however, the coefBcients of expansion for the wave function are
determined by a secular matrix which couples only nearest-neighbor cells. The matrix elements
are Wronskian-like integrals over ceQ surfaces which may be chosen independently for each atomic
cell. Similarly to multiple-scattering theory, the GFCM can be used to calculate the system Green
function directly As a special case, the GFCM formalism can be used to calculate the structure
constants of Korringa-Kohn-Rostoker theory without using Ewald sums. Numerical calculations of
the energy bands of fcc Cu illustrate the speed and fiexibility of the method. A simple linearization
scheme which allows the use of multiple energy panels without introducing discontinuities in the
energy bands is used in these calculations.

I. INTRODUCTION

Multiple-scattering theory (MST) was first applied to
calculate the electronic structure of periodic solids by
Korringa. i Somewhat later Kohn and Rostokerz derived
the same secular equation as Korringa by use of a varis
tional technique that can be used with discontinuous trial
wave functions. In this paper we shall use the term MST
to describe the application of multiple-scattering theory
or equivalent techniques to assemblies of atoms of arbi-
trary configuration and reserve the more familiar term
Korringa Kohn-Rostoker (KKR) theory for its applica
tion to periodic solids. Although MST was originally
developed for potentials which are spherically symmet-
ric within nonoverlapping spheres and constant outside
these spheres, i.e., muffin-tin potentials, it has been gen-
eralized so that it can be applied to general space-filling
potentials. 3

One important aspect of MST is its representation
of the system wave function by a linear combination of
basis functions which are locally exact solutions of the
Schrodinger equation in nonoverlapping regions of space.
Although an arbitrary linear combination of these solu-
tions is an exact solution to the Schrodinger equation it
will not, in general, be a physically acceptable solution
because there will be discontinuities both in value and
in normal gradient when one passes from one region to
another. Continuity of the wave function and of its nor-

mal gradient across boundaries between difFerent cells is
achieved, however, in the limit of completeness, by solv-
ing the MST equations which determine the correct lin-
ear combination of these locally exact basis functions and
the characteristic energy Compa. red with other methods,
MST requires a rather small set of basis functions, as few
as nine for the transition metals. It can also be used to
calculate the Green function directly without resort to a
poorly convergent spectral representation.

In this paper we present a technique for solving the
Schrodinger equation which we call the Green-function
cellular method (GFCM). This method is different from
but closely related to full-potential MST and to full-
potential KKR theory. Some of the advantages of the
GFCM over full-potential MST are that it does not re-
quire structure constants, yields a secular equation with
couplings only between nearest-neighbor atoms, is more
easily linearized, and does not require the definition of
polyhedral cells. The GFCM like MST can be used to
calculate the Green function directly.

Although the GFCM is a cellular method it difFers
fundamentally from previous cellular methods, such as
that of signer and Seitz, 4 that of Slater, 5 6 or the varia
tional cellular method (VCM) of Ferreira and Leite. r The
GFCM is based on an integral form of the Schrodinger
equation and is closely related to MST, whereas previous
cellular methods have been based on the variational prin-
ciples of Rayleigh and Ritzs or of Schlosser and Marcus. s
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Although the GFCM does not use structure constants,
it can be used to calculate them as the coefficients which
make an irregular solution to the Helmholtz equation join
smoothly and continuously to regular solutions in adja-
cent cells. It can be used in a similar manner to calculate
the Green function of the Schrodinger equation. The cal-
culation of structure constants and the Green function
will be discussed in Sec. III. In Sec. V we demonstrate
that the GFCM is a practical and rapidly convergent
technique for electronic structure calculations by using
it to calculate the electronic structure of Cu. These cal-
culations use a linearized version of the theory which is
discussed in Sec. IV.

II. THE GFCM SECULAR EQUATION

Zhang and Butler~a derived the GFCM secular equa-
tion by matching the wave function and its normal gra-
dient across cell boundaries. Here we present a more
rigorous derivation of this secular equation from the
Lippmann-Schwinger equation. This derivation is along
the same lines as a derivation of MST in Ref. 3. A prelim-
inary account of this derivation was given previously. ~o ~~

The single-particle Schrodinger equation for a system
with the potential function V(r), in Rydberg units, can
be expressed as a modified Helmholtz equation,

(7'z+ e) @(r) = V(r)g(r).

