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Theory of optical absorption by a localized carrier in an antiferromagnetic insulator
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We calculate the optical absorption of a spin- —,
' carrier bound to a defect site in an insulating antifer-

romagnet. We show that when the defect potential is symmetric under interchange of the antiferromag-
netic sublattices (as is believed to be the case in most doped high-T, parent compounds) the interaction
of the carrier with the antiferromagnetic background leads to a low-frequency absorption feature near
the zone-boundary magnon energy. This feature, however, is not consistent in peak position or total os-
cillator strength with the low-frequency absorption feature observed in lightly doped high-T, parent
compounds. We suggest the observed feature is due to electron-phonon coupling.

I. INTRODUCTION

High-temperature cuprate superconductors are pro-
duced by moderate (15—25 %) doping of antiferromag-
netic insulating "parent compounds" such as La2Cu04,
Nd2Cu04, and YBa2Cu306O. It is widely, although not
universally, believed that proximity to the insulating
phase and, in particular, interaction of dopant carriers
with magnetic degrees of freedom is crucial to the physics
of the high-T, materials. ' For this reason there has been
substantial experimental interest in the properties of
very hghtly doped (1—5%) high-T, parent compounds,
motivated in part by the hope of obtaining information
about carrier-spin interactions by studying the evolution
of material properties with doping at very low carrier
concentration when one may expect that both carrier-
carrier interactions and the efFect of carriers on the mag-
netic order and excitation spectrum may be neglected.
However, in order to add carriers to the high-T, "parent
compounds" one must introduce dopant ions; in the limit
in which these are very dilute, they produce potential
Auctuations which localize the carriers. A theoretical es-
timate suggests the binding energy E& -0.7 eV. Thus,
the study of a few carriers doped into a high-7; parent
compound is necessarily the study of localized objects
coupled to the magnetic excitation of an antiferromagnet.

Our work is motivated by the optical study by Cooper
et al. of Nd2Cu04 „, LazCu04+, and YBa2Cu306+
They found a broad relatively strong absorption at
co-0.7 eV, which was interpreted as the ionizing transi-
tion of a localized state with a binding energy E~-0.7
eV, consistent with the previous theoretical calculation
and a relatively sharp but weak absorption feature near
co=0.2 eV, which was interpreted as due to the excited
states of the impurity broadened by interaction with oth-
er degrees of freedom in the crystal (such as spin waves).

In this paper we study theoretically the optical conduc-
tivity of a localized spin- —, carrier in an antiferromagnet.
In Sec. II, we introduce the model Hamiltonian and dis-
tinguish the difFerent regimes. In Sec. III, we analyze the
model of a strongly localized carrier interacting with spin
waves in some detail. In Sec. IV, we show that although

this model can explain the high-energy (co-0.7 eV) be-
havior, it does not provide a plausible explanation for the
principal low-energy feature because it yields a much
smaller oscillator strength, a higher peak frequency, and
a less dramatic temperature dependence than is ob-
served. It is possible that the model may account for a
secondary low-energy feature observed in some samples.
In Sec. IV, we also discuss the alternative case of a car-
rier only weakly bound to an impurity and show that this
interpretation also does not provide a satisfactory
description of the optical data. Section V is a conclusion
and discussion of alternative possible explanations.

II. MODEL

A. Qualitative considerations

We consider a bipartite lattice of sites. On each site
but one there is an S =

—,
' local moment. On the remain-

ing site there is a mobile carrier but no local moment.
The amplitude for the carrier to hop from site to site is t;
the local moments are coupled via an antiferromagnetic
Heisenberg exchange J &(t. In addition we assume a lo-
cal potential V which lowers the energy of a few sites rel-
ative to the others, and we assume that V is symmetric
under the operation of interchanging the two sublattices
of the bipartite lattice.

