PHYSICAL REVIEW B

VOLUME 46, NUMBER 22

1 DECEMBER 1992-11

Superconductivity in the transition-metal series

X. Q. Hong and J. E. Hirsch
Department of Physics, University of California, San Diego, La Jolla, California 92093-0319
(Received 20 May 1992; revised manuscript received 13 August 1992)

We study the possibility of describing superconductivity in the transition-metal series within the mod-
el of hole superconductivity. The band structures for transition metals are obtained within a tight-
binding scheme using the parameters calculated by Papaconstantopoulos, and a rigid-band interpolation
scheme is used to describe alloys. bcc, hep,and fee structures are considered. Under the assumption that
superconductivity originates in the band with closest holelike character to the carriers at the Fermi sur-
face, we obtain parameters in the model that reproduce the experimental values for 7.. The absence of
superconductivity at the beginning of the transition-metal series is naturally explained within this model.
The possible effect of interband coupling within the model of Suhl et al. is also considered. Finally, the
nature of the superconducting state and various observable properties are discussed.

I. INTRODUCTION

The explanation of the variations of the superconduct-
ing T, in the transition-metal series is a long-standing
problem. Matthias' formulated his well-known “rules”
many years ago, which postulated that certain values of
electron-per-atom (e /a) ratios were particularly favor-
able for superconductivity. Posterior extensive work?®?
on a range of alloys of transition metals in different
columns and rows in the periodic table established a rath-
er simple and well-defined behavior of T, vs e /a essen-
tially identical in all three transition-metal series: two
bell-shaped curves, peaked approximately at e/a values
of 4.7 and 6.5 and width of approximately 1.5 and 2 in
e /a values, respectively.

There have been several theoretical attempts to explain
this behavior within the generally accepted electron-
phonon mechanism of superconductivity. In the early
work by Pines,* it was argued that the variation in the
density of states at the Fermi level N(0) was chiefly re-
sponsible for the observed variation of T, with e/a,
through the relation

T.=1.13{fiw)e /", (1)

A=NO)V , (2)

with V the effective electron-phonon interaction and
(#iw) the average phonon frequency. Posterior work by
McMillan® and others analyzed in more detail the
electron-phonon interaction that enters into V. The di-
mensionless electron-phonon coupling constant [Eq. (2)]
was written as

_ NI —_ 3)
M{o?) M(a?) ’

with (J?) an average over the Fermi surface of the

square of a matrix element of the electronic wave func-

tion with the gradient of the crystal potential, (w?) an
averaged squared phonon frequency, and M the ionic

A
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mass. It was argued empirically by McMillan that the
numerator in Eq. (3), 7, is nearly constant in transition
metals and that T, is determined by the denominator in
Eq. (3), which gives the “stiffness” of the lattice. Posteri-
or theoretical work by Hopfield® attempted to justify this
assumption theoretically by calculating 7 in terms of
atomic properties. It should be noted also that in the
McMillan equation5 for T,, which is a modified form of
Eq. (1) that is obtained within Eliashberg theory, the
Coulomb pseudopotential u* appears, which is difficult to
calculate theoretically and is often used as an adjustable
parameter.

There have been a number of attempts to compute A
from first principles’ !° for transition as well as other
metals. In addition, other theoretical work estimated A
from some observable property, e.g., resistivity, using a
first-principles calculation of the plasma frequency.''
Generally these works conclude that their predictions for
T, agree with observations.!> However, there are excep-
tions, for example, the case of Li.B Additionally, as re-
viewed by Gladstone et al.'* for the transition-metal
series, no simple theoretical explanation exists for the ab-
sence of superconductivity both at the beginning (Sc,Y)
and the end (Pd,Pt) of the series. Also, even using only
measured quantities there are sometimes problems in
correlating observations with the conventional theory: for
example, both in Nb (Ref. 15) as well as in BaPbBiO (Ref.
16), it has been pointed out that the value of A inferred
from the phonon structure in the tunneling density of
states is too low to account for the observed T,.. Further-
more, the existence of high-temperature superconductivi-
ty in certain oxides'” is so far unaccounted for within the
conventional electron-phonon mechanism. Finally, the
empirical observation'® that a strong correlation exists
between the existence of superconductivity in metals and
alloys and a positive value of their Hall coefficient, does
not have an explanation within the conventional theory
at the present time.