Using the Green function Go for the free-particle
Helmholtz equation, the Schrodinger equation is con-
verted into the Lippmann-Schwinger integral equation for
the wave function @,

Q(r) = g(r) + dr'Go(r, r') V(r')Q(r').
%3

The potential function V(r) is assumed to be defined
everywhere in the coordinate space Rs. Eigenfunctions
which satisfy the boundary conditions of the Green func-
tion are defined by the condition that the function y
should vanish identically. The free-particle Green func-
tion Gs satisfies the differential equation

(3)

R is subdivided into space-filling cells 0„,which do not
overlap. This is equivalent to partitioning V into cell
potentials, V(r) = P„v„(r„),where v„(r„) takes the
value of V(r) for r inside cell n and vanishes elsewhere.
The Lippmann-Schwinger equation for an eigenfunction
Q can be rewritten as a sum of integrals over individual
cells 0„,

) dS'(Go(r, r')7'g(r') —@(r')V'Go(r, r')) = 0.
S~

We suppose that r is in cell m, and use the notation r
to denote r —R, where R represents the coordinate
of the center of cell m. We can expand Go(r, r') about
the center of that cell,

Go(r, r') = ) ( Jr, (r )N&(r' )8(r' —r )

dS (J&(r )VNr, (r~) —Nr, (r~) 7J&(r~)) = 6r„r,

satisfy the indicated Kronecker 6 relation. By Green's
theorem, the corresponding integrals vanish for any two J
functions, and will be assumed to vanish between any two
N functions by construction. In the following we shall
use the notation [JP,NP]~ to represent the Wronskian
integral in the above equation. The normal gradient on a
closed cell surface is defined to be directed outwards. To
derive the secular equation from Eq. (5), we can restrict
r to be confined within a sphere inscribed inside cell
m without losing generality, and use the expansion of
the Green function to obtain P„&Jr,(r~)[NP, Q]„=0.
Since the functions Jr, (r~) are linearly independent, this
implies

) [NP, @]„=0 all m, L.

In full-potential MST and in the GFCM the wave func-
tion is expanded in each local cell n as a linear combi-
nation of basis functions de6ned uniquely within that
cell 3,12

+Nr, (r )J&(r' )8(r —r' )). (6)

Here 8(x) represents the step function which is unity for
z ) 0 and zero for x ( 0. The generalized solid-harmonic
functions Jr, and Nr, are constructed as products of regu-
lar and irregular spherical Bessel functions (e.g. , spherical
Hankel functions), respectively, with spherical harmonic
angular factors. Angular quantum numbers (E, rn) are
combined here into a single index L. Various conventions
are used in the literature to define irregular solid har-
monics. Here the notation Nr, will be used for a generic
irregular function, to be defined more precisely in a par-
ticular context, but with normalization always chosen so
that the Wronskian surface integrals

dr' (Go(r, r') V(r') —6(r —r')) @(r') = 0. (4)

The explicit occurrence of V in the integrand can be elim-
inated using Eqs. (1) and (3), and we use Green's the-
orem to convert the volume integrals to Wronskian inte-
grals over the surfaces of the individual cells to obtain

for r inside cell n or on its boundary surface. Here
the p&(r„) are regular solutions of the one-electron
Schrodinger equation in cell n,
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where the subscript L specifies the boundary condition
at the origin, APL(r„)]„„~,,„„«——JL(r„) for r«q~tr ~ 0.
If Q(r) is expanded within cell n, using Eq. (9), and the
result is substituted into Eq. (8), the secular equation
obtained from this expansion is

).[NL. PL]„aL =0
nL

Vl m, I.'.

