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EfFects of spin-orbit interactions in disordered conductors: A random-matrix approach
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A description in terms of random matrices is used to study the effects of strong spin-orbit coupling in

disordered conductors. It is shown that the ensemble of transfer matrices can be conveniently

parametrized using quaternions. A diffusion equation is derived for the evolution, with sample length, of
the transfer-matrix distribution. In the insulating regime, a uniform density of I.yapunov exponents is

obtained, and the expected universa1 multiplication factors in the localization length are derived when

time-reversal symmetry is broken. %'eak antilocalization, backscattering depletion, and universal con-

ductance fluctuations are obtained in the metallic regime.

I. INTRODUCTION

Interference effects in quantum-electronic transport in
mesoscopic systems have been the subject of many recent
investigations. Experimentally, interference effects pro-
vide new methods of measuring characteristic times of
the conduction electrons, such as the inelastic lifetime
and spin-orbit coupling time. Theoretically, interference
effects give rise to weak localization, a precursor to the
Anderson transition. In addition, they are responsible for
striking phenomena, particularly universal conductance
fluctuations (UCF) observed in small metallic samples at
low temperatures. The measured conductance exhib-
its time-independent, reproducible stochastic variations
as a function of magnetic field or Fermi energy, with a
variance always of order (e /h) independent of sample
size and degree of disorder.

This behavior has been studied theoretically, both us-
ing microscopic, diagrammatic calculations and via
macroscopic random-matrix theory. ' There is agree-
ment between microscopic and macroscopic approaches,
which underlines the possibility of a generalized central-
limit theorem' governing the behavior of the system, and
motivates theories that do not depend on the details of
the model Hamiltonian. Two such theories have recently
been developed. One theory ' takes a local approach
based on a maximum entropy ansatz for the probability
density of the transfer matrix of small slices of the con-
ductor. The other' ' is based on a global approach,
and proposes a maximum entropy ansatz for the proba-
bility density of the transfer matrix of the whole sample.
These two theories have been proved to be equivalent in
the limit of large numbers of channels. In this paper we
extend the local maximum entropy approach to treat
conductors with strong spin-orbit scattering.

Spin-orbit scattering influences quantum interference
effects in a particularly interesting way. Bergmann' has
shown in a series of experiments on thin films of Mg with
different coverages of the strong spin-orbit coupler Au,
that the main effect of spin-orbit coupling is to change
weak localization into weak antilocalization. This is due
to the fact that, in the presence of a spin-orbit interac-
tion, each scattering event slightly rotates the spin of the
electron. According to quantum mechanics, the sign of
the electron spin state is reversed after a rotation by 2m. .

This sign change yields a destructive interference in the
backscattering direction, which in turn implies weak an-
tilocalization.

Theoretically, the effects of spin-orbit scattering on
random conductors have been studied recently by Pi-
chard and co-workers' ' using random-transfer-matrix
theory in the global maximum-entropy approach. This
formulation, which is built on earlier work by Imry' and
Muttalib, Pichard, and Stone, ' emphasizes the Dyson
conjecture ' that the local statistical properties of the ei-
genvalue distribution in the ensemble are universal, and
only the global properties contain nonuniversal physics.
In order to introduce these global properties into the
theory, the average eigenvalue density is taken as input.
A maximum-entropy ansatz is invoked to generate from
this the joint eigenvalue distribution. The influence of
spin-dependent hopping is studied' by defining an en-
semble for the transfer matrices with the appropriate
(symplectic) symmetry. Local statistics agree with stan-
dard random-matrix theory and numerical simulations
show a uniform density of Lyapunov exponents. Zanon
and Pichard also argue, based on the results of Dyson
and Mehta for the variance of a quantity which is a
linear statistic of the spectrum of a random roatrix, that
the presence of spin-orbit coupling should reduce the
conductance fluctuations by a factor of 4, in agreement
with microscopic calculations.

The local maximum-entropy approach, ' on the oth-
er hand, divides the sample into thin slices, assumes
Ohm's law to be valid for each slice, and combines them
by means of a convolution requirement. Very recently,
using this approach, Mello and Stone' have obtained, for
various quantities, impressive quantitative agreement
with elaborate microscopic calculations. These authors,
however, did not consider the effects of spin-orbit scatter-
ing. Motivated by the striking experimental consequences
of spin-orbit scattering, indicated above, we provide such
a treatment in the present paper.