One may dismiss the above-mentioned instances as
minor exceptions within a theoretical framework that
has, for the most part, been overwhelmingly successful.
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Alternatively, one may decide that these anomalies, even
if not widely recognized as important,'® warrant explora-
tion of other theoretical approaches to the problem. We
adopt the latter point of view in this paper and attempt to
describe superconductivity in the transition-metal series
within the model of hole superconductivity.? =2

In the model of hole superconductivity, pairing origi-
nates in an electron-electron interaction term that breaks
electron-hole symmetry. This interaction gives rise to su-
perconductivity when the Fermi level is close to the top
of a band. Electron-phonon interactions are assumed to
be of secondary importance (together with electron-
exciton, -plasmon, and other second-order processes) and
are neglected in this paper. In Sec. II we give a brief re-
view of this model, and describe the calculational pro-
cedure used to obtain the band structures in the
transition-metal series. In Sec. III we compute parame-
ters in the model that can reproduce the observed T.
values, and in Sec. IV we evaluate various observables in
the superconducting state within our model. We con-
clude in Sec. V with a summary of results and discussion
of their possible relevance to the real materials.

II. THE MODEL AND CALCULATIONAL DETAILS

The basic assumption of the model of hole supercon-
ductivity is that Coulomb interactions between carriers in
a band cause the effective mass of the carriers to increase
as the band filling increases. Then, for the Fermi level
close to the top of the band, hole carriers can dynamical-
ly lower their effective mass by pairing, as pairing of
holes “locally” reduces the band filling. Reduction of
effective mass is advantageous at low temperatures due to
the resulting gain in kinetic energy.

The pairing interaction in this model is given by*°

8k_80 Ek'—eo
=U—-K
Vi { D/2 D)2
€ & €€
+Ww
D/2 D/2 @

for a single band. Assuming only nearest neighbor in-
teractions, W =zV with V the nearest neighbor Coulomb
repulsion and z the number of nearest neighbors, and
K =2zAt, with At the hopping interaction whose physi-
cal origin is discussed in Ref. 21. U is the on-site
Coulomb repulsion, D is the bandwidth, and g, is the
center of the band, defined by

1
SOZF Zek (5)
k

with N the number of unit cells. Quite generally, one ex-
pects U>>V >At. The critical temperature is deter-
mined by the equation

1+ U+ WI,+2KI, —(K*—=WU)I,I,—13)=0, (6
with

11—2f(£k—u)
2(g, —p)

1=0,1,2 (7)
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and p the chemical potential. Below T, the gap function
is

& &
D/2

+c |, (8)

Ak:_Am l_

with A, and c determined by Eq. (6) and
c=—KU,+cl)—U,+cly), )
with (g, —u) in Eq. (7) replaced by

E, =V (g, —p)+A . (10)

We use the Slater-Koster Linear Combination of
Atomic Orbitals method (SK-LCAO)? to calculate the
band structures. The SK-LCAO parameters for
nonorthogonal s, p, and d orbitals are tight-binding fits by
Papaconstantopoulos®* to first-principles-band structures.
The two-center approximation was used and interactions
up to the second nearest neighbors were included. The
underlying band structure calculations do not include
spin-orbit coupling.

To calculate the densities of states, we diagonalize the
Hamiltonian for a large number of k points and calculate
the densities of states D(e) by a histogram technique
directly from the eigenvalues,

D(e)=— 1

/8¢ . (11)
N (s—Se/ZSr—:k <e+8e/2

For a given number of N .y, which is the number of k
points along the symmetry axes, 8¢ is estimated as the
following:

2

8k ~ , (12)
Nmesha
s~ FLBK? _ | _2m 7
2m, N mesh 2m,a 2
2
~ [N,:;h in rydberg . (13)

Here a is the lattice constant and m, is the electron
mass. By estimating 8¢ in this way, we can avoid unphys-
ical peaks in the density of states caused by too fine ener-
gy resolution.

For bcc materials, we diagonalize 9X9 Hamiltonian
matrix for a uniform mesh of 45526 k points (with
N esh =100) in the irreducible 1/48th of the Brillouin
zone. For fcc materials, we diagonalize 9 X9 Hamiltoni-
an matrix for a uniform mesh of 89076 k points (with
N e =100) in the irreducible 1/48th of the Brillouin
zone. For hcp materials, which have two atoms per unit
cell, we diagonalize 18 X 18 Hamiltonian matrix for a uni-
form mesh of 18081 k points (with N ., =80) in the ir-
reducible 1/24th of the hexagonal Brillouin zone.

