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%e present an exact formulation of the single-particle Greens functions for the two-dimensional

three-band Hubbard model of the Cu02 lattice based on a projection-operator formalism of Mori. The

model is general and incorporates the various known local-density-approximation (LDA) interaction pa-

rameters. In this paper we present only the mean-field results. The inclusion of self-energy effects will

be presented elsewhere. Already, in the mean-fie1d approximation, we find that properties such as hole

occupations and magnetic moments compare remarkably well with those from quantum Monte Carlo

(MC) calculations. The densities of states are also calculated for various hole dopings, again using the

parameters from the LDA calculations. Finally the detailed effect of hopping between different 0 p or-

bitals, are also presented.

I. INTRODUCTION

The two-dimensional (2D) single-band Hubbard Hamil-
tonian' has been widely studied as a model for the high-

T, superconductors. Various theoretical techniques have
been used to solve for its dynamics, including the exact
diagonalization of small clusters, quantum Monte Carlo
(MC) simulations, and various mean-field (MF) treat-
ments. However, not all electronic interactions exist-
ing in the Cu02 plane can be easily incorporated into the
single-band framework. Therefore, to gain a better un-
derstanding of the effects caused by the interactions be-
tween the Cu and 0 system, as well as the hopping be-
tween 0 p orbitals, it is necessary to study a more realis-
tic model. In this paper we concentrate on the Cu02 lat-
tice which is formulated in terms of the three-band Hub-
bard model.

In the three-band Hubbard model, each unit cell con-
tains one Cu d 2 2 orbital and its two neighboring 0 px —y
and p orbitals. The hybridizations between near-
neighbor Cu and 0 atoms as well as that between near-
neighbor 0 atoms are considered. The on-site Coulomb
repulsions between any two holes in the same Cu d and 0
p states with opposite spins are also taken into account.
Finally the near-neighbor intersite repulsion between the
Cu and 0 atoms is also included. The resulting model
Hamiltonian is written explicitly in Sec. II. This model
has been extensively studied using quantum Monte Carlo
techniques' ' " and various mean-field formalisms. ' '
However, because of the large number of interactions in-

volved, it is common to ignore certain energy parameters
in MC calculations, and complicated coupled equations
have to be solved self-consistently in MF approximations.

Previously, we presented a Mori-projection-operator-
based mean-field (POMF) calculation of the single-band
Hubbard model' which yielded a systematic improve-
ment over the Hubbard-I approximation and our results
compared well with that of MC calculations and that of a
particular form of slave-boson theory ' (SBMF). An im-

portant advantage of the POMF formulation from the
SBMF is that one does not separate the spin and charge
degrees of freedom of the hole, which results in fewer
coupled equations to be solved. This allows us to apply
the POMF formalism to the multiband Hubbard model
straightforwardly without much additional computation-
al effort. As a test of the method, the hole occupation
numbers on Cu and 0 sites as well as the magnetic mo-
ments have been calculated for some model parameters,
and remarkable agreement with available MC results are
obtained. The effect of the hybridization between two
neighboring 0 atoms, designated by hopping energy t
has also been studied. Here there are no MC results
available. We find that t suppresses the hole number
and magnetic moment on Cu sites as expected. This will

be discussed in detail in Sec. III. We have also calculated
the Cu and 0 hole density of states (DOS) for various
band fillings and for both antiferromagnetic (AF) and
paramagnetic states, using the energy parameters ob-
tained from local-density-approximation (LDA) calcula-
tions. We find that our DOS are distinctly different from

46 14 785 1992 The American Physical Society



14 786 FEDRO, ZHOU, LEUNG, HARMON, AND SINHA 46

that in the Hubbard-I approximation, but resembles that
obtained from the SBMF theory.

The paper is organized as follows: The formalism of
the POMF theory is outlined in Sec. II and the detailed
derivation is given in the Appendix. Section III contains
the calculations and results for various electronic proper-
ties. The conclusions are presented in Sec. IV.

II. PRO JECTIQN-OPERATOR FORMALISM

In this paper we present a projection operator method
for determining the needed Green's functions. We are in-
terested in the general Hamiltonian used in the theory of
the 2D CuOz lattice which can be written in hole nota-
tion as follows:

HEd +nj+U„„gn, +n, +Ep+nj+ i /2 +Upp+nj + i /2 +nj+ i /i
J, o' J J, A. , o J, A.