In the lightly doped high-T, parent compounds the lat-
tice consists of the Cu sites of one of the Cu02 planes.
The mobile carrier is either an electron residing predom-
inantly on a Cu site, as in the case of the "electron-
doped" system NdzCu04, or a hole residing predom-
inantly on planar oxygen sites, as in the case of hole-
doped materials such as La2 Sr Cu04 or
YBazCu306+ . En the Nd2CuO~ material ( on which
we focus in this paper), the dopant electron is provided
by an out-of-plane oxygen vacancy which, because it sits
underneath the center of a planar Cu—Cu bond, has the
symmetry under sublattice interchange assumed above.
(In YBa2Cu306+„and La2 Si Cu04 the impurity po-
tential also has the sublattice symmetry. )

The parameter values t =0.5 eV for the carrier hop-
ping and 5=0. 1 eV for the magnetic exchange are by
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now well established ' for the Cu02 materials. The
strength of the impurity potential is not as clear. A naive
estimate, Vc,„&

=e /er, using the measured high-
frequency dielectric constant v=5 and setting r equal to
the distance between the impurity and the Cu02 plane
yields a very high value -5 eV. A theoretical calcula-
tion found a binding energy Ez of order 0.5-1.0 eV, and
a small bound-state radius of order 1 —2 lattice constants.
This conclusion depends strongly on the dielectric con-
stant used. However, optical measurements on nominally
pure samples reveal a very large low-frequency dielectric
constant: for uniform (q =0) electric fields parallel to the
CuOz plane at co less than the phonon frequency values
e. -30 have been reported; these large values of c suggest
that the high-T, materials are very polarizable at low fre-
quencies. In the Cu02 planes the oxygen is supposed to
have a substantial amplitude to be in the highly polariz-
able 0 configuration. The large polarizability could
lead to a strong screening of the impurity potential and
thus to a dramatic reduction in the binding energy.
However, computation of the binding energy requires
knowledge of the static (co=0) dielectric function on
length scales comparable to the size of a unit cell for elec-
tric fields with a substantial out-of-plane component. To
our knowledge this has not been reliably calculated or
measured. Unfortunately, experimental evidence for or
against the strong binding case is also ambiguous. On the
one hand, optical absorption measurements on lightly
doped cuprates, reproduced in Fig. 1, reveal a strong
feature at co=0.7 eV which has been interpreted as the
unbinding of the bound state with the binding energy
consistent with theoretical predictions. On the other
hand, transport measurements ' on lightly doped sam-
ples indicate a rapid temperature dependence of the con-
ductivity combined with a reasonably large room-
temperature value. Analysis of these in terms of a vari-
able range hopping model suggests a rather low binding
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energy E& &0. 1 eV. The latter conclusion may not be
definitive for two reasons. One is that the dopant density
in the samples studied is high enough that impurity band-

ing effects may be important. In this case the apparent
binding energy would be the property of the impurity
band and would not simply be related to the binding en-

ergy of an ion on an isolated impurity. Another more
subtle possibility involves a "Franck-Condon" effect
which could lead to drastically different low- and high-
frequency responses, (i.e., thermally activated hopping
conductivity and optical conductivity, respectively) due
to the coupling to a highly polarizable lattice. '

In any event, it seems to us that the situation is
sufficiently unclear that a further examination of the ex-
perimental consequences of both the weakly bound and
the strongly bound models is warranted. We therefore
discuss the optical conductivity due to a single carrier
which may be weakly (Ez((t) or strongly (Ez~t)
bound to an impurity site, and compare the results to the
data. In the weak binding case the impurity potential is
almost irrelevant, and we may determine the optical con-
ductivity by suitable modification of known results for
the t-J model. In the strong binding case, a more de-
tailed calculation is required. We will show that in the
strong binding case there are interesting lower-energy
features associated with carrier-spin interactions in addi-
tion to the absorption feature occurring at a frequency
comparable to the binding energy E~. Proper treatment
of these in the strong binding limit requires a model
Hamiltonian which we derive in Sec. II B.

B. Model Hamiltonian for the strong binding ease

We now consider the strong binding symmetric case in
more detail. It is useful to consider first the simplifying
limit where the impurity potential is so strong that the lo-
calized carrier is confined to two sites (see Fig. 2). In this
simple model the impurity is described by four states,
which we may label by the site on which the carrier sits
and the spin of the local moment on the other site. The
four states of the impurity are mixed by the hopping ma-
trix element, t, which moves the hole from one site to the
other, and by the exchange coupling J which connects
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FIG. 1. Optical absorption vs energy for lightly doped insu-
lating Nd2Cu04 ~ with y-0.035, from Ref. 6. The feature EI
has been interpreted as arising from the ionization of a defect
state, while the feature EJ and the weak feature which may exist
at E~ may be due to excitation of internal degrees of freedom of
the defect.