Since the experimental results use the number of
valence electrons as a parameter instead of Fermi energy,
we calculate the number of electron/atom at Fermi level
€ as the following:
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_2 atoms A4 and B.
n N %;' X 52<E 1. (14) For the bcc region in the 4d series, Nb and Mo are two
"k —°F
bands

To give a quantitative description of whether or not the
Fermi level is at the top of a band, we define the number
of unoccupied states of ith band as

ni=1—-— 3 1. (15)

<
ke, Zep

The crystal structure of transition metals in group 5
and group 6 of the periodic table are mostly bcc, those in
the adjoining groups 3,4 and 6,7 are mostly hcp, and
those in groups 9 and 10 are fcc. It is established by ex-
periments that the bcc region extends from 4.2 up to 6.5
electrons per atom. Elements in the same column have
similar band structures and properties except for the
magnetic metals in the 3d series. Since elements in the 4d
series are lighter than those in the 5d series and their
band structures are relatively well studied, we choose the
4d series as the focus of our investigation. Solid solutions
of neighboring transition metals are believed to be well
described by the band structure corresponding to the
component with the same lattice structure as the alloy,
and the Fermi level determined by the alloy concentra-
tion, i.e., the value of e /Ja =nin alloy 4,B,_, is

n(A.B,_,)=xN,(A)+(1—x)N,(B) , (16)

with N,( A4) and N,(B) the number of valence electrons in

T T T T T T
15 l :: 15
i L i ]
: lA‘ [
I hep | bce hcp i fcc 1
0 : [
5 L ! 412
& 1 N
£ r i I 1
o i .
E 1+ 'i | \ ]
I
< i i e
Z L7 Li / | 12
n I ‘ =
: b A N e
ey \ 1 [ J
- Foaon - ' Je
5] e ) \
2 o5 1 .
a v | ~ :/! |
[ ‘TE \./‘! .
- L ‘;E I :! | 13
it . i .
L l ¥ |
N | R (.
L .0 .l
ol 1P 4 w1 I o . PRI 0
4 6 8 10

n (electron/atom)

FIG. 1. Density of states vs electron per atom in the 4d
transition-metal series. For 3=n <4.2, Zr’s band structure is
used as the rigid band; for 4.2 <n <6.5, Mo’s band structure is
used; for 6.5<n =<8.3, Tc’s band structure is used; for
8.5=n =10, Rh’s band structure is used. Solid triangles are ex-
perimental data from 4d series; solid squares are those from 5d
series (right scale).

pure elements with bcc structure. We use molybdenum’s
band structure as the rigid band for the entire bcc region.
For alloys with the hcp structure we use zirconium’s
band structure for n between 3 and 4.2, and technetium’s
band structure for n between 6.5 to 8.3. For n in the
neighborhood of 9 (fcc structure) we use rhodium’s band
structure as the rigid band.

The total density of states across the 4d transition-
metal series is shown in Fig. 1 for 3=<n <10. We also
show the measured transition temperatures.”® Although
some correlation exists between the two peaks in T, and
peaks in the density of states, the fact that superconduc-
tivity does not exist at the beginning and the end of the
series cannot be correlated with the behavior of the densi-
ty of states.

III. CALCULATION OF TRANSITION TEMPERATURES

We divide our study into three sections corresponding
to the different lattice structures indicated in Fig. 1.

A. becregion, 4.2<n <6.5

We consider for definiteness the band structure of
molybdenum, n =6. Figure 2 shows the partial densities
of states in each band as a function of n. It also indicates
the boundaries of the bce region, as well as the positions
of Nb and Mo. It can be seen that the Fermi level of Nb
lies near the top of the band labeled 2, while the Fermi
level of Mo is approaching the top of the band labeled 3.

Density of States (1/eV spin)

n (electron/atom)

FIG. 2. The density of states of each band of molybdenum vs
electron concentration. Vertical dotted line indicates the Fermi
level at n =4.2; vertical short-dashed line is the Fermi level of
Nb; vertical dot-dashed line is the Fermi level of Mo; vertical
long-dashed line indicates the Fermi level at n =6.5.
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FIG. 3. The electron concentration dependence of the num-
ber of unoccupied states for each band of molybdenum. The
center of each band gy(i), i =1,6 corresponds to n =0.996,
2.993, 5.298, 7.046, 9.331, 11.016, respectively. The vertical
lines are for the Fermi levels as indicated in Fig. 2.

We attribute the portion of the two peaks in T, in the bcc
region to carriers near the top of these two bands, respec-
tively. For a clearer picture, Fig. 3 shows the number of
unoccupied states in each band versus n. The onset of T,
in the second peak corresponds to having approximately

$5S—7F7—

- long-dashed line: 1

L |At|=0.525, U=4.270, V=1.500 -

L short-dashed line:

|At|=0.594, U=4.590, V=1.875

dotted line:

|At|=0.670, U=5.050, V=2.250 -
solid line:

|At|=0.781, U=6.363, V=2.500

T(K)

n (electron/atom)

FIG. 4. The dependence of T, on electron concentration for
several sets of parameters for band 2 of Mo. Interactions are in
units of eV.
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FIG. 5. The dependence of T, on electron concentration for
several sets of parameters for band 2 of Mo. Interactions are in
units of eV.