The full-potential MST secular equation is obtained,
as pointed out by Butler and Nesbet, ~s by computing
Wronskian surface integrals that define the cosine ma
trix, CL,L

—— [NL„—pL], and the sine matrix, SL L
——

[JL«„p«L], and, for m g n, expanding the irregular solid
harmonics centered at m in terms of regular solid har-
monics centered at n, NL, ' = QL gL, L, JL;,

) CLLb „—) gLLSLL aL =0
txL Lg

all m, L',

(12)

which is the familiar nonvariational secular equation of
full-potential multiple-scattering theory. ~4

The GFCM secular equation can be derived from
Eq (8) b. y a geometrical argument. We can write Eq. (8)

) ) [N, , y], =0
neighbors

of m

all m, L,

all m, L', (14)

where S~~ denotes the interface between adjacent cells
m and p. This is the defining equation of the GFCM.

The result of this analysis is a cellular method based
on multiple-scattering theory through the Lippmann-
Schwinger equation, in which structure constants are
not used and which yields a secular matrix with strictly
nearest-neighbor couplings. Practical problems associ-
ated with structure constants are avoided, e.g. , poor con-
vergence in either r or k space, fr=-electron singularities,
etc. Another feature of the GFCM is the fact that the

which states the fact that the surface of cell n is made
up of the interfaces S„„,which separate cell n from each
of its nearest-neighbor cells labeled by p. Because the
expansions in both cells p and n are representations of
a trial wave function g which becomes continuous and
smooth across the boundary between the two cells in the
limit of convergence of the expansions in both cells, the
expansions from either cell are equally valid on their in-
terface. Consequently, as indicated in Fig. 1, one can
eliminate all surface integrals except for those involving
the cell m, in which the irregular harmonic function NP
is centered. This choice of local expansions, as indicated
by Fig. 1(b), eliminates all Wronskian integrals except
for cell m and its interfaces with adjacent cells, implying
the secular equation,

) ) ([NL'& NL]S~~+L [NL'& ~L]s~qaL)
neighbor l
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surface which defines the integrals in Eq.(14) is not re-
stricted to be a cell boundary. If the basis functions from
each cell are integrated out into the regions inside neigh-
boring cells, the expansion of the wave function in terms
of these basis functions may still be valid. It is assumed
that the potential is not singular in these regions, so long
as atomic nuclei are excluded. In addition, because the
matching conditions of the wave function on the bound-
aries between nearest neighbors are independent of the
matching between other cells, one can deform the bound-
aries of the cell and evaluate the surface integrals over
spheres instead of polyhedra. In short, the surface of in-
tegration may be chosen difFerently for each cell, and this
choice can be made to minimize the computational efFort.
Of course using such a surface may introduce additional
error in the I, truncation because the basis functions APL

must be computed somewhat further from their local ori-
gins.

The GFCM secular equation bears a strong formal re-
semblance to that of the VCM. r The VCM secular equa-
tion can be written in the form

) ) {[&L 4'L]s, &L —[O'L &L]s „oL)= 0
neighbors

of en

all m, L', (15)

(b)

FIG, 1. (a) Choice of basis functions in expanding the
wave function g in the integrals g„[N, f]s„ to obtain
multiple-scattering theory. Here, for example, the basis func-
tions pL and pL are used on the sides of interface S23 cor-
responding to cells 2 and 3, respectively. (b) Choice of basis
functions in expanding the wave function in the same integrals
as above to obtain the Green-function cellular method. Here,
the basis functions qPz, are used on both sides of the interface
823, leacBng to the cancellation of the integrals over S23.
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and can be seen to difFer from that of the GFCM by the
use of the local basis function PP which occurs on the
left-hand side of the Wronskian-like surface integrals in-
stead of the generic irregular solution to the Helmholtz
equation, NP. The VCM converges rapidly and is vari-
ational in the sense that the errors in the energy are of
second order with respect to errors in the trial wave func-
tion. It has, however, a significant drawback; it produces
as many false roots as true roots. Although these false
roots can be identified and ignored, they cause problems
in, for example, the direct calculation of the Green func-
tion. The origin of these false roots lies in the fact that
if the VCM equations are satisfied for a particular choice
of coefficients aL, they will also be satisfied for another
choice of coefficients which switches the sign of the func-
tion value and of the normal gradient on one side of a cell
boundary. Thus the false roots correspond to a "maxi-
mum mismatch" at the cell boundaries. C(r ) = 6(r~)6~+).4E (r~)GL, r, (1 —6~) (19)