FIG. 2. Model for strongly bound carrier interacting with

spins. The carrier is assumed bound by an impurity potential
(not shown) to the two sites circled with the dotted line. The
carrier may hop from one site to the other via a matrix element,
t. On the site not occupied by the carrier resides a spin. This
spin couples to the three nearest-neighbor spins of the antifer-
rornagnet via a Heisenberg coupling, J.
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the impurity spin to the neighboring spins in the lattice.
In the high-T, systems t(-0.5 eV) & J(-0.12 eV). In
the limit J =0, the t term splits the states into two doubly
degenerate (because of spin) pairs: bonding, even under
sublattice interchange, and antibonding, odd under sub-
lattice interchange. Bonding and antibonding states are
split by an energy of order t. Discussion of the magnetic
effects occurring for nonzero J requires a model for the
magnetic properties of the background lattice. We as-
sume two sublattice Neel antiferromagnetic order, with
the ordered moment p oriented in the +z direction and
assume that the excitations are described by linear-spin-
wave theory. The coupling to the static moments of the
Neel order distorts the wave functions, so that, e.g. , in
what was previously the spatially symmetric bonding
spin-up state, the spin acquires an extra amplitude (of or-
der J/r) to be on the up sublattice, etc. The twofold de-
generacy of the ground state is preserved because the
Neel state is invariant under the combination of sublat-
tice interchange and time reversal which flips a11 spins.
However, the impurity degrees of freedom are also cou-
pled to the spin-wave excitations; this leads to a nontrivi-
al interacting problem.

The effective Hamiltonian corresponding to the strong
impurity binding limit depicted in Fig. 2 is derived in Ap-

pendix A, and appears in Eq. (2.1). It is clear on physical
grounds that in the more general situation of binding en-
ergy large compared to J but not necessarily large com-
pared to t, one must obtain a very similar Hamiltonian,
with a ground state which is (in the absence of magnetic
coupling) symmetric under sublattice interchange, one or
more excited states (which may, in fact, be delocalized)
including at least one which is odd under sublattice inter-
change (in the absence of magnetic coupling), and there-
fore is optically active. The form of the coupling to the
spin-wave excitations is determined by symmetry and
thus will be the same as that found in the simplified mod-
el but with coefficients which may differ by numerical fac-
tors. In Eq. (2.1) cb (c, ) creates a bonding (antibond-
ing) state of spin 0, ak and Pk are the usual Holstein-
Primakoff spin-wave operators creating magnons of ener-

gy cok, and Mk and Nk are the form factors. In the long-
wavelength limit Mk Qc-ok and Nk —1/Qcok, and the
terms involving Mk and Nk correspond to fluctuations of
the uniform and staggered magnetization, respectively.
The energy 6 gives the splitting between bonding and an-
tibonding states and is of order t. g„g2, and g3 are cou-
pling constants with g~ and g3 of order J and g2 of order
J /t. Precise values of the various parameters in the limit
of strong binding are derived in Appendix A. We have

H —26 g (C~OCg~ Cb~cb~)+g& (Cbtcbt+C tcag$) g (Mkak+Mk pk )+H.c.

+gz (c,&cb( c&&c,() g—(Mkak+MI, 'Pk)+H. c. +g3
k

(c, tcb(+cbgc, t) g (Nkak Nk/3k)+H—.c.
k

(2.1)

We represent the applied electric field by a vector po-
tential, A —=p, .A„defined as the component of the elec-
tromagnetic vector potential along the bond direction p
of the localized impurity state. The coupling H~ of the
carrier to the field may be derived similarly and is

H„=iefA g(c, cb —
cb c, ) . (2.2)

The optical coupling constant f is of order the hopping t
and e is the electric charge.