0.1 unoccupied states in band 3. For the first peak, at the
stability boundary of the bcc phase, the number of unoc-
cupied states in band 2 is approximately 0.06, and corre-
spondingly, the observed T is appreciable.

For a quantitative fit we explored various sets of pa-
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FIG. 6. The fit to experiments in the bcc region from the
second and third bands of molybdenum. Solid line from second
band, U =4.590 eV, |At|=0.594 eV, V'=1.875 eV. Dotted line
from third band, U=8.0 eV, |A?t|=0.850 eV, ¥=1.875 eV. The
vertical lines indicate the boundary of the bcc region.
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rameters in Eq. (4). For different parameters chosen to fit
the position and height of the first peak, its width turned
out to be approximately constant and in agreement with
experiment as shown in Fig. 4. On the other hand, on
changing the parameters so that the position of the peak
would shift (with constant height), the width and shape of
it would also change, as shown in Fig. 5 (the width de-
creases as the peak moves to higher n). Thus we regard
the fact that the model can approximately fit the ob-
served width, position, and height of the peak as
significant. Figure 6 shows a possible fit to the two peaks
within the bee structure, using bands 2 and 3 of Mo. The
interactions in band 3 are somewhat larger than in band
2, which may originate in the fact that the wave functions
are becoming more compact. Figure 6 also shows the ex-
pected behavior of T, if one was able to stabilize the bce
structure beyond the currently attainable region, within
the rigid band assumption.

Our model predicts no superconductivity in the region
where band 2 is full and band 3 has more than about 0.1
holes per atom, i.e., 5.3 <n =5.85. However, experimen-
tally a small T, (of order mK) is found in this region. A
possible explanation for this discrepancy may lie beyond
the rigid band model. Qualitatively, in a Nb-rich region
of such a Nb-Mo alloy some unoccupied states may exist
near the top of band 2, giving rise to “negative U
centers”?® that may induce superconductivity in the en-
tire system. In addition, the top of band 2 of Nb corre-
sponds to slightly higher n values than Mo. A compar-
ison of the densities of states in bands 2 and 3 of Nb and
Mo is shown in Fig. 7.

Within a model that included electron-phonon interac-
tions as well as the mechanism considered here,?’ one
might also explore the possibility that the above-

solid line: 1
band 2 of Mo
dotted line:
band 3 of Mo
short-dashed line: —
band 2 of Nb
long-dashed line:
band 3 of Nb

Density of States (1/eV spin)

v <r“_+———* e s
6 8 10 12

n (electron/atom)

FIG. 7. The densities of states of the second and third bands
of Nb and Mo.
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mentioned discrepancy could be resolved for sufficiently
large electron-phonon coupling. This is, however, not
within the scope of this paper.

B. hcp regions

In the lower hcp region, 3<n<4.2, we use
zirconium’s band structure as the rigid band. Figure 8
shows the partial densities of states for each band, and
Fig. 9 the integrated densities of states. We note at the
outset that for n =3, the Fermi level does not lie close to
the top of any band; band 3, the closest to being full, still
has 0.16 unoccupied states per atom. As we approach
n =4, the Fermi level approaches both the top of bands 3
and 4. Because of the larger density of states in band 4,
for equal interactions, band 4 will dominate the supercon-
ducting behavior. The experimental data can be fitted in
this region as shown in Fig. 10. For definiteness, we
chose the nearest neighbor repulsion V=1.875 eV, the
same as in the bcc region. The other parameters are
given in the figure caption.

In the upper hcp region in the transition-metal series
we use technetium’s band structure for the rigid band.
Figures 11 and 12 show the partial and integrated densi-
ties of states, respectively. The Fermi level lies close to
the top of bands 6 and 7 in the region of interest here
(6.5=n =8.3). Figure 10 shows the behavior of T, ob-
tained from these two bands, with parameters given in
the caption. It does not seem possible to fit 7. with our
model using independent bands in this region, since we
obtain a minimum around n =7.25 which is not seen ex-
perimentally.