Our work is complementary to a recent discussion of
the same problem by Hiiffmann, from a coordinate-free,
geometric viewpoint. We recover this author*s expres-
sions for several quantities, in particular the amplitude of
conductance fluctuations. We also find that explicit in-
troduction of suitable coordinates makes it possible to ob-
tain a number of additional results, most importantly, the
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values of the Lyapunov exponents.
In a celebrated paper, Dyson introduced three possi-

ble universality classes for random Hamiltonians. His
terminology is now commonplace in weak-localization
theory. The orthogonal class is appropriate to systems
with time-reversal symmetry and in the absence of spin-
orbit scattering. If sufficiently strong spin-orbit coupling
is present, and time-reversal symmetry is still preserved,
one has the symplectic class. When time-reversal symme-
try is destroyed by an applied magnetic field, both classes
reduce to the unitary class. Each class is closely related
to one of the three types of division algebra with real
coefficients: the real numbers, the quaternions, and the
complex numbers, respectively.

This work is concerned with the symplectic case. In
Sec. II, an ensemble of quasi-one-dimensional disordered
conductors with transverse width L, and length L is de-
scribed by means of an ensemble of random transfer ma-
trices M. It is shown that a representation in terms of
quaternions is a natural consequence of flux conservation
and time-reversal symmetry in the presence of spin-orbit
scattering. This representation greatly facilitates the sub-
sequent calculations. The invariant (Haar) measure
dp(M) is constructed for transfer matrices with the sym-
metry resulting from flux conservation. In Sec. III, fol-
lowing the local approach, ' a statistical distribution
for each slice is chosen on the basis of a maximum-
entropy criterion, and a combination law for the slices is
formulated. The resulting diffusion equation is derived
and compared with earlier results for the orthogonal and
unitary cases. ' Reflection and transmission coefficients
are defined in a form appropriate for performing averages
on the quaternion unitary group. The conductance is de-
rived as a sum of the transmission coefficients that relate
incident and outgoing fluxes, in accordance with the
two-probe Landauer formula. The two-probe
geometry, although not appropriate for quantitative com-
parison with many experiments, serves to demonstrate
the essential phenomena. In Sec. IV we apply the theory
to samples much longer than the localization length. In
this regime one expects from Oseledec's theorem that
the transfer matrix of the sample, which is the product of
a large number of transfer matrices associated with each
slice, will be characterized by its Lyapunov exponents.
We show how this behavior arises from the diffusion
equation obtained in Sec. III. The localization length is
calculated and the Lyapunov exponents are shown to
have a uniform distribution when N —+ ~. In Sec. V, an
expansion in inverse powers of the average conduc-
tance"' is used to obtain the weak antilocalization
correction to the conductance, and the UCF in the metal-
lic regime. The expected backscattering depletion' is
found as a natural consequence of the quaternion algebra
and the assumption of uniform distribution of phase fac-
tors in the transfer-matrix representation. Our con-
clusions are summarized briefly in Sec. VI.

L and transverse width L„ to which current is supplied

by two semi-infinite ordered leads. The multichannel
scattering process can be completely described by the
corresponding scattering matrix,

r t'
(2.1)

(2.3)

and

M X,M=X,

M*=X MX„,

(2.4)

(2.5)

where X, and X„denote, respectively,

and

1 0
0 —1

0 1

~x 1 0

(2.6)

(2.7)

with 1 and 0 designating the N XN quaternion unit and
zero matrix. The matrix operations in (2.4) and (2.5) are
defined as follows:

and

(M )i/ —MJ,. (2.8)

(M');, =M,,*, (2.9)

where M; and M-'; are, respectively, the Hermitian and

the complex conjugate of the quaternion M;. , which are
defined as

(2.10)

S

which relates the incoming fluxes I, I' to the outgoing
fluxes 0, 0' through

I 0
S I 0

where r, r' and t, t' are, respectively, reflection and
transmission matrices. Although more familiar in
scattering problems, the S matrix obeys a rather complex
composition law and a description in terms of a transfer
matrix, defined as

I 0'
M 0 I

turns out to be more convenient. The presence of spin
adds another degree of freedom, which implies that I, 0,
I', 0' are 2¹omponent vectors containing the wave
amplitudes, where N is the number of quantized trans-
verse momenta and the factor of 2 is due to the additional
spin degree of freedom. Therefore, M is a 4N X4N ma-
trix, which we shall divide into four N XN quaternion
blocks. Flux conservation and time-reversal symmetry
imply that M must satisfy the following requirements:

II. THE TRANSFER MATRIX:
A QUATERNION PARAMETRIZATION

M. - =M'" '*e —M*".eji ji o ji (2.11)

(2.12)

The simplest measurement geometry is a two-probe
system consisting of a finite disordered section of length

Here, M',"' (k =0, 1,2, 3) are complex numbers, eo is the
2 X 2 unit matrix, and e &, e&, and e3 are defined as
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i 0 0 —1

0 —i ' 2 1 0
0 —i
—i 0 (2.13)

differential probability is defined as

dPI (M) =pi (M)d p(M), (3.1)

The simplicity of expressions (2.4) and (2.5) shows the ad-
vantage of the quaternion description.