gr 7- + ). [NPr Jr"; )s „gr; i.
pgn, L

p=neighbors of na

= —) [Nr I, Nf]s p6pn (18)
neighbors

of rn

These equations have been verified for a fcc lattice by
using them to calculate zero-energy structure constants
along the I'-X line, and comparing with results calculated
from the structure-constant program STR published by
Skriver. is

We can extend this logic to obtain formulas for calcu-
lating the Green function of the Schrodinger equation by
direct analogy. Consider a solution to the Schrodinger
equation which is irregular in cell n. This function can
be represented in cell p by analogy with Eq. (16),

III. STRUCTURE CONSTANTS AND THE
GREEN FUNCTION

It was pointed out in the Introduction and in the pre-
ceding section that both MST and the GFCM can be
viewed as schemes for achieving continuity and smooth-
ness of a wave function which consists of a linear com-
bination of solutions to the Schrodinger equation which
are locally exact within individual cells. So far, we have
used these procedures on regular functions. They can,
however, be applied to irregular functions as well. Con-
sider as an example an irregular solution to the Helmholtz
equation centered on site n, Nr, (r„) This fun. ction can
also be expressed as N" which equals NL, (r„) within cell
n but is expressed as an expansion of regular functions in
all other cells. Thus within cell p, N" will be expressed

Ni, (r„) = NL, (r„)6~+ ) JL „(r„)gL„L(1—6„„).
LII

(16)

The expansion, in terms of regular solutions to the
Helmholtz equation, will converge if the distance between
the centers n and p exceeds r„. The coefficients gz~z
are the well-known structure constants used in MST,
linearized muffin-tin orbital (LMTO), is or atomic-cell
orbitalis'i7 (ACO) theory. However, we can view them
as unknown coefficients to be determined by the require-
ment that the solution to the Helmholtz equation N" be
smooth and continuous across a11 cell boundaries.

Substituting the above expression for N" into the MST
secular equation (11) in place of gl PL,al„we obtain

gPi =[NB NZ) = [N~ N~) . -
This equation is obviously correct as can be verified by
expanding NP' as Pl,„gL, "L,. Jl,' and using the Wron-
skian relation Eq. (7). The corresponding GFCM for-

mula, obtained by substituting N" into Eq. (14) in place
of QL Pi.ai. , may be computationally useful,

= ) (P(rm)6m~+ ).4L, (rm)GL, "L,

I LI

x$7'(r„'). (20)

Here it is assumed that r~ ) r„' if m = n. It was shown
in Ref. 3 that the Green function for a finite nonspher-
ical scatterer can be written in the form G„(r, r')
Q&Q(r„)P~&'(r„'). Equation (20) can be viewed as a
simple generalization of that result which will be valid if
we can find the coefficients G~rz", which make the irregu-
lar function smooth and continuous.

Thus the MST expression for the structure constants,
Eq. (17), generalizes to an expression for the Grmn-
function coefficients of the form

) [N, g]„G~ = [N, ("]— (21)

The corresponding GFCM expression for the Green func-
tion coefficients analogous to Eq. (18) is

[N~, P~] G~" — ) [N~, Q
pgf4

p=neighbore of ~

[N, ( ] 6 + —) [N, ("]s „6 (22)
neighbors

of na

for all cells m. These equations must be valid for generic
irregular functions (, required only to satisfy Kronecker
6 relations analogous to Eqs. (7),

(23)

Here the regular and irregular solutions of the Helmholtz
equation J and N, respectively, have been replaced by
regular and irregular solutions of the Schrodinger equa-
tion, denoted here by P and (, respectively. The func-
tion, Eq. (19), determines the Green function for the
Schrodinger equation through

G(r r.') = ):6(r )4F(r.')
L
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As in the case of the KKR structure constants, numerical
values of the structural matrix G " depend on the par-
ticular representation of irregular functions that is used
and on the boundary conditions imposed on the extended
irregular functions defined in Eq. (19).