To explain the smooth behavior of T, vs n in this re-

1

T T

08 —

06 [ oo/ |

Density of States (1/eV atom spin)

L) B
ol g NI by us

1 2 3 4
n (electron/atom)

FIG. 8. The density of states of each band of zirconium vs
electron concentration. Vertical solid line indicates n =3; ver-
tical dotted line indicates n =4.2.
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FIG. 9. The dependence of the number of unoccupied states
for each band of zirconium on electron concentration. The
center of first six bands €4(i), i =1,6 corresponds to n=0.328,
1.414, 2.515, 3.473, 4.545, 5.501, respectively. Vertical solid line
indicates n = 3; vertical dotted line indicates n =4.2.
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FIG. 10. The fit to experiments. Solid line from second band
of Mo, U=4.50 eV, |At|=0.594 eV, ¥=1.875 eV. Dotted line
from third band of Mo, U=8.0 eV, |At|=0.850 eV, V=1.875
eV. Short-dash-dotted line from band 4 of Zr, U=10.0 eV,
|At|=0.866 eV, V=1.875eV. Long-dash-dotted line from band
3 of Zr, with interactions same as band 4 of Zr. Short-dashed
line from band 6 of Tc, U=4.20 eV, |At|=0.563 eV, V=1.875
eV. Long-dashed line from band 7 of Tc with same interactions
as band 6. Short dash-long dash line from band 4 of Rh,
U=4.79 eV, |At|=0.563 eV, V=1.875 eV. The region
8.3 <n < 8.5 is a mixture of hcp and fec.
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FIG. 11. The density of states of each band of technetium vs
electron concentration. Vertical long-dashed line indicates
n =6.5; vertical short-dashed line indicates » =8.3.

gion within our model, it is necessary to include inter-
band scattering. It is possible that this effect may be gen-
erally important when there is more than one band with
holelike carriers at the Fermi surface. Figure 13 shows
the effect of including an interband term of the form in-
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FIG. 12. The dependence of the number of unoccupied states
for each band of technetium on electron concentration. The
center of first ten bands &,(i), i =1, 10 corresponds to n=0.439,
1.445, 2.683, 3.441, 4.582, 5.721, 6.663, 7.791, 8.566, 9.045, re-
spectively. Vertical long-dashed line indicates n =6.5; vertical
short-dashed line indicates n =8.3.
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T
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FIG. 13. The dependence of T, on electron concentration
when interband coupling exists between band 6 and band 7 of
technetium. The interactions in the two bands are the same,
U,=U,=U(At),=(A1),=At,V,=V,=V. U and V are fixed,
At is changed with V|, to keep 7. in same range. Interactions
are in units of eV.

troduced by Suhl et al.,’®? coupling bands 6 and 7. It
can be seen that the structure is smoothened and more
closely resembles experimental observations.

It should also be mentioned that even better agreement
with experiment in this region would be found by allow-
ing the interactions in the model to change slightly with
n, which would not be an unreasonable assumption due
to the dependence of screening effects on electron density.
Finally, the same remark made at the end of Sec. IIT A
applies here.

C. fcc region

In the region n > 8 the crystal structure becomes fcc
and we use the tight-binding parameters of Rh (n =9) for
our rigid band. Figures 14 and 15 show the partial and
integrated densities of states. Band 4 of Rh is nearly full
and has the largest density of states in the region around
n =9, so that we use it to fit experimental values for T,
as shown in Fig. 16. The experimental data are for the 5d
series, as we were unable to find equivalent results for the
4d series. For n =9 our calculated T, value is smaller
than the observed value in the 5d series (Ir, T, =0.14 K)
but larger than the corresponding value in the 4d series
(Rh, T.=0.0003 K). As n increases beyond 9, band 4 be-
comes full and T, goes to zero.

For n =10 (Pd), band 5 has still approximately 0.2
holes per atom which is usually too large a hole concen-
tration to give rise to superconductivity in our model.
However, if the interaction parameters used for band 4
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FIG. 14. The density of states of each band of rhodium vs
electron concentration. Vertical short-dashed line indicates
n =8.5; vertical dash-dotted line indicates n =10.

are used in band 5, a nonzero T is obtained for Pd due to
its very large density of states. One may speculate that
the repulsive interactions may be larger in Pd because of
the more compact nature of the electronic wave func-
tions. In fact it has been argued that Pd is close to a
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FIG. 15. The dependence of the number of unoccupied states
for each band of rhodium on electron concentration. The
center of first five bands gy(i) i =1,5 corresponds to n=0.996,
2.924, 5.432, 6.971, 8.911, respectively. Vertical short-dashed
line indicates n =8.5; vertical dash-dotted line indicates » =10.
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FIG. 16. The fit to experiments in the fcc region from the
fourth band of rhodium, U=4.79 eV, |At|=0.563 eV, ¥=1.875
eV. Solid triangles are experimental data of 4d series. Solid
squares are experimental data of 5d series.

magnetic instability,'* as evidenced by the large value of
its magnetic susceptibility. If we use the same values of V
and At as in band 4 but increase the value of U from 4.79
to 5.2 eV, no superconductivity is found for Pd (nor else-
where in band 5) within our model.