+ Udp g nj an/+a)/2 a, tdp
—g [d, a(Jy/+ax/p, a Jyj+ay/2 a)+H. c. ]

Jt a) ~~o to
I j,a, o

+ tpp g [(pj +x/2, a jyj x/2, a pj +y/2, a pj —y/2 a +H. c. ]

where A, =x,y and a=+. Here the Cu d-hole operator
for site j and spin o is given b~ d with the correspond-
ing number operator nj dj dj The oxygen p-hole
operators surrounding the jth Cu site are defined by

p + &/2 with the corresponding number operators given
by

j+aA. /2, o +j+ak, /2, o.~j+aA, /2, o

c.d and cp are the on-site Cu and 0 energies, Udd and Upp
are the corresponding on-site Coulomb repulsions, and
Ud is the near-neighbor Cu-0 repulsion. td is the near-
neighbor Cu-0 hopping matrix element and t the 0-0
near-neighbor hopping matrix element. The orbital sign
convention is such both tdp and tpp & 0 The space lattice
is defined to be that of the Cu's, i.e., a 2D square lattice
of spacing a. The four surrounding oxygens are then at a
distance a/2 from the central Cu atom. The LDA num-
bers for the parameters are given by'

„=4.0 eV, U„,=1.2 eV,

tdp=1. 3 eV, t =0.65 eV, c=c —cd=3.6 eV .

etc. , where we define

a
njv —o

jv —u~ A +
C

1 —n, a= (4b)

where f,, (t ) are the ordinary Heisenberg operators

fa (t ) eiBtf a e
—iHt fa (0) fa— (6a)

etc. , and the grand canonical average, ( . . . ), is defined
in the usual way

( ) = Tre ~
( )/Tre ~, P '=k&T, (6b)

where T is the temperature. To solve for these Green's
functions we introduce the projection operator P =P as
follows:

PX= f,', -([f,'. ,x) )/(

Then the needed retarded Green's functions Gg, j.„. (t).
are formed as follows:

G,„,„(t)= . it, [—f;, (t),f,"„t ]+), t &0,

In this paper we will focus on comparisons to the avail-
able MC results as well as to other MF calculations
where Udp is generally set to zero. If Udp =0, the multi-
band Hamiltonian in Eq. (l) has the general form

which has the property that, for all j,v, o., o.,

Pfat —fat (l P)fat 0

(7a)

(7b)

H —g e,n,„+g U„,n +n, ,
Jyv)O J, V

IJ,J,v, v, o

c- c'j v j,v jvo. jva

a a j'a
jvo jv tJCj vtJ& Cj vcr ~ ~ j vo (4a)

where j denotes the unit-cell position, and v denotes the
atoms in the unit cell. In this framework one can easily
incorporate possible AF order. The hopping matrix ele-
ments are real and satisfy t . - =t' . with t . =0.
The site number operators are defined by n =c c-
c are the single level energies and U the on-site repul-
sions. We now separate the pure Fermi excitation opera-
tors c into two operators f (as done in the original
work of Hubbard), with e =+ as follows:

iG,„,„(t=0.) =. '5,,'5 6 (Sb)

This will yield equations of motion for the Green's func-
tions with a Hermitian dynamical matrix. For arbitrary
function A, its Laplace and spatial transforms are defined

by

/t, ., (co)= I dt e'"'A....' .(t),
M —CO+ l 0

Since the projections defined in Eq. (7) involve the aver-
tl

ages, ( n „,. - ), it is convenient to write the equations
of motion for the rescaled Green's functions defined as

G (t) =((n . . j(nj ) ) G& j(t), (&a). .

where, by construction,
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and III. MEAN-FIELD RESULTS

ik(j —j ')
jv;j'v'= X kvv' ~

k
(9b)

(loa)

where the Hermitian energy matrix is defined by

Ek„„- (co)=5„„5 ~ s, +tk„-( &n„) &n, ))'~'