The preceding derivations of Green functions were
based on the idea of achieving continuity and smoothness
of an irregular solution to the Schrodinger or He}mho}tz
equation. They seem to imply that a general formula for
the Green function might have the form

) Mmp[g]Gpn Mmn [p] (24)

r)((r) = g(r) + f dr'G(r, r')aV(r')(()(r'). (25)

Applied to an infinitesimal variation of V at a point r',
such that AVdr' = 6v(r'), this implies

6@(r) = G(r, r')Q(r')bv(r'), (26)

which can be taken as the fundamental definition of the
Green function as the functional derivative of g with re-
spect to variations of V. We shall use this definition to
construct G.

If r is in cell m and if the variation of V is restricted to
bvn(r'n) in cell n, only the basis functions in that cell are
modified. The variation in the wave function as given by
Eq. (9) due to the change in the potential is given by

6@(r) ) bg L(r„) nb ) -
m( )

bar
6v(r') - bv„(r„') " - bv„(r„') '

(27)

where r is in cell m and r' is in cell n. Applying Eq. (26)
to an isolated cell n, we obtain

Here M[(It] is the secular matrix whose elements are }in-
ear functionals of the local regular solutions, and M[(]
is the secular matrix with the regular solution replaced
by an irregular solution for each site. In the following
we derive a general formula for the Green function of
just this type based on the fact that the variation of
a wave function due to a change hV in the potential
function is determined by the Schrodinger Green func-
tion through the Lippmann-Schwinger equation for the
perturbed wave function g,

64'L (rn) G ( ()yn( (
) G (r r(() 641,(rn)

dS"[G„(r,r")V" —2"G„(r, r")]biz, (r'„')/6v„(r'„),
cell

which reflects the arbitrariness of G„on the cell bound-

ary, as explained below. For coordinate values within cell

n, the single-site Green function is

Gn(r r ) ) f ~L(rn)(L (r )~(r rn)
L

+Q(r„)Pz'(r'„) 8(r„—r„')). (29)

The only boundary condition imposed on a basis function

P is its limiting behavior at the cell origin. The boundary
conditions satisfied by the local Green function G„are
determined by an arbitrary choice of boundary values of
the functions (n on or outside the cell surface Sn, subject
to the Kronecker 6 relations of Eqs. (23). Hence Eq. (29)
satisfies all defining conditions for an on-site Green func-
tion.

Determination of bamL/bvn can be accomplished by
consideration of the particular secular equation being
used. In the remainder of this section we assume that
the secular equation has the form

M~~~[pl, ]aL = 0.
mL

(3o)

We further assume that the elements of the secular ma-
trix depend linearly on the locally exact solutions of the
Schrodinger equation, PL, so that Eq. (30) includes both
the cases of MST and of the GFCM, but not the VCM
which depends bilinearly on the basis functions. The
variation of Eq. (30) with respect to v„yields

b~m m) MPm, V~I, m+) MPm [ym] L 0L'I
bv (r( )

L ~ L'I L bv (r( )mL n c mL n n

(31)

The first term in this equation can be evaluated using
Eqs. (28) and (29),

(28)

where the first term represents a special solution and the
second term is a Wronskian surface integral,

m n) Ml". L, 6„... , I. =) Mr, r, XL,]4'I,'( ')&( ') —).Ml:1,[&7] 6 6„
mL L LL"

From this equation and from Eq. (31) it follows that bamL/6'v„(r„') is determined by

).MI, z, (&F]6„(,, i = —) Mr', "I.KL]&7;(r')&(r')+ )™L,"I.hC] (2 6„',,'
Lm L LL II

n
GLII ~
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Using this result in Eq. (27) and comparing with
Eq. (26) we have

G'(r- r.') = ).(P(r-)4R'(r.')~--
L

+) pl (r~)GII" QL, (r„'),
LL'

(34)

where the Green-function coefficients GPg, satisfy Eq.
(24). This relation gives the Green-function coefficients
for any secular matrix which is linear in the locally exact
solutions &PL, .