The Hamiltonian, Eq. (2.1}, describes an electron
which may be in one of two orbital states (b or a) and one
of two spin states (up or down), interacting with mag-
nons. There are two types of electron-magnon interac-
tions: the "g," processes in which the spin is flipped but
the orbital state is not changed, and the g2 3 processes, in
which both the spin and the orbital state are changed.
Because exciting the electron from a b to an a state in-
volves an energy cost of order t &)g2 3, it is reasonable
when studying low-energy properties to neglect the g2 3

processes. The effects of g2 3 are considered in Sec. III
and Appendix B. The g& term leads to a "localized-spin-
polaron" effects in which the presence of the localized
spin leads to a distortion of the Neel order while the cou-
pling to spin excitations means that the local spin is not
an eigenstate of o, Determining the effects of the g&
term is difficult because the formal perturbation expan-
sion in g, is really an expansion in (g, gqcoi, }which is of

I

order 1 because the only dimensionful parameter in the
low-energy theory is J. We hope to give a detailed ac-
count of the low-energy spin dynamics elsewhere. For
the optical conductivity the relevant quantity is the
Green's function Gb (t)=(TIcb (t)cb (0)}), which is
essentially the probability of finding the electron in spin
state o. at time t if it was known to be in spin state o at
time 0. For g, =0 the probability is 1, which means that
the spectral function A (co) = ImG (co) [where
G (co ) = Idt e ' 'G (t) ] takes the simple form
A (co)=5(co). We analyze the effect of a nonzero g& via
the "noncrossing approximation, " which amounts to
summing the diagrams shown in Fig. 3 and which we be-
lieve gives qualitatively correct results if the effective in-
teraction is not too large. Within this approximation the
interaction correction to the spectral function electron-
magnon interactions may be parametrized by the quanti-
ty A, =g f g„~M„~ /co„. By summing the diagrams shown
in Fig. 3 we find, as one would expect, at T=O the
strength of the 5 function is reduced to 1/(1+ A. /2m ) and
the weight is redistributed to higher frequencies. The ex-
istence of a 5-function peak" in A (co) will be important
for our calculation of the optical conductivity. For T & 0
we find the 6 function is broadened, in such a way that,
for co ( r ) (co (T,
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One may derive an expression for co by using arguments
very similar to the standard derivation of the f-sum rule:
one finds an operator Q such that the commutator of Q
and the Hamiltonian H reproduces the current operator
given by the coefficient of A in Eq. (2.2). In the present
case

FIG. 3. Feynman diagram for the impurity self-energy. The
wiggly line denotes a magnon, the solid line the impurity propa-
gator, and the dot denotes the vertex g&Mk. The arrow denotes
the direction of the impurity spin.

and for to (to'( T),

A/2 T
(1+A, /2n. ) to'( T)

with the cutoff to'( T) such that

Q= g(c~ cb +cb~c )+0ef t t g
ao o.

It is then a matter of simple algebra to show that

q' =( IQ, HI, Q )

g ((cd cb —ct c, ))+0

(3.2)

(3.3)

lim I A(co, T)=T 1

Typical results for A (co) within this approximation are
shown in Fig. 4.

III. OPTICAL CONDUCTIVITY:
STRONGLY BOUND LIMIT

We may compute the conductivity by applying the
standard linear response theory to the Hamiltonian (2.1).
It is clear that the 1argest contribution to the calculated
conductivity comes from processes in which the electron
is transferred from a b state to an a state. The precise
functional form of this contribution cannot be reliably
calculated at this point since it requires detailed informa-
tion about the "a" states. It is, however, useful to esti-
mate the total optical spectral weight, co, which is
defined in terms of the real part, 0.

&, of the optical con-
ductivity, as

top =8J cr)(co)de . (3.1) H', =g, cbtcb( g (Mkak ™k'p„}+H.c.
k

+ g ~k«kctk+13k13k) .
k

(3.4)

It is clear that the expectation value is [1—0(g /6 )],
and thus the total spectral weight is of order t. It is also
clear that although most of the total spectral weight will

occur at frequencies of order 6, some spectral weight will

exist at lower frequencies because the terms proportional
to g2 and g3 in the Hamiltonian, Eq. (2.1},mean that pro-
cesses are possible in which the particle is excited from
the b to a state and then goes back to the b state of oppo-
site spin by emitting a magnon. Because the coupling
constants gz and g3 are of order J and the process in-

volves a virtual state with an energy of order 6, it is
reasonable to study these processes via perturbation
theory in gz 3/b, . The most efficient way to implement
this perturbation theory is via a canonical transformation
which perturbatively eliminates the terms mixing the a
and b states in Eq. (2.1). The details of the perturbation
theory are given in Appendix 8; the resulting Hamiltoni-
an, H'„restricted to the manifold of "bonding" states,
may be written, to leading order in gp g3/6,