+aa"[Ak„„- +Mk„. (co)]

x(& „)& „", )) (lob)

and we have assumed that the "n" averages are indepen-
dent of the unit cell. In Eq. (10b),

where N is the number of unit cells.
Using Eqs. (5)—(9) it is found that the exact equations

of motion for the momentum and frequency dependent
Gk (co)'s are (the detailed derivation is given in the Ap-
pendix):

g [co5 „5 Ek„—„(B)]Gk, (t0)=5„5

We have used the projection-operator-based mean-field
formalism presented in the last section to calculate vari-
ous physical properties of the Cu02 lattice and made
comparisons between these results and those of quantum
Monte Carlo simulations and other MF theories. In all
figures shown here, the notations MC, POMF, and
SBMF are used to represent the data points of the Monte
Carlo simulation, the projection-operator mean-field cal-
culations, and the four-boson mean-field theory. We set
Ud =0 throughout our calculations. Unless otherwisedp

specified, the LDA parameters listed in Eq. (2) are used.
P= I /T is the inverse of temperature.

In Fig. 1, the Cu- and 0-site occupation numbers
versus band filling &n ) =&nc„)+2&no) are shown. In
the hole picture, & n ) =1 is the half-filled case. The pa-
rameters used in Fig. 1(a) are td~

= 1, Udd
=6,

s=e. —ed =2, t = U =0, and P=8 where MC results
are available, and there is an excellent agreement between
the POMF and MC results. At half-filling, the hole occu-
pation on the Cu site is much larger than that on the 0

c,=c„+U, 5 + .

The static mean-field corrections hk„- are the spatial
transforms of

1.5

~o 1.0
~g5
a5
Q
O

I
I

a Cu, MC

O O, MC

+ Cu, POMF

0, POMF

Cu, POMF, t(pp)=0. 5

O, POMF, t(pp)=0. 5

t,„,'„-&—n„. &&n„. (12) V
0 05

where L is the Liouville operator defined by L = [H, ]
L, is defined as the commutator with respect to only that
part of H of Eq. (3) which is proportional to the
{t „. ~ -]'s. Finally, the dynamic memory functions,
Mk ~ (to), are the Laplace and spatial transforms of

0.0
0.6

I

0.8
I

1.0
(n)

I

1.2 1.4

M. . ~ - (t)
7

t'& [f„—,Le "" ' (1 .P)Lf ~ „]+)—. (13)

Ek„„-~(co)=EP~~-~ . (14)

In this paper we will focus only on the mean-field re-
sults. Self-energy effects will be included elsewhere.

In the energy matrix of Eq. (10b), if the 6k„- 's and
Mk„„(co)'s are to zero, one gets the Hubbard-I solution.
Notice that the Hubbard-I solution misses these static
and dynamic terms due to the naive truncation in the
original Hubbard paper which essentially treats the "f"
operators as if they were pure fermions. The complicated
statistics of the f 's are automatic. ally handled correctly
when one truncates the equations of motion by using the
projection operator given in Eq. (7), leading to the solu-
tions given in Eq. (10). Finally, the projection-operator
mean-field solution is that generated by setting all the
memory functions Mk „- (co) to zero in Eq. (10), so that
the energies in Eq. (10b) are independent of to:

1.5

O
'Q 1.0
K

Cu o 0 (b)

O

0 5

0.0
0.6

I

o.e
I

1.0
(n)

I

1.2 1.4

FIG. 1. The hole occupation numbers on the Cu site (nc„)
and 0 site ( no ) vs band filling ( n ) = ( n c„)+2( no ) . (a) Both
of the Monte Carlo (Ref. 10) and the projection-operator mean-
field results for t„~=1, U~d =6, e=2, t~~

=
U~~ =0, and P=8 are

shown. Symbols () and 6, are the data points for (nc„) and
(no) with t~~=0. 5. (b) (nc„) and (no) vs (n) using the
LDA parameters listed in Eq. (2).
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site because of the low-lying singly occupied Cu d state.
When the hole doping 5= (n ) —1 gets larger, it is seen
that (nc„) shows little increase and most of the doped
holes go to the 0 site. The opposite happens when there
is electron doping (5 (0). This same observation can be
made if LDA parameters are used and the result is plot-
ted in Fig. 1(b) for p= 10.