In Appendix A, it is shown that conditions (2.4) and
(2.5) imply that any transfer matrix in the symplectic en-
semble can be parametrized as

where pl(M) is the probability density function and
dp(M) is given by (2.17). A basic requirement we shall
now invoke is that pl (M) must be reproducible under
convolutions, i.e., if we combine two slices of conductors
of lengths L' and L" and transfer matrices M' and M",
the resulting probability density must be given by

Q 0
0 Q

&I+A, &X u 0
&I+A, 0 u' (2.14)

or

pL"+L'(M) = fpr -(MM' ')pr, (M)dp(M) (3.2)

where A, is an NXN quaternion real, diagonal matrix
with non-negative elements A, A, 2, ..., A, N and Q and v are
arbitrary N XN quaternion unitary matrices.

We mention in passing that a 4N X4N matrix satisfy-
ing conditions (2.4) and (2.5) has v=2N(4N —1) free pa-
rameters, but the representation (2.14) contains 8N +N
parameters. The 3N redundant parameters are due to the
fact that the parametrization (2.14}is invariant under the
transformation

Q ~QS, V ~SV (2.15)

where s is a quaternion real unitary matrix, which com-
mutes with A, , and s is its quaternion conjugate, defined
as

(2.16)

dp(M)=J(A) g dk, ,dp(~)dp(u),
a=1

J(x)= g lx. —xbl',

(2.17a)

(2.17b)

Such a matrix has 3N independent parameters, which
could, in principle, be used to eliminate the 3N redundant
parameters of (2.14). This procedure is not convenient,
though, inasmuch as the averages are much simpler if M
is kept in the form (2.14). The probability distribution
and, therefore, all expectation values, must be invariant
under (2.15). It is worth mentioning that the number of
parameters, v=2N(4N —1), is the number needed to
uniquely specify a unitary and self-dual matrix of dimen-
sionality 4N. Henceforth, Eq. (2.14) will be used as
the most convenient parametrization.

The invariant measure of the group formed by the M
matrices is worked out in Appendix B, yielding the fol-
lowing result:

PL"+L' PL" PL' ' (3.3)

with the constraint that p&L is normalized. In addition,
we require that

1 5L—(trA, ),~ = (3.6)

where l is the mean free path. In Ref. 9 it is shown that
these requirements ensure that Ohm's law is recovered
when 5L ~0. The resulting distribution for M is isotro-
pic, i.e., does not depend on the unitary matrices Q and v

in Eq. (2.14). It is also shown in Ref. 9 that the isotropic
property of pr is preserved under the convolution (3.4}.
Their proof can be easily extended to the symplectic case.
It is well understood' that these requirements, in fact,
define an ensemble of quasi-one-dimensional (L ))L, }
conductors, and that additional or different constraints
would have to be imposed in order to describe higher-
dimensional systems.

In Appendix C, the procedure devised in Ref. 9 is used
to obtain a diffusion equation that describes the evolution
of the probability density wr (A, ) =pr (A, )J(A, ) for the sym-
plectic ensemble. The resulting equation is

If we now set L"=L and L'=5L, where 5L is considered
small but still macroscopic, then (3.2) gives

pr +sr (M) =fpl (MM )psl (M)dp(M)

which is the "Schmoluchowsky equation" for this sto-
chastic process.

The probability density p&L of each slice will now be
chosen by maximizing Shannon's information entropy

S[p,r ]=—fp, r, (M) ln[p, r (M)]dp(M), (3.5)

a(b

in which the 3N harmless redundant parameters are in-
cluded. The fourth power obtained in Eq. (2.17b) is
characteristic of the symplectic ensemble as defined in the
classical theory of random matrices ' and is, as mell as
the Kramers degeneracy observed in the matrix A, , a
direct consequence of the quaternion algebra.