3
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with the effective current operator Jk given by

Jk Qk(~k +~k }cb tcb i

and

(3.5a)

(3.5b)

The coupling of the electric field to the low-energy mani-
fold is

0
—1 —0.5

I ea
I

I i i i i I

0 0.5 1.0
g 2~k g 3~k +k

g2
(3.5c)

FIG. 4. Impurity spectral function calculated from the dia-
gram shown in Fig. 3, for several temperatures, T, for coupling
constant A, =1.0. The behavior at zero temperature is a 6 func-
tion at co=0 followed by an essentially co-independent back-
ground. For T & 0 the behavior for co ~ T is —T/co, cut off at a
very low frequency (not shown) in such a way that the total area
is T independent.

The effective Hamiltonian shows that the process in
which an electron in the b orbital flips its spin and emits a
magnon is optically allowed, although the matrix element
is rather small, of order (J/t ), because g2 -J /t while
both g3 and &ok-J. We have verified that g3, i.e., the
coupling to the staggered magnetization, occurs only in
the combination g3cok also in the next order of perturba-
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Because the Hamiltonian, (3.4) cannot be solved exactly
one must compute o, by a formal perturbation expansion
in g&, as we did for the spectral function in Sec. II. We
believe that the leading-order diagram, shown in Fig. 5(a)
gives a qualitatively correct result. We have shown that
one particular set of corrections [shown in Fig. 5(b)] may
be summed to infinite order in g, without changing the
results in any essential way, and that other diagrams
[such as those in Fig. 5(c)] vanish in low orders in pertur-
bation theory.

The diagram shown in Fig. 5(a) may be easily evalu-
ated. At T=0, it gives

2 2

~1(~)= y ~ Qk ~'~(~ —~k ) .
k

(3.7)

The result, Eq. (3.7), is clearly proportional to
p(~) =gk5(co —

cok ), the magnon density of states at fre-
quency co. Note that as co~Oboth Qk and p(co) vanish as
co, leading to 0,(co)-co as co~0. Note also that as co ap-
proaches the magnon zone boundary co, the magnon
density of states diverges as

p(co) —[(a)—co )' 1n(co —co)]

tion theory. We suspect that this is general, i.e., that the
effective Hamiltonian for low-energy optical absorption
has an expansion in powers of ( J/t) . In the rest of this
paper we consider only the leading-order Hamiltonians
(3.4) and (3.5).

The optical conductivity can be calculated from the
Kubo formula. The real part of the conductivity o, (co) is
given by

2 2

o,(co)= Im J dt e' ' '

g Jk(t), g Jk (0)
CO 0 k' k'

(3.6)

Thus Eq. (3.7) predicts very small absorption at low fre-
quencies and a divergence at co =co . Expression (3.7) for
o (co ) is essentially the Fermi Golden Rule for the H „'

[Eq. (3.5a)] process, and thus corresponds to the joint
density of states of the impurity and the emitted magnon.

The g& processes do not regularize the divergence of
o(co) at co=co . However, the perturbative derivation of
the effective Hamiltonian [(3.4) and (3.5a)] requires

'g 3p(co) « 1, which is violated for
~(co —co )/co

~
& (J/t), when the self-energy correction

for the excited impurity state, a, cannot be neglected.
Thus, we expect the divergence to be cutoff on that scale
and the magnitude of 0.

&
to saturate at the value of order

J/t. Note that the integrated low-energy spectral weight

is f 0 dcoo', (co) 0(-J /t ) (coL =co ) and that the

weight is concentrated near the co =m feature.
We now consider the temperature dependence of 0 (co)

within the framework of the effective Hamiltonian. The
conductivity will have temperature dependence because,
as discussed in the previous section, the impurity spectral
function has temperature dependence. In particular, for
T & 0, the impurity is no longer in a definite spin state, so
the 5-function contribution to the impurity spectral func-
tion is broadened, and the divergence o. due to the zone-
boundary magnon emission is washed out at T & 0 by g,
processes. We have studied this effect quantitatively by
calculating the diagrams in Figs. 5(a) and 5(b) at finite
temperature. We find that the T dependence of the opti-
cal absorption is very weak except near the peak at
co =co; in the range (co —co ) & T, the conductivity
varies at T '; again for T/co &(J/b, ) we expect this
temperature dependence to saturate.