It is clear in the above derivation that the definition
of the irregular solutions ( of the Schrodinger equation
in each local cell is arbitrary so long as the Kronecker 6
conditions of Eqs. (23) are satisfied. It can easily be ver-
ified that any transformation of the set of functions ( by
adding linear combinations of regular functions P with a
Hermitian matrix of coefBcients simply moves the corre-
sponding term between the two parts of the local repre-
sentation of the Schrodinger Green function indicated in

Eq. (34), leaving it invariant. The present derivation is
covariant with respect to the group of such transforma-
tions. Of course, for particular applications, it may be
desirable to specify a particular representation. This can
be done freely subject to the Kronecker b conditions.

The relation, Eq. (24), which gives the Green func-
tion for any valid secular matrix which is linear in the
locally exact basis functions, can be used to obtain a for-
mal relation between the secular matrix of the GFCM,
Eq. (14), and that of MST, Eqs. (11) or (12). The major
difference between the two, of course, is that the secular
matrix of the GFCM contains only nearest-neighbor cou-

pling, whereas that of MST contains couplings between
all sites through the structure constants. Let us denote
the secular matrix of MST by M[/] and the secular ma-
trix of GFCM by P[P]. From Eq. (24) it follows that

G = —P [(] P[P] = M[(] M [P].—

Thus the GFCM secular matrix can be obtained (at least

formally) from that of MST by means of the transforma-
tion

P[P] = P[(]M[(] M[@] (36)

IV. PIVOTED GFCM AND LINEARIZATION

Pivoted MST or the pivot;ed GFCM can be derived
from the Lippmann-Schwinger equation, Eq. (2), using
a Green function at a different energy from that of the
wave function. The usual Lippmann-Schwinger equation,
Eq. (2), rewritten to include energy dependencies and

pivoted to energy eo, is

We have not yet tested this relation in a numerical calcu-
lation and it is not yet clear to us if it has more than for-

mal significance in three dimensions because it requires
the inversion of M[(] which is essentially the structure
constant matrix.

Q(r, e) = dr'G0(I', i'; Ep) (V(I' ) —t + ep) Q(r', t),

Nl. (r ) r 'Yl. (r" ), (38)

which is completely independent of the energy parame-
ter. This not only greatly simplifies the computational
procedure, it also allows a technique in which both the
secular matrix and the basis functions can be linear in
energy.

The use of r~~ iYI,(r~) in place of N(r~) is standard
practice in LMTO theory and is analogous to the use
of zero-energy structure constants in "pivoted" MST.
However, there is one important difference. Although
the basis functions are independent of the pivoting en-

ergy, the generalized sine and cosine matrices are not. In
pivoted MST one uses structure constants evaluated at
the pivoting energy, therefore the potential used in calcu-
lating C and S matrices must be shifted in energy by the
appropriate amount to make the arguments of the rele-
vant regular and irregular Bessel functions used in calcu-
lating C and S equal to the pivoting energy, usually zero.
This has the effect of putting a step into the potential at
the cell boundary equal to the difference between the piv-
oting energy and the actual energy. This relatively large
step at the cell boundary can cause significant problems
in E convergence, especially in the internal sum between
the structure constant mat, rix and the sine matrix in Eq.
(12). The pivoted GFCM, on the other hand, does not
have this problem primarily because only the irregular
functions on the left of the Wronskians are calculated at
the pivoting energy, whereas the other quantities are all
calculated at the physical energy; thus the potential does
not need to be shifted. In addition, there are no structure
constants and hence no internal E sum in the GFCM.

Because of the close relationship established here be-
tween GFCM and MTO/ACO theory, this method can
be extended to an energy-linearized variational theory
very simply, e.g. , following in detail the linearized ACO
methodology (LACO). is This linearized theory will be
presented in later publications. We describe here a sim-

ple linearization scheme which nevertheless allows the use
of multiple energy panels without introducing disconti-
nuities in the energy bands. We assume that the secular
matrix of the GFCM can be well approximated over the
energy range of interest by a form which is linear in en-

ergy,

M(e) = Ae+ B, (39)

(37)

where fV' + ED) G(r, r', Ep) = b(r, r'), provides an
equally good solution to Eq. (1).