Bw, (A, )

Bs

w, (A, )
X

J(A, )
(3.7)

1 N

A,,(1+A,, )J(A, )
8

a=1 a

III. THE STATISTICAL ENSEMBLE
OF TRANSFER MATRICES

We shall describe an ensemble of random conductors
by means of an ensemble of transfer matrices, ~hose

in which s —=L /1 is a measure of the length of the conduc-
tor in units of the mean free path, l. If we now compare
this equation with the ones obtained by Mello and Stone
for the orthogonal and unitary cases, we see that Eq.
(3.11) of Ref. 13,
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aw,'~'(X)

its

w,'t"(X)
X

Jp(A, )
, (3.8)

2 N c}

Pm+2 P—.~, aX.
"+ ' " '

aX.

where ( )o denotes the average on the quaternion unitary

group and ( ), is the expectation value obtained through
the solution of (3.8).

The conductance of the model is given by the two-
probe Landauer formula

Jp(A, )= g IA,, —k„l~,
a &b

(3.9)
g=+Tb=T.

a, b

(3.18)

is valid not only for p= 1 (orthogonal ensemble) and p=2
(unitary ensemble), but also for p=4 (symplectic ensem-
ble}.

This equation must be solved with the initial condition
tug (A, )=5(A, ). Although we are mostly concerned with
the symplectic case (p=4), we will use Eq. (3.8) instead
of (3.7) in order to emphasize the effect of transitions be-
tween ensembles when certain symmetries are broken.
The solution of (3.8) enables, in principle, the calculation
of any expectation value, some of which will now be
defined.

From (2.1)—(2.3) and (2.14) one can easily see that the
reflection and transmission matrices r and t are given by

1/2

IV. ANDERSON INSULATORS
AND OSELEDEC'S THEOREM

L
M(L}= p MI, ,

k=1
(4.1)

The model is an Anderson insulator for sufficiently
large L, at fixed N, simply because it is quasi-one-
dimensional. The insulating regime is reached by solving
(3.8) in the limit L ))g, where g is the localization length.
In this limit, one expects Oseledec's theorem to apply.
That is, if M is a transfer matrix for the whole sample, re-
sulting from the successive multiplication of I. statistical-
ly independent transfer matrices for individual slices

' 1/2

V (3.10}

(3.11)

then there exists a matrix 0 (L) defined as

O(L)=(M M)' (4.2)

If the channels are fed from the left with N incoherent
unit fluxes, the reflection and transmission coefficients
into channel a can be obtained by

such that the logarithms of its eigenvalues self-average in
the large L limit to a set of Lyapunov exponents Ia, ).
The N distinct, positive exponents define the inverse de-
cay lengths of the system. The localization length is

N ~b

b=1
(3.12)

+min
(4.3)

N

T, =(tt )„=g u, bu,"b .
1+A,b

(3.13)

N N

R=gR, =g
a=1 a=1 a

(3.14)

The total reflection and transmission coefficients are, by
definition,

I cosh(2v) —1]/2=A, . (4.4)

where o. ;„ is the smallest positive Lyapunov exponent.
We shall now prove that these consequences of Oseledec's
theorem also follow naturally from the parametrization
(2.14) and the diffusion equation (3.8).

First, define a positive diagonal matrix v satisfying

Substituting (4.4) and (2.14), we get
(3.15)

u 0 cosh v sinhv v 0
in which we have dropped the trivial factor 2 due to Kra-
mers degeneracy. The transmission and reflection
coefficients T,b and R,b are defined, respectively, as t,b t,„
and r,br, b. The explicit expressions for these quantities

simplify after the ensemble average, yielding

(T.b), = g (t ..t.'. )O(u.~ '. b),

0 g * sinhv coshv 0

Now from (4.5), (4.1), and (4.2) we find

a(L) = lnO(L)= v(L)
L

(4.5)

(4.6)

aa'

X((1+A )
' (1+A. )

' )

(R,„),= g (u .u, ut, u'. ),
aa'

(3.16)

(F ),'~'= fF(A)tu, '~'(A)d A. , . . (4.7)

The theorem is verified if we can show that the matrix
(4.6) self-averages in the large L limit. From Eq. (3.8) we
can write an evolution equation for the expectation value

((A, A. )'i (1+A, )
' (1+& )

' ), ,

(3.17)
if we multiply both sides by F(A. ) and integrate over X.