Thus, to summarize, we have argued that the carrier-
spin mechanism leads to low-frequency absorption spread
over a frequency scale coL of order several times co ', the

total spectral weight f 0 dc@ 0 (co)-J3/t2 and there is a

pronounced, T-dependent peak at co . Results of calcu-
lations at different temperatures are shown in Fig. 6.

IV. COMPARISON WITH EXPERIMENT
AND DISCUSSION

Let us now compare the expected behavior of 0 (~) for
a tightly localized carrier coupled to antiferromagnetic

0.3—

0.25—

(c 3
0.15—0

0.1—

FKx. 5. Feynman diagrams used in the calculation of optical
absorbtivity. The wiggly lines denote magnons, the triangular
vertex is the optical matrix element of Eq. (3.5), and thin and
thick solid 1ines denote impurity propagators with and without
the self-energy calculated from the diagram in Fig. 3. The ver-

tex corrections shown in (c) vanish.

0.05—

0.5 1.0
0)/O)rf,

1.5 2.0

FIG. 6. Low-frequency optical conductivity calculated as de-

scribed in the text for X =0.4 and T/co =
—,'6 (a), —,

' (b), 1 (c).



46 THEORY OF OPTICAL ABSORPTION BY A LOCALIZED. . . 14 839

(AFM) spin waves to the existing optical data on weakly
doped AFM insulators. The results of the previous sec-
tion can be summarized by stating that the localized im-
purity absorption spectrum consists of {1)a broad feature
at c0=0(t), with total spectra weight O(t), correspond-
ing to (damped) resonant transitions from the ground
state to the optically active excited states, (2) a low-
energy absorption peak at co=co, which is strongly
asymmetric and carries O(J /t ) fraction of the total
spectral weight. The latter feature corresponds to the
AFM zone-boundary magnon emission. While it is
tempting to identify it with the observed main low-energy
peak "J"shown in Fig. 1, the zone-boundary magnon en-

ergy is known from the neutron-scattering experiments'
to be at co =0.32 eV, which is too high to be consistent
with the feature J at -0.2 eV. Furthermore, the spectral
weight of the observed "J"feature is significantly larger
than predicted for the one-magnon process. The low-
energy absorption feature we have calculated is more
consistent with the weak absorption feature "E" ob-
served at low T in some samples.

The failure of our simple model to explain the low-
energy absorption peak "J"requires that the alternatives
be considered. In particular, one may inquire into the
relevance of the tightly bound carrier limit. Let us first
consider the effect of a somewhat weaker impurity poten-
tial Es -0 (t). In that case the carrier wave function will

extend to many nearby sites forming, because of the
background AFM correlation, a Brinkman-Rice "string"
state. ' The internal excitations of the string are on the
scale J ~ t'~, which is lower than the naive 0{t)
bonding-antibonding splitting for the tightly localized
state. Thus, the resonant absorption for the carrier weak-
ly localized in a string state would shift to a somewhat
lower-energy scale compared with the strong localization
case. On the other hand, the coupling of the carrier
states to spin excitations, being governed by the same
symmetry considerations (i.e., invariance under time re-
versal and sublattice interchange), remains essentially the
same [i.e., governed by H, fc similar to that of Eq. (2.1)];
hence, so are our conclusions about the low-energy part
of cr(co)

Let us now discuss the weak binding limit where the
binding energy E~ &&J as proposed by Preyer et al. In
this impurity binding effects weak perturbation to the ab-
sorption to be that of a delocalized carrier, at least for
co & Ez. The band structure of a carrier in an AFM has
been intensively studied' ' and is known to consist of
disjoint anisotropic valleys near the k =(+m. /2, +n. /2)
points in the Brillouin zone with bandwidth of 0 (J). The
optical conductivity has been studied by many au-
thors. ' ' The quasiparticle' spectral weight is O(J/t),
leading to the corresponding Drude term in cr(co) with
the spectral weight O(J) per carrier' corresponding to
the O(t/J) quasiparticle mass enhancement. Since the
total spectral weight is of O(t), most of it is accounted
for by the transitions to the excited "string" states
represented by the incoherent part of the carrier spectral
function. For cu& J ~ t'~, o(co) should be reasonably
well described by the Brinkman-Rice approximation pre-
dicting' o(co) —tee ' (for large co). One also expects a