To examine the e6'ect of t, we also show the POMF
data in Fig. 1(a) for tz&=0. 5. Due to the hopping of p
electrons, thus the broadening of the 0 p band, there is a
greater portion of p states mixed into the low-lying Cu d
states, resulting in a larger ( no ) and smaller ( nc„) com-

paring with tpp 0 in the half-filled case. With hole dop-
ing, the increase in (no) is not as rapid as when t =0,
nonetheless, most of the doped holes still go to the 0 site.

In Fig. 2, the squared local moment ( m, )
=((nt n&—) ) on the Cu site versus Udd [Fig. 2(a)] and
versus e [Fig. 2(b)] at half-filling is shown. To be able to
compare with MC results, parameters tdp 1 tpp 0,

=2Ud.dl3, V~~ =0, and P=10 are used in Fig. 2(a),
Udd =6 and P=3 in Fig. 2(b). Similar to the single-band
Hubbard case, there is no antiferromagnetic solution in a
certain parameter range within POMF. For parameters

where an AF ground state can be found, POMF results of
the Cu-squared local moment agree very well with those
of MC simulations. For fixed tdp it is seen that U„d tends
to localize the spin on the Cu site. With a nonzero t
the hole occupation on the Cu site becomes smaller, and
Cu (m, ) is suppressed. This is seen in Fig. 2(a) where
the result for tpp 0 5 is plotted. This suppression of
(m, ) is more severe in the charge-transfer limit, as dis-
cussed elsewhere. '

To gain a better understanding of the physical proper-
ties presented above and in another paper, ' we now con-
centrate on the density of states of the three-band Cu02
lattice model with proper LDA parameters. Figure 3

shows Cu, 0, and total density of states for the paramag-
netic (PM) state and Fig. 4 shows the AF state in the
half-filled case, with parameters listed in Eq. (2) and
p= 10. In the PM state, the calculation clearly shows the
three-band structure, with a mostly 0 p-state band in be-
tween the two bands dominated by singly occupied and
doubly occupied Cu d states. For (n ) =1, the Fermi en-

ergy (set to zero in figures and also indicated by the verti-
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FIG. 2. The squared local moment on the Cu site
(m, ) = ((n t n t ) ) vs —

Udd [in (a)] and vs e [in (b)j. td~
= 1,

t =0, U =0. In (a) e=2Udd/3, P=10. In (b) Ud„=6, P=3.
The 6 symbol in (a) are the data points for t» =0.5 from the
POMF calculation. The Monte Carlo result is from Ref. 10.
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FIG. 3. The Cu, 0, and total density of states for the

paramagnetic half-filled system. The LDA parameters are used
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FIG. 6. The staggered magnetic moment ( m, ) =
~
( n i

—n i ) ~

on the Cu site vs band filling (n ). The LDA parameters are
used with P=10. Note that (n ) & 1 corresponds to hole dop-
ing, and ( n ) & 1 corresponds to electron doping.

Also, we did not consider the question of phase separa-
tion since we did not do a detailed study of the role of
Ud .

The role of doping in inducing a transition from the
AF ground state at 6=0 to the PM ground state at finite

doping can be better understood by examining the densi-

ty of states of the system as a function of 5. The total
DOS for 6=0, 0.2, and 0.4 is plotted in Fig. 7 with the
same parameters as those used in Fig. 6. As we have
shown earlier, the system is an insulator with Fermi leve1

lies in the AF band gap for 5=0. Even at 20% hole dop-
ing, the ground state is still AF (Fig. 6) but the Fermi lev-

el has moved into the upper singly occupied Cu AF band
and the AF band gap is smaller. As 5 gets larger this gap
eventually vanishes and the system becomes PM. This is
seen for the case 5=0.4.

In Fig. 5, a distinct difference between the total DOS
obtained from the POMF and the Hubbard-I scheme is
shown for the AF ground state. For the PM ground
state, this difFerence is shown in Fig. 8, where (n ) =1.5,
temperature T= 100 K (P=10 ). The Fermi level is in-

side the low-lying d band for the POMF, but for the
Hubbard-I, it lies inside the p band. Also compared to
the DOS of POMF, the Hubbard-I calculation yields a
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FIG. 7. The total density of states for band fillings (n ) =1.0,
1.2, and 1.4. Parameters are the same as those used in Fig. 6.
The Fermi energy is set to zero (vertical line). The ground
states for (n ) = 1.0 and 1.2 are AF while for (n ) = 1.4 the state
is PM.