The result is
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a(F ),(t))
Bs

2

PN +2—P
N gF (P)

X g A,,(1+A,, )Jt)
13 a=1 a S

(4.8)

are two differences that are worth highlighting: (i) the
denominator, PN+2 —P, of the expression for ak, Eq.
(4.13), is replaced by PN in the global approach; ' (ii) the
variance of a)v(L), Eq. (4.12) (which is physically the
variance of the logarithm of conductance) takes half the
present value in the global approach. '

1 & v~(L) & v~ )(L) & . & v(L), (4.9)

in which J&—=Jt)(A, ) and F—:F(A, ). The right-hand side of
this equation simplifies in the large s limit because dis-
tinct A,, 's become exponentially separated. %e order the
eigenvalues of v(L) by

V. THE METALLIC REGIME
AND UNIVERSAL CONDUCTANCE FLUCTUATIONS

The metallic or di6'usive regime is defined as the one in
which the length L of the system is much larger than the
mean free path 1, but much smaller than the localization
length g(P)-PNl, i.e.,

and find
I «L «Nl or 1«s «N . (5.1)

( „(L)),(t))= PN+1 Pk
PN +2 —)t3

1 L
Var f vk(L) I

=

k =1,2, . . . ,N,L

(4.10)

(4.11)

We can thus, using (5.1), (4.8), and (3.15), write ( T ),'~' as
a power series of N, whose coefficients are functions of s.
This procedure was introduced by Mello, " and was
shown' to produce the same result as microscopic calcu-
lations for systems with lengths much greater than their
widths L„

Diagonalizing (4.6) and using (4.11),we obtain

and, thus,

(4.12)

1 1 1
VarIai, (L)I =

z Vart vt, (L) J
=

L2

L»L, .

The resulting ( T)(~) is

T

(T)(t)) N 1 2 —P
(1+s) 3 P

$

(1+s)

(5.2)

lim Var I ak(L) I =0,
L —+ oo

+ 1 2 —P
45N P

'2
s 8

(1+s)
as wanted. The Lyapunov exponents ak are given by

T

ak= lim ak(L)=—,k =1,2, . . . ,N .
1 PN+1 —Pk
1 N+2—

2 (P—1)(4—P)s
45N P'(1+s)' (5.3)

(4.13)
From conditions (5.1), (5.2), and the fact that
N =(k&L, )

' we find, for d ~ 3, the condition

Using (4.3) and (4.13), we can obtain the localization
length v'N «s«N . (5.4)

g(P) =(PN +2—P)l (4.14)

which, in the limit of large number of channels, i.e.,
N»1, yields

g(P) =Pg(1), (4.15)

and gives the universal multiplication factors that accom-
pany the transitions between the ensembles. ' ' If,
for instance, time-reversal symmetry is broken in the
presence of strong spin-orbit scattering, the localization
length makes a transition g~g/2.

The density of positive Lyapunov exponents in the lim-
it N~ oo is, from (4.13), uniform on (0, 1) and indepen-
dent of P. The same behavior has been obtained in nu-
merical calculations. ' '

In summary, the simplicity of the local maximum-
entropy approach has enabled us to obtain rather com-
plete results. These agree broadly with those obtained
from the global maximum-entropy approach, but there

Now we can use (5.4) to asymptotically expand (5.3),
yielding

~(t)) Nl + P 2

L 3P
(5.5)

So, the same conditions that yield weak localization in
the orthogonal ensemble [the correction, (P—2)/3P, is
negative for P= 1], give weak antilocalization in the pres-
ence of sufficiently strong spin-orbit scattering, i.e., the
symplectic case (the correction is positive for P=4). We
recall that this result is predicted by the weak-
localization theory and arises from interference between
time-reversed paths. In the presence of spin-orbit scatter-
ing, this interference is destructive in the backscattering
direction and, therefore, enhances the conductance, as
seen in (5.5).

In the same way used to obtain (5.3), we can calculate
the second moment
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Ti &(p) N 2 2 —
/3

(1+s)' 3 /3

Ns

(1+s)
2

+ 13 2 f3— s8

/3 (1+.)'

+ 2 (P—1)(4—/3)s 6

45 P'(1+s)'
After squaring (5.3) we find

(5.6)

as expected. Equation (5.11) confirms the prediction of
weak-localization theory and the comment just below
(5.5), that the presence of sufficiently strong spin-orbit
coupling (P=4) yields a backscattering depletion due to
destructive quantum-interference effects. Observe that if
)(3=1, the spinless orthogonal ensemble yields a back-
scattering enhancement, and that both effects are absent
if time-reversal symmetry is broken by an applied mag-
netic field, i.e., for the unitary ensemble (P=2). Note
also that from (5.12) we find for VarIR I the same result
as in (5.8), i.e.,

(& T&(p))2 N 2 2 —p
(1+s) 3 /3

Ns

(1+s) Var I R I
= 2

15
(5.13)

'2
8

+ 2 2 —P s

45 P (1+s)
4 (P—1)(4—/3)s6

45 P'(1+s)'
'2

1 2 —P s6

/3 (1+s)'
(5.7)

We mention in passing that a lengthy but straightfor-
ward calculation as done in Ref. 13 with the results of
Ref. 36 can be extended to the symplectic case to calcu-
late the covariance of transmission and reAection
coefficients. We do not undertake this.