IV. THE SUPERCONDUCTING STATE

In this section we examine some properties of the su-
perconducting state within this model in the region of the
first peak in T, vs n, within the bcc structure. The be-
havior in the region of the second peak is expected to be
very similar. Because the system is in the weak-coupling
regime, only small deviations from ‘“‘conventional” BCS
behavior can occur.

The gap obtained from Eq. (8) is isotropic, i.e., con-
stant over the Fermi surface, because pairing arises from
a kinetic process in this model. To our knowledge, mea-
sured gaps in these systems are generally found to be re-
markably isotropic.’® Although this is usually explained
as arising from the averaging effect of disorder, our mod-
el provides an alternative explanation for this observa-
tion.

The behavior of the parameters A,, and c in the gap
function [Eq. (8)] versus »n is shown in Fig. 17, and Fig. 18
shows the gap function versus energy for several n values.
The fact that the gap function changes sign for energies
near the bottom of the band allows for the existence of
superconductivity with purely repulsive interactions, as
discussed in Ref. 20: the larger repulsive interaction in
the energy region of negative gap function results in a net
attraction at low energies. The parameter ¢ [Fig. 17(b)]
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FIG. 17. Dependence of gap parameters on electron concen-
tration in the bcc region from the second band in the bee struc-
ture. (a) A,, /(D /2)% vs n. (b) cvsn.

determines the point at which the gap function changes
sign: as n decreases, this point moves to higher energies
while the chemical potential decreases; when this point
coincides with the chemical potential, T, goes to zero.
The parameter A,, [Fig. 17(a)] gives the slope of the
gap function. As discussed in Ref. 31, the quantity

————
£%002F  n=4.00 : E
& of ]
< £ H ]
I N S N SRS SRR T
Y . T , —
;‘ 3 n =450 ]
IO 3
Tooef i
F T T T T
£%002F  n=500
= E
2 o
< F
-o.coz | ) 1 o [ B
———T——T——7 7=
S %%E " n-523 i
i
p 3 E
—00004E , ., ., oy .4y i
5 [ 7 8 9
€y (eV)
FIG. 18. Gap function vs energy for different electron con-

centration. Vertical dotted lines indicate the position of the
Fermi level.
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[24,,/(D /2)] gives the fractional asymmetry in tunnel-
ing characteristics, i.e., the excess tunneling current in a
negatively versus a positively biased sample. Unfor-
tunately, as seen in Fig. 17, its magnitude is rather small
in this case (maximum 0.2%) and thus difficult to detect
experimentally.

The quasiparticle gap in this model is given by

_ Ak(EkZIJ—)
* Vit /D2

The gap ratio 2A,/kg T, is found to be given by the BCS
value 3.53 except for a very small increase for large
values of n (the largest deviation from the BCS value
found, as T, approaches zero in the upper part of the
peak, is approximately 0.1%). This is in contrast to the
behavior found in the parameter regime appropriate to
high-T, oxides, where the gap ratio can take values sub-
stantially larger than the BCS value near the top of the
T, vs n curve.”

We compute the coherence length &, from the average

A (17)

size of the pair wave function®
§0:—22<R2>“2, (18a)
o
(R)|’R?
(R2)=—2R—|f|—2 (18b)
SkIf(R)
f(R)=—1—2 . [1—2f(g;)]e kR . (18¢)
N < 2E, k
Equation (18b) can be written as
(R?)= o) , (19)
2
Jdente)l
with D (¢) the density of states and
Dz(e)z—jl\?21f7kak|28(s—sk), (20)
k

the average velocity. Within weak-coupling BCS theory,
E,=%vp/mA, with vp the Fermi velocity and A the ener-
gy gap.

Figure 19 shows the average velocities versus n for the
different bands. Consistent with the calculation of T, we
will only use the carriers in the second band for the cal-
culation of the coherence length. Note that in the upper
region of the first T, peak (n =5), the Fermi velocity in
the second band is substantially smaller than in the third
band. Thus our model predicts smaller “intrinsic” coher-
ence lengths in this region than a BCS model that uses
the average Fermi velocity in all bands.