One can follow the derivations in Secs. II and III step
by step, starting from Eq. (37) rather than Eq. (2) to
obtain secular equations and expressions for the Green
function which are quite similar to those derived previ-
ously. The only difference is that the functions NP on
the left of all the Wronskian surface integrals are now

calculated at the pivoted energy ~0 instead of ~. For the
particular case of eo ——0, this function becomes
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where matrices A and B are energy independent and e is
the energy parameter. Now if we do calculations at two
energies si and sz, we can find the matrices A and B as

M (sl) —M (s2) M (6g) Ei —M (ti )s2

1 1 —t-2

It is easy to verify that the energy eigenvalues are given
by the eigenvalues of the matrix

(40)

A 'B = (M(si) —M(s2))
'

jM(s2)ei —M(si)sz).

(41)

To minimize the error introduced by linearization, one
can use multiple energy panels and keep only those eigen-
values which lie within each panel. Unlike the conven-
tional linearization scheme which uses only one pivoting
energy for each energy panel, this approach does not in-
troduce discontinuities in the energy bands because the
error due to linearization vanishes at both ends of the en-

ergy panel (i.e. , when s = si or c = sz). The present sim-

plified linearized method defines a band-structure the-
ory with a secular matrix that has only nearest-neighbor
couplings. This rigorous formalism is then computation-
ally analogous to the use of an approximate tight-binding
Hamiltonian matrix.

Because Ni, used either in the unpivoted or the piv-
oted GFCM form, is independent of atom type, the site
off-diagonal matrix elements M " depend only on the
atom type on site n. This feature and the fact that the
matrix is of nearest-neighbor form may facilitate the ap-
plication of the GFCM to the solution of the impurity
problem and to applications of the coherent-potential
approximation (CPA) to disordered systems. Detailed
studies of these features will be presented in a separate
publication.

V. NUMERICAL STUDIES

Initial tests of the GFCM formalismio included a two-
dimensional empty-lattice test and an application to the
diatomic Hz+ ion. The empty-lattice test provides a
rigorous test of any full-potential band-structure the-
ory and has been used extensively to study full-potential
multiple-scattering theory. is zz It was shownio ii that the
energy eigenvalues and the mean-square error of the wave
functions converge with respect to the 8 truncation at
about the same rate, with similar convergence behaviors
for calculations done with surfaces defined on the cell
boundaries, in circumscribing spheres, and on inscribed
(muffin-tin) spheres The result. s of Hz+ compared well

with the exact results.
In this paper we present a calculation of energy bands

of fcc Cu. The calculation uses a non-muffin-tin potential
obtained from using the self-consistent quadratic KKR.
The secular matrix given by Eq. (14) is calculated using
matching conditions on the signer-Seitz sphere, and the
linearization scheme discussed in the previous section is
used with energy panels defined by the end points at
0.225 Ry intervals from —0.10 to 0.80 Ry. The calculation
was carried out along the I'-X and the l'-I directions.

It should be noted that the Wronskian surface integrals

required in practical calculations can be evaluated out-
side the loop over points in k space. The k dependence
of the secular matrix in the GFCM is in the form of a
phase factor multiplying a fixed integral for each interface
surface,

ML, 1,(k) = ) ( P'1. 41.is„,
neighbore

of rn

[$7111 PP j
elk Rmp ) (42)

Therefore, for each energy the required k-independent
Wronskian integrals are calculated and stored, and are
used subsequently for all k points. Thus the computa-
tional effort of surface quadrature is not proportional to
the number of k points. The present scheme may be espe-
cially eKcient in following details of a complicated Fermi
surface because arbitrary search paths can be followed in
k space without computing structure constants.