VI. SUMMARY AND CONCLUSIONS

We use condition (5.4) to asymptotically expand (5.6) and
(5.7) and obtain

VarITI = l(2 —P) +(P—1)(4—P)j=6 2 = 2

45/3 15
(5.8)

For the conductance, g =2T, (restoring the factor 2 for
Kramers degeneracy} we get

VarIg )
= 8

15
(5.9)

T (P)

& T &(P)— (5.10)

where

(p)
~+ '(' ~ (p)

N(PN+2 —)(3}
(5.11)

& R &',"=N —
& T &(" .

One can easily see from (5.10) and (5.11) that

& T &(P) y & T &(P)

a, b

and

&R &'P'= y &R
a, b

(5.12)

which gives precisely the factor —,
' (for the symplectic

case) obtained by perturbative microscopic calculations.
This result, which motivates the term universal-
conductance Auctuations, shows that the leading contri-
bution to Var fgI depends only on the particular univer-
sality class of the system and, as a consequence of the
macroscopic approach used here, does not depend on any
information of a microscopic nature.

From Eqs. (3.16) and (3.17), and using (D5) and (D6)
from Appendix D, we find for the first moment of the
transmission and reAection coefficients, respectively,

In this work we have defined the symplectic ensemble
of random-transfer matrices in a quaternion representa-
tion, in order to take into account the effects of
sufficiently strong spin-orbit scattering in the presence of
time-reversal symmetry in quantum-transport theory for
disordered conductors. Kramers degeneracy and the in-
variant measure characteristic of symplectic ensembles
are natural consequences of the quaternion algebra.
Some quasi-one-dimensional physical restrictions are im-
posed on the probability density in order to derive a
Fokker-Planck equation, which describes a diffusion in
the hyperbolic manifold associated with the symplectic
ensemble. The quaternion representation greatly facili-
tates this derivation.

In the insulating regime, which is defined by the condi-
tion that the length of the sample is much greater than
the localization length, we have shown that the system is
characterized by quantities that self-average to a well-
defined set of Lyapunov exponents in agreement with
Oseledec's theorem. In the limit of a large number of
channels, the Lyapunov exponents were shown to have a
uniform density independent of the ensemble. The
universal multiplicative factors relating localization
lengths in different ensembles, predicted by different mac-
roscopic approaches, ' ' ' were shown to be a direct
consequence of the diffusion equation.

In the metallic regime, which is defined as the one in
which the length of the system is much smaller than the
localization length, but much larger than the mean free
path, we obtained within the quasi-one-dimensional re-
strictions the expected weak antilocalization correction
to the conductance, backscattering depletion, and
universal-conductance Auctuations in agreement with di-

agrammatic calculations and experimental observa-
tions. ' The factor —,

' in the variance of the conductance is

very striking and arises uniquely from the symmetries of
the symplectic ensemble. We remark that our results in

this so-called local maximum-entropy approach ' agree
with those of the global maximum-entropy ap-
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proach, ' ' which gives an ansatz for the probability
density of the transfer matrix for the whole sample, in-
stead of using a diffusion equation.

%'e conclude by observing that the conditions imposed
to derive the diffusion equation limit the model to quasi-
one-dimensional conductors, and that additional or
different restrictions must be set up in order to give more
realistic geometrical structure to the channels and, conse-
quently, extend the model to higher dimensions.
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Similarly from (A4a) we obtain

where P is a quaternion real permutation matrix and d i is
a unitary matrix such that [d„p]= [d „p,']=0. We then
get

This work was partially supported by CAPES (Brazili-
an Agency). v =Pd2 u (A9)

APPENDIX A:
THE QUATERNION PARAMETRIZATION

An alternative representation for the symplectic case
was recently derived in Ref. 30 and we shall follow very
closely their method, adding the adaptions required by
the quaternion algebra. It turns out that the quaternion
representation provides significant simplifications.