The estimated®? coherence length in Nb is approxi-
mately 430 A. This rather small value of the coherence
length results in Nb being a type-II rather than a type-I
superconductor (H.,=0.4 T, H.=0.2 T). The inferred
Fermi velocity in weak-coupling BCS (using A=1.44
meV) is vy =0.30X10® cm/sec. The average Fermi ve-
locity from Fig. 19 for n =5 is vy =0. 54X 10® cm/sec,
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FIG. 19. Average velocity at Fermi energy [Eq. (20)] for each
band in the bce structure vs electron concentration.

while the Fermi velocity for carriers in the second band is
0.41 X 10® cm/sec. While both estimates yield too large a
value for the coherence length, the estimate from band 2
is somewhat closer to the expected value. The actual
coherence length obtained in our model from Eq. (18) is
shown in Fig. 20 as a function of n. For Nb the value
obtained is 190 lattice spacings, which is similar to the es-
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FIG. 20. Dependence of coherence length on the electron
concentration in the bee region from the second band in the bee
structure. The parameters are from Fig. 6, U=4.590 eV,
|At|=0.594 eV, V=1.875€V.
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timate given by the BCS expression. Thus, while our re-
sult is better than that which would be obtained with the
average Fermi velocity in all bands, it is still somewhat
too large, for reasons unclear to us.

The coherence length shown in Fig. 20 qualitatively
follows the behavior of the inverse critical temperature
(as in conventional BCS theory), unlike the behavior
found in the parameter regime of high-T, oxides, where £
was found to monotonically decrease with increasing n.
This is because the parameter regime in this paper corre-
sponds to a weak-coupling regime. For comparison with
experiment, it should be kept in mind that the observed
coherence length is affected by the amount of disorder in
the sample. >

The mechanism discussed here leads to an apparent
violation of the conductivity sum rule,* due to the gain
in kinetic energy that occurs when the system enters the
superconducting state. The contribution to the kinetic
energy from the hopping interaction is given (for a bcc
lattice) by

T8 =—K 2 (1, 411y +el)) (21a)
5 5 Bmi o/ 1/
while the Kkinetic energy from the usual single-particle
hopping process is
PR |
Ts—?fdsg(s)(e~eo)f(s—u) (21b)
and the degree of violation of the sum rule at low fre-
quencies (i.e., associated with intraband processes) is
given by the ratio of Egs. (21a) and (21b). Unfortunately,
due to the smallness of the parameter A,, [Fig. 17(a)], we
find that this effect should be less than 0.1% in the pa-
rameter regime discussed here. Nevertheless, it is possi-
ble that either this or the associated resulting change in
high-frequency optical properties® could be observable.

V. DISCUSSION

We have explored the possibility of describing super-
conductivity in the transition-metal series within the
model of hole superconductivity. Our findings are sum-
marized as follows.

First, there exist parameters in the model that appear
to be plausible and can reproduce the observed behavior
of T,. It should be stressed that the value of T, in this
model is very sensitive to the magnitude of the parame-
ters and we have no way at this point to estimate these
parameters from first principles to the needed accuracy.
Nevertheless, the model constrains quite strongly the
possible values for T,; for example, we have seen that the
first peak in T, can be fitted by several sets of parameters,
but it would not be possible to fit a peak of the same
height and width that was shifted from the position of the
observed one. For all regions where superconductivity
occurs in the transition-metal series it was possible to as-
sociate this fact with the Fermi level being located near
the top of some band, as required by the model, and to fit
T, quantitatively with appropriately chosen parameters.

Furthermore, we have found that no superconductivity
would be expected in our model near the third column in
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the periodic table (Sc,Y) due to the fact that the Fermi
level is not located near the top of any band. In the band
closest to being full (band 3 in Fig. 9), the number of
holes in the third column is approximately 0.16, too large
to give rise to superconductivity. It is possible that under
application of pressure, electrons are transferred from
band 4 to band 3, giving rise to a nonzero T, as observed
in Y under pressure.?’

At the end of the transition-metal series, n =10
(Pd,Pt), we have seen that the Fermi level approaches the
top of a band but is still rather far from it for n =10
(number of holes is 0.2), consistent with the absence of su-
perconductivity in these metals with plausible values of
interaction parameters. Unfortunately, to explain the ob-
served absence of superconductivity beyond » =10 (e.g.,
in Pd-Ag or Pt-Au alloys®®) one has to invoke the ex-
istence of large Coulomb repulsion, as is done in studies
using the electron-phonon interaction.!* Without this ad-
ditional assumption, our model in fact would suggest that
superconductivity should exist beyond n =10 as the
upper d band becomes filled, contrary to observations. It
is interesting to note, however, that the measured Hall
coefficients in both Pd,Pt as well as in Sc and Y are nega-
tive,3¢ unlike in the other transition metals.