feature at co=J t' corresponding to the lowest opti-
cally active "string" excited state. Now it seems reason-
able to assume that for co)J)Ez the impurity potential
only weakly perturbs the results. Thus, for m) 0.2 eV we
would expect a conductivity which monotonically de-
creases with increasing co. In fact, as can be seen in Fig.
1, the observed conductivity increases with increasing co

for 0.2&~ &0.7 eV. For this reason we do not believe
the weakly bound impurity model can account for the
data.

V. CONCLUSION

We have presented a theoretical study of the optical
absorption spectrum of a carrier bound to a defect poten-
tial in an insulating antiferromagnet. We concentrated
on the case of a carrier strongly bound (Eb »J) by a po-
tential which is symmetric under the interchange of the
two sublattices of the antiferromagnetic. We showed that
in this case the process in which the localized carrier Hips
its spin and emits a magnon is optically allowed and gives
rise to low-frequency optical absorption strongly peaked
at the zone boundary peaked at the zone-boundary mag-
non energy, cu . We estimated the magnitude, functional
form, and temperature dependence of this absorption.
However, we found that the peak position, temperature
dependence, and spectral weight of the theoretically pre-
dicted feature were not consistent with the low-energy
feature observed in optical experiments on very lightly
doped high-T, materials. We also argued that the alter-
native model of a weakly bound carrier (Eb (J) led to a
high-frequency (c0&J) conductivity very similar to that
of one hole in a defect-free antiferromagnet. Known re-
sults from this problem are also inconsistent with the op-
tical data.

A radically different possibility is that the peak at EJ is
due to the electron-phonon interaction. Because the
stoichiometric insulating cuprates are ionic crystals, one
may expect the electron-phonon interaction G,& h to be
strong. One may write a Hamiltonian describing the cou-
pling of the localized electron to the phonon field; it has a
form very similar to that of Eq. (2.1), with the important
difference being that the electron-phonon coupling G,& pQ

is not of order co h but is instead given by the geometric
mean of an electronic energy and a phonon energy. We
estimate G„~h +tco~h, a-lthough it is possible that in-
stead of t one should use an even larger value set by the
Coulomb interaction at an interatomic distance. The
much larger value of G,mph means that one must go
beyond the self-consistent one-boson-exchange approxi-
mation employed in this paper. We believe the physics of
this model would be that of a small polaron localized to
two lattice sites, and suggest that it may explain the ob-
served peak at EJ. We will present a more detailed study
in a subsequent paper.
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APPENDIX A

In this appendix we derive the effective Hamiltonian
governing the coupling of a strongly bound carrier to the
ordered moment and spin-wave excitations of a two-
sublattice Neel antiferromagnet. We assume the impuri-
ty potential which binds the carrier is symmetric under
the interchange of the two sublattices of the antifer-
romagnet. In the presence of even a short-range AFM
correlation it is convenient to double the unit cell and ex-
plicitly introduce sublattice indices A, B. One is then
naturally let to consider four carrier states labeled by the
z component of the spin, o.=+1, and the sublattice index
a= A, B: la, cr &. Since the carrier hopping matrix ele-
ment, t, mixes A, B sublattice states, one immediately ex-
pect to find a "bonding" to "antibonding" energy gap
-0(t) separating states even and odd under the A~B
interchange. The nonvanishing value of the staggered
magnetization,

1 3JOcosO= —+
2

(A2b)

If we now transform into the new basis, the coupling be-
tween the impurity spin and the fluctuating part of the
magnetic degrees of freedom of the crystal, takes the
form of the Hamiltonian (2.1) with

g, =
—,'J srn20,

gz =
—,
' J cos20,

(A3a}

(A3b)

(A3c)

and

with bonding-antibonding splitting 6 and mixing angle 0
given by

(A2a)

n=(n&= y s, —y s, ~o,
2N ie ~ ice

M/, =(R«/, )(coshQ/, —sinhQ/, )

+i (Imk. „)(coshQk + sinhQk ),
(A4a)

breaks parity (reflection on bonds} and makes the
bonding-antibonding wave functions asymmetric, with
charge distribution dependent on the spin. However, the
combined operation of the sublattice interchange and
time reversal, which flips all spins, not only commutes
with the Hamiltonian but also leaves the Neel ground
state invariant. This leads to Kramer's degeneracy: the
four states under consideration form two doublets, which
we denote as lv, o & with v=1 referring to the ground
("bonding") state and v=2 to the excited ("antibonding")
state and 0. being the eigenvalue of spin along the direc-
tion of staggered magnetization, A.