Consider a transfer matrix M written in the form

where d2 is another unitary matrix, such that
[dz, l]=[d2,1']=0. If we now substitute (A7) —(A9) into
(A4b) and (A4d), we find the condition

s =d &d2 =s (A10)

P= us+1 —1v', (A 1 1)

which means that s is a unitary self-dual matrix and that
[s, l]=0. So, starting from (A3a) we find that the most
general P satisfying conditions (A2a) —(A2d) is

(A 1)

a a —PP'=1,
a P—Pa'=0,
aa —PP =1,
aP —Pa =0,

(A2a)

(A2b)

(A2c)

(A2d)

where a, P, y, and 5 are XXN quaternion matrices.
Conditions (2.4) and (2.5) imply that y =P', 5=a", and

but according to Ref. 30, any unitary self-dual matrix can
be written as

s =kk, (A12)

where k is a unitary matrix. The decomposition (A12) is
not unique and we can choose k such that [k, 1]=0. Sub-
stituting (A12) into (Al 1), we find

P= (uk)+1 —1(k tv )' . (A13)

Now we use the nonuniqueness of (A3a) and (A3b) to
transform

in which the matrix operations are defined in (2.11),
(2.12), and (2.16). We now write a and P in the polar rep-
resentation

uk~u, k v~v,
and after defining A. = l —1, we get

(A14)

a=ulv,
P= u'1'v',

(A3a)

(A3b)

a=u&1+A, v,
P=u&X.v* .

(A15a)

(A15b)

where u, u', u, and u' are XXX quaternion unitary ma-
trices and l, l' are real, positive and diagonal XXX
quaternion matrices. This decomposition is not unique,
as can be easily seen by the transformation u —+ud and
v~d 'v with [d, l]=0. Substituting (A3a) and (A3b)
into (A2a) —(A2d), we get

Substituting (A15a) and (A15b) into (Al), we find (2.14),
which proves that any transfer matrix satisfying Aux con-
servation and time-reversal symmetry can be written in
this form in the symplectic case.

u I u —u'l' u'*=1,
u lu u'I'u'=u'/'u'u*lv*,

ul u —u'l u =1,
uluu'l'u'=u'l'u'vlu .

Equation (A4c) can be written as

(A4a)

(A4b)

(A4c)

(A4d)

APPENDIX B: THE INVARIANT MEASURE

ds =Tr(X,dMtX, dM)= g g,, (x)dx;dx (B1)

In a similar way as was done for the orthogonal and
unitary' cases, the invariant measure for the symplectic
case can be worked out from the observation that if the
arc element

(A5)

~here m =u'tu, p=/ —1, and p'=/' . It is easy to veri-
fy that a w satisfying (A5) can only be of the form

is invariant under the transformation M ~MOMM &,

where Mo and M, are fixed transfer matrices, then the
volume element
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dp(M) =
l «tg (x)

l

' "II «;
i=1

is also left unchanged.
Using (2.14) and (81) we obtain

ds'=tr 2(5u) (5u)+2(5v) (5v)

(82)

6u =6a+i6s,
6v =6a'+i6s',

(84)

(85)

where 6u —=u du and 6v =dvv . As 6u and 6v are anti-

Hermitian matrices, they can be decomposed into a sum

of two quaternion real matrices, '

—4 Rev'A, (5u )&A.(5v) (83)

1 dkdk +4 Rev'1+ A,(5u ) &1+k(5v)
2 A, (1+A, )

such that 6a and 6a' are anti-self-dual and 6s and 6s' are
self-dual matrices, i.e., 5a = —Sa, 5s =5s, and similarly
for 5a' and 5s'. Recalling that a self-dual (anti-self-dual)
matrix can be expanded in the quaternion basis as a sym-
metric (antisymmetric) and three antisymmetric (sym-
metric) matrices, we can rewrite (83) as

N N 3

ds'=4 y [(5s'")'+(5s'")'+2(1+2k,, )5s' '5s'"]+4 y y [(5a"')'+(5a")']
a =1

3

+8 g g [(5s,'b') +(5s,'b') +2A,+b5s,'b'5s,'q" ]
a &b i=0

a=1 i=1

+8 g g [(5aIb') +(5a,'bI') +2A, b5a,'b'5a,'b I]—g
, A,,(1+k, )

(86a)

in which

A, b
=—Q(i+I,, )(1+Lb)+o QA, ,Ab (o =+, —),

(86b)

The isotropic assumption implies that pL (MM' ') in
(3.4) depends only on the eigenvalues of the matrix

(C 1)

5s' ', 5aI', 5s' ' and 5a" (i =1,2, 3) are symmetric ma-
trices and 5a' ', 5s", 5a' ', and 5s" (i =1,2, 3) are an-
tisymmetric matrices. We mention that as I itself is in-
variant under the transformation (2.15), so is ds and,
therefore, dp(M), and that we will preserve this symme-
try for the reasons explained following (2.16).