E (eV)

FIG. 8. The total density of states obtained from (a) the

POMF and (b) the Hubbard-I calculations for (n ) =1.5. LDA
parameters are used with temperature T=100 K (@=10 ).
The ground state is PM in this case.
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separate p-state dominated band around 5 eV. It is in-

teresting to see that even though the Coulomb repulsion

Ud between electrons on Cu and 0 sites is not incor-
porated in this current calculation, the resulting total
DOS in Fig. 8(b) is similar to those in Figs. 4(b) and 8(b)
of Ref. 13 in which all parameters used are the same as
those in Fig. 8 except Ud =1.2 eV. This implies that,
even with certain restrictions, ' the Hubbard-I approxi-
mation may yield a qualitatively different position of Fer-
mi level in the DOS result from the POMF and SBMF
calculations.

IV. CONCLUSION

We have applied our projection-operator-based mean-
field formalism to the three-band Hubbard model for a
wide range of input parameters. Where quantum Monte
Carlo results are available (i.e., for t =0), our calcula-
tions for hole occupations on Cu and 0 sites and for mag-
netic moments compare remarkably well with MC re-
sults. The hole density of states results have been
presented for both antiferromagnetic and paramagnetic
states using the LDA energy parameters. An antiferro-
magnetic ground state is obtained for a half-filled system,
with the Fermi level lying in the AF band gap. It is ob-
served that this DOS result resembles that from the
slave-boson theory, but is distinctively different from the
Hubbard-I approximation. With hole doping, the AF
band gap gradually disappears, and the Fermi level
moves into the energy band dominated by 0 p states, so
that the doped holes tend to go to 0 sites.

Since our formalism compares well with available MC
results, we feel confident about our results in the region
of finite t where no MC results are available. We show
that, by allowing electrons to hop between two neighbor-
ing 0 atoms, the energy band dominated by 0 p states is
broadened, thus the number of holes on the 0 sites in-
crease, and the magnetic moments on the Cu sites are
suppressed. Our POMF formalism requires fewer num-
bers of coupled equations to be solved self-consistently
and we are able to investigate the effects of a large set of
energy parameters systematically without great difficulty.
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APPENDIX: DERIVATION OF THE EQUATIONS
OF MOTION FOR THE GREEN'S FUNCTIONS

In this appendix we derive the exact set of equations
for the Green's functions given in Eq. (10}. In terms of
the Liouville operator L A = [H, A ], the Heisenberg
time dependence of an arbitrary operator A can be writ-

ten as

A(t)= IHtAe iHi —eiLtA A(0) —A (A 1)

using the identity

([A,L "B] +)=([( L)"A,B—]+), n=0, 1,2, . . . .

(A3)

From Eqs. (Al) and (A2), the equation of motion is

i (, [f„,L—[P+(1 P)]f' ~ (—t)]+)—
(A4)

for any operator P. In this case the projection operator
defined in Eq. (7) is used for P. Now the basic idea of the
projection scheme is to write the term P(f', )+( t) in-
terms of the original Green's function at the same time t
resulting in static (mean-field) contributions. The remain-

ing term, (1 P)(f'„. )+( —t), whic—h is orthogonal to
this static term (since P = P ), is then written in terms of
an integral of the original Green's function over all ear-
lier times r such that r(t yielding the dynamic (self-
energy} terms termed memory functions. This is done as
follows: From Eqs. (A2} and (7) it is easily seen that

Pf ( t) =i g [f'—' ~ l(n' ~ ) ]G'' . (t) .

(A5}

Now, for any Heisenberg operator, A (
—t ), there is the

operator identity

Then the retarded Green's functions G „', (t ) .of Eq. (5)

become

(A2)

(1 P)A( t)=e ""— ' (1 —P)A(0) i dre—"—'"' ' (1 P)LPA( —w) . —
0

(A6}

Obviously this expression is correct at t =0. To verify that it is valid for all times t, simply differentiate both sides of
this expression with respect to time and show that they are equal. By use of Eqs. (A2), (7), and (A6}, one finds immedi-

ately

(1 P)f' ~ ( t)= g— f d—r[e " '" ' (1 P)Lf „~ l(nj —)]G'„~--' ~ (r) . . (A7)
est ti ii 0