We may explicitly derive the Hamiltonian for the sim-
ple model shown in Fig. 2. Here the impurity potential is
assumed to be so strong that it localizes the carrier onto
one of the two sites surrounded by the dotted line. On
the site not occupied by the carrier a spin resides. The
defect has four states, which we label by the site on which
the spin resides and the direction of the spin, thus we
have states lb&&, lb'&, la)&, lal&. These states are
coupled by the hopping matrix element t and by the
Heisenberg interaction between the spin on site A or B
and the spins on the three nearest neighbors of that site.
We treat the magnetic degrees of freedom on the remain-
ing sites in the crystal within the linearized spin-wave ap-
proximation, ' and we neglect the effect of the impurity
on the spin-wave spectrum. We treat exactly the part of
the Hamiltonian involving the hopping and the coupling
to the Neel order parameter. We retain the leading-order
spin-wave operators as a perturbation. Neglecting at first
the spin-wave operators, we diagonalize the remaining
terms, obtaining the four states lb 1' &, lb' &, la 1' &, la 1 &

which are related to the original states via

b, 1 &
= cosOl ~, 1 & +sinOlB, 1' &,

lb, 1 &
= —sinOl A, 1 &

—cosOlB, l &,

la, I & =sinOl A, 1 &
—cosO B, 1 &,

la, J, &
= —cosOl 3 l & +sinOIB l &,

N k=ReA (/c sohQ / +sinhQk )

+i (Imi, k )(coshQk —sinhQk )
(A4b)

with (the sites i, are the three nearest neighbors of im-

purity site 1)

A,„=ge (A5)

and coshQk is related to the spin-wave energy cok via

cosh2Qk —1/a/k . (A6)

APPENDIX B

In this appendix we give details of the canonical trans-
formation leading from (2.1) to (3.4) and (3.5a). We write

the Hamiltonian, H, of Eq. (2.1) in the form

H =Ho+H

where Ho includes the terms proportional to 6 and g&

We emphasize that while the above construction be-
comes exact for the carrier localized on two sites and
coupled to the background by spin exchange, it should be
thought of in a more general context, with states
lb(a), o & representing approximate Brinkman-Rice
"string" states' which allow for carrier excursions away
from a given site, and lead to renormalization of the hop-
ping (and the current) matrix elements. Also, in general
the dipole moment will be distributed among a number of
excited states, which should then be included. A practi-
cal computational scheme consists of picking a small

cluster containing the carrier and the localizing potential.
One can then diagonalize the cluster Hamiltonian in the
presence of the frozen external staggered field. Evaluat-

ing the matrix elements of the charge current and spin
exchange for the cluster eigenstates, one will arrive at the
effective Hamiltonian describing the coupling of the clus-

ter states with the environment.
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which do not mix the b and a states and H includes the

gp 3 terms which do Inix the states. We seek a canonical
transformation, iS, such that

After substituting (B4) and (B3) we find

H'=e' He (B2)
hgqMk +cOkg 3%k

Uk= 2 2 7

CO k

(B5a)

does not mix A and 8 states. We construct this transfor-
mation perturbatively in gz 3/A. Thus, we require

[iS,Ho] = H—

We write

(B3)
Nkg~Mk +dkg3Mk

Vk=
6)k

(Bsb)

tS='—g (c, tbt +c&tc, t ) Uk(ak+pk )
k

+(c,test cbt—c, 1 ) Vk(at, —
pk )

—H. c.
(B4)

Once Uk and Vk are determined we may compute the
transformation of the vector potential term by evaluating
e' H„e ' with H„given by Eq. (2.2); the result is Eq.
(3.5a).
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