Now, using (Bl) and (86a), we find

in which

tv =&1+A(u'tA. 'u')v'1+A, +PA(u'k'u")v'k

—&1+A, [u' &A, '(1+A, ')u '" ]&A,—v'A,

X [v'v'A, '(1+X')u']v'1+k . (C2)

«tg" II I~. —~bl',
a &b

and from (82)

(87) Since 6L is very small, the matrix w can be seen as a
small perturbation 6A, to the diagonal matrix A, . Using
perturbation theory, we find

dp(M)= II lA,, —A,
l II dk, ,dp( )dp( ), (88) 6X. =6X'."+6X.'"+ (C3)

where

a &b a=1
where

6X"'=wa
—

Waa (C4a)

a=1 a &b i=0

d p( ) = II 5 .""II 5 "' lI II 5 "'5 "' .

(89)

(810)

w wab ba

b&& )
~ ~b

(C4b)

a =1 a &b i=O

We have thus proved (2.17).

APPENDIX C: THE DIFFUSION EQUATION

For a thorough derivation in the orthogonal and uni-

tary cases the reader is referred to Refs. 9 and 13. We
shall give a more concise derivation, just stressing the
most important conceptual di6'erences from previous
work.

We will be interested only in corrections up to first order
in 5L and, therefore, using (3.6), (C4a), and (C2), we get

N

&M,."'),L=(1+2K,.)(v,'tv,'. ), g &k,'),I,
c=l

(5A, ~,")s~ =(1+2k,, )

where we have used Eq. (D4) from Appendix D. Now,
from (C2) we find
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( WabWba )5L Q ( (Zabkba )5L + (kabZba )5L, )
c,d

If Ig —I IX (ucaucb vdbvd, )0,
in which we have defined

(C6)

B]nJ(A, } 1

~~a b(W ) ~a ~b

where J (A. ) is given by (2.17b), we obtain

(C]4)

Z,'b =Q]+A,,QA, ,'(]+A,,')QA, b,

k;b =+A,,QA, ,'(]+A,c')Q]+A.b,

(C7)

(Cg)

and the average over the quaternion unitary group is
given by

aPL(X)

M.
1 1

2N —1 J(A)

BPL (A, )
X g A,,(]+A,, )J(A, )

a=1 a Q

(C15)
lt Ig —I I

2 c,d( uca Vcb udb uda & 0 (C9)

if a Ab, as shown in Appendix D.
Substitute (C9) into (C6}, and the result into (C4b), to

get

Defining w, (A. )—=p, (A, )J(A. ) and s =L/I, —we finally get
Eq. (3.7).

APPENDIX D: AVERAGES
ON THE QUATERNION UNITARY GROUP

2 5L
l

+Ah+2', Ab

(+ ) ~Q ~b The averages needed in this paper can be easily ob-
tained by observing that any element of an N XN quater-
nion unitary matrix can be written as

We will also need to calculate
2i —1,2j —1 u 2i —1,2j

(5X M'b)5L —(w wbb &5L

q; =
u2i, 2j —1 u2i, 2j

(Dl)

X ( (Z kbb &5L + ( ko Zbb &5L }
C, d

where u, b are elements of a 2N X 2N unitary matrix, for
which the following relations hold:

Ig —I IX ( Uca Uca Vdb Udb &0 ~

for which, using formula (D6), we easily find

5.,X.(]+X.}ab a a

Expanding both sides of (3.4) in powers of 5L, we get

(C 1 1)

5„5bd
(u„u,', ),=

1(u, aub &u,
'

ub&)0—,(5;.55,5,5
4N —1

(5'.5', .5~,5
2N (4N —1 )

+5, 5b 5 5$) .

(D2)

&PL(&) 5' BP (A, }
(M,, )5L

a=1

a'PL(X)

a, b a b

(C]2)

(D3)

5„5bd
(q.,&„&,=«.,q„&,= (D4)

Now, using definition (2.11), together with (D2) and (D]),
one finds

Substituting (Cll) and (C3) into (C]2), and using the
identities

and from definitions (2.11), (2.12), and (2.16), as wei] as
with (D3) and (Dl), we get

~a + ~b +2~a ~b =(1—N)(]+2k., )
b(WQ) a ~b

+2k,, (]+A,, )
1

b(WQ) a b

and

( t a— 25cd
Ica9cbqdblda &0

( t a- 5cd 5ab
'Vca Vca 45 Qdb &0:

N (

(D5)

(D6)

(C13) Higher-order averages can be obtained in the same way.
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