, v ,a

Now use of Eqs. (A5) and (A7) in (A3) gives the exact equations of motion for the Green s functions which can be writ-
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ten as follows:

BG, ;. ~ (t )
l

c}t
[0,„.,-„- l(n,', . ) )G, ', (t)+ g f dr[M ~ .„ (t r—)l(n „'- ) jG,'.„-.' ~ (r),

~ I tl I I ~ II tt tl 0
J ,v ,a

(AS)

where the state (mean-field) terms are defined by

and the memory functions are

Maa (t) l([fQ L8 8 t(1 P)LfQ t ] ) (A 10)

The functions, defined in Eqs. (A9) and (A10) for the various a, a" combinations, can be simplified as follows: From
Eqs. (3) and (4) we find

at a af aLfj va evfj va + g trav j'v'[ njv acj'—v'a +(5a, + 5a, —)[cj'vcjv, —a cjv, acj'v—' —a]cava j
J,V

(Al la)

where the energy

c, =c,,+U, 5 + . (Al lb) =5, „5„„,.5a .e, (nj„

From Eqs. (7) and (Al 1) one finds the following identities:
W Aaa+ jvj v a (A15a)

g(1 P)Lf „=(—1 P)Lc „=0— (A12a) II

where 6 „.-,- is defined as

and

( [ Lc,(1 P)Z—] ) =0— (A12b)
jvj "v"& jv, —a && j "v",—a &

( [ L,fg„,f~' „"- ) +—)
for any operator Z. Use of Eq. (A12) in (A10} gives im-
mediately

tjvj "v"& jv, —a && j "v",—a & (A15b)

gM'. ' (t)=0 . (A13)

in which L, is defined as the commutator with respect to
that part of H defined in Eq. (3) proportional to the

[tj,'„j's. Use of Eq. (Al 1) in (A15b} gives, by construc-
tion,

Thus, from Eq. (A13}, II
,,- =0, g pact —0

Ia"
(A16)

M, . „(t) =aa"M, ~, (t ),
where

(A14a)
Thus, from Eq. (A16}one gets, just as in Eq. (A14},

(A17a}

(A14b} where

A similar analysis can be done for the "mean-field" terms
0, -„" defined in Eq. (A9). From Eqs. (A3) and (All),

~j v;j "V"a ~j v,j "V"O.

Using the results of Eqs. (A14) and (A17) in (AS),

(A17b)

a 6aa'
v JvJ va (t)= g tj -"(n, )G,.„-j. . ~ (t)+ g aa"[b „.'. . /(n -„- ) ]Gj..„-j„().

II tt Itj , v , a 'll II Itj , v , a

+ g f dr[aa"M '. " (t —r)l(nj. - " ) jG~ „j, (r)'.".
~ tt tt tt 0J , v ,a

(A18)

Since the projections defined in Eq. (7) involve the averages (n '. " " ) in the denominator, it is convenient to write the
equations of motion for the rescaled Green's functions defined as follows:

G&,J'. (t)=((n,. )(nj. )) ' 'G., j,„, (t), .

where, by construction,

(A19a)
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iG .,'. (t =0)=5.'5„„.5 (A19b)
I

One can then rewrite the Green s-function equations of motion given in Eq. (A18) in terms of G, J'„(t ). Using Eqs.
(A18) and (A19),

+ g aa"b,, ,„„((n, , )(ni-„)) '
G& „-,'„(. )

II

+ g aa"f drM, ~ ~ .(t —r)((n „)(ni'„- )) ' Gi', 1, (r. ) .
II II II

(A20)

For arbitrary A, its Laplace and spatial transformations
are

g I r)5,„-5 - Ek„„—(co)]Gk„„(~)=5„„5

A '(co)= f dt e'"'AJJ'(t), co=co+i0+,
0

(A2la)
where

(A22a)

and

k
(A21b)

Ek „- (co)=5„~5 . e, +t„„„((n„)(n„,. ) }'i2

+aa"[bk „. +Mk„„, (9)]

X((n„)(n, )) 'i . (A22b)

Use of Eq. (A21} in (A20) gives
It is now seen that the energy matrix is Hermitian. This
completes the analysis.
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