The calculation was carried out on an IBM RISC/6000
model 320. For the case of E „=4, calculation of the
whole energy range with 100 k points required less than
7 min of CPU time. Nearly half of this time was spent
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FIG. 2. Energy bands of fcc Cu along the I'-X and the
I' ldirections, calculated with-linearized GFCM. (a) Using
1m~x = 4 for the GFCM, and (b) using Em, ~ = 6. In both
panels the results of the quadratic KKR with Z „=4 are
indicated by squares and the results of the GFCM by open
circles.



15 038 ZHANG, BUTLER, NICHOLSON, AND NESBET 46

calculating the basis functions within the unit cell and
the surface integrals between cells. These parts of the
calculation scale as N, the number of atoms.

The preliminary results of the Cu band calculation are
shown in Fig. 2, and are compared with the correspond-
ing bands calculated by the quadratic KKR technique
using 8 ~ = 4. The GFCM calculations used a sphere
of radius 2.8 a.u. as the surface for the Wronskian sur-
face integrals in Eq. (14). The lattice constant is 6.76
a.u. Overall, the results are in good agreement. We note
especially that the errors due to linearization are neg-
ligible. In appraising the convergence of the GFCM it
should be noted that because it does not yield a varia-
tional secular equation, errors in the band energies are
the same order as those of the wave functions. Further-
more, unlike MST, the GFCM cannot produce converged
energies with wave functions that are converged only near
the nucleus (i.e. , for very short-ranged potentials). This
implies that relative to most other techniques the GFCM
wave functions will be better converged for the same level
of convergence of the band energies. If highly converged
band energies are desired a variational correction can be
applied. For most purposes, however, the charge density
which is determined by the wave functions is the more
useful quantity. We plan a more detailed comparison
with other full-potential calculations as well as a study of
the convergence of both the energy bands and the charge
density with respect to the number of basis states in a
later publication.

VI. DISCUSSION AND CONCLUSIONS

The Green-function cellular method can be viewed as a
form of multiple-scattering theory in which the structure
constants that couple difFerent sites are resummed into
nearest-neighbor couplings. In addition to its nearest-
neighbor nature, the GFCM has the advantage that it can
readily be linearized in energy, and in the case of periodic
systems, the k dependence is trivial. As discussed here,
an extension of the GFCM formalism is capable of pro-
ducing the Schrodinger Green function directly. GFCM
can be readily combined with the CPA for the treatment
of substitutionally disordered systems. It provides an
alternative to the ACO and/or KKR formalism as a di-
rect full-potential extension of KKR theory, and can be
equally well developed into an energy-linearized theory.

Both the GFCM and the KKR method are derived

from the same principles. The numerical behavior of the
GFCM and nonvariational KKR are also similar. The
expression we derive for the structure constants in terms
of Wronskian cellular integrals further shows the rela-
tionship between the two methods. It is unclear to us
whether the Kohn-Rostoker variational principle can be
related to the GFCM and used to derive a variational
version of the theory. The nonvariational nature of the
theory may result in less accurate band energies. How-
ever, one can certainly use the GFCM as an alternative
to ACO and/or KKR to construct basis functions that
are valid over the range of an energy panel, following
LMTO and/or LACO methodology, and then use them
in the Rayleigh-Ritz variational technique or more pre-
cisely in the Schlosser-Marcus technique. The ability of
the GFCM to compute the Green function directly should
make the computation of the energy bands unnecessary
in many applications.

We expect that the methods which we describe here
should be generally useful for solving linear partial-
difFerential equations. The closely related ACO and/or
KKR method has already been implemented for solv-
ing the Poisson equation. z4 Computational techniques
require only minor modifications of existing methodol-
ogy built into LACO programs. These methods are ad-
vantageous for parallel processing because the computa-
tional effort of obtaining the local basis functions can
be done independently for each atom or cell. The com-
putations can be organized in terms of surface integrals
that are evaluated outside the symmetry loop or k loop.
The required surface integrals are weighted computation-
ally by nearest-neighbor pairs of inequivalent atoms, not
quadratically by the full number of atoms. The step of
the calculation in which the local solutions are matched
to form the global solution reduces to solving a system
of linear equations corresponding to a matrix with only
nearest-neighbor couplings.
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