Note that the fact that the two observed peaks in T in
the transition-metal series correlate with peaks in the
density of states* is accidental within our model. (Also
within the conventional theory, the magnitude of the
coupling constant is believed to dominate T, far more
than a peak in the density of states at the Fermi level.)
For example, in the cubic region we have seen that the
two peaks in T, originate in holes in the second and third
bands in Fig. 2, respectively. Instead, the peaks in the
density of states originate dominantly in the contribu-
tions from bands 3 and 4, respectively. It is seen in Sec.
IV that some evidence in favor of the hypothesis that it is
band 2 rather than 3 that gives rise to superconductivity
in Nb, is the observed smallness of the coherence length
&, which suggests a dominant role for the carriers in
band 2 that have a smaller Fermi velocity.

We have also explored some properties of the super-
conducting state within this model. The slope in the gap
function (Fig. 18) is what allows for the existence of su-
perconductivity with purely repulsive interactions. Un-
fortunately, the slope was found to be so small that it
may be difficult to obtain direct evidence for it in tunnel-
ing experiments. Also, no appreciable deviation from the
weak-coupling BCS gap ratio was found. The predicted
violation of the conductivity sum rule within this model
and associated change in high-frequency optical proper-
ties** should similarly give rise to only a very small effect
in this parameter range. Thus it would appear to be
difficult to find direct experimental support for our model
in the parameter regime appropriate to the transition-
metal series, and one may have to look at other systems
such as high-T. oxides or possibly A15’s for clearer sig-
natures. It is important to point out, however, that our
model could be easily ruled out in this or any other re-
gime, by finding a superconductor that clearly does not
have hole states at the Fermi energy.

It is also interesting to note that our model may pro-
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vide an alternative explanation to McMillan’s observa-
tion® that the largest T,’s correspond to smallest values
of the denominator in Eq. (3). As the Fermi level ap-
proaches the top of a band, antibonding states become in-
creasingly occupied and one expects the lattice to become
increasingly unstable, i.e., “soft.” This correlation was
pointed out by Varma and Dynes.>’

We regard the fact that the model discussed here can
reproduce the observed values of T, in the transition-
metal series with plausible parameters as encouraging.
While the present study certainly does not prove that the
model describes superconductivity in the transition-metal
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series, we believe it suggests that further studies of this
model are warranted as a possible alternative to the
electron-phonon model.

ACKNOWLEDGMENTS

This work was supported by NSF-DMR-8918306. We
are grateful to D. A. Papaconstantopoulos for making
available to us his computer codes for the computation of
the tight-binding band structures. Computations were
performed at the San Diego Supercomputer Center.

IB. T. Matthias, in Progress in Low Temperature Physics, edited
by J. C. Gorter (North Holland, Amsterdam, 1957), Vol. 2, p.
138.

2J. K. Hulm and R. D. Blaugher, Phys. Rev. 123, 1569 (1961).

3For a review, see S. V. Vonsovsky, Y. A. Izyumov, and E. Z.
Kurmaev, Superconductivity of Transition Metals (Springer,
Berlin, 1982).

4D. Pines, Phys. Rev. 109, 280 (1958).

SW. L. McMillan, Phys. Rev. 167, 331 (1968).

63.J. Hopfield, Phys. Rev. 186, 443 (1969).

"D. A. Papaconstantopoulos et al., Phys. Rev. B 15, 4221
(1977).

81. R. Gomersell and B. L. Gyorffy, Phys. Rev. Lett. 33, 1286
(1974).

9J. C. Carbotte and R. C. Dynes, Phys. Rev. 172, 476 (1968).

10p. B. Allen and M. L. Cohen, Phys. Rev. 187, 525 (1969).

1B, A. Sanborn, P. B. Allen, and D. A. Papaconstantopoulos,
Phys. Rev. B 40, 6037 (1989).

128ee, however, the discussion by
109&110B, 1671 (1982).

BA.Y. Liu and M. L. Cohen, Phys. Rev. B 44, 9678 (1991).

14G. Gladstone, M. A. Jensen, and J. R. Schrieffer, in Supercon-
ductivity, edited by R. D. Parks (Marcel Dekker, New York,
1969), Vol. 11, p. 665.

153, Bostock et al., Phys. Rev. Lett. 36, 603 (1976); also in Su-
perconductivity in d- and f-band Metals, edited by H. Suhl
and M. B. Maple (Academic, New York, 1980), p. 153.

16R. C. Dynes (private communication).

17J. G. Bednorz and K. A. Muller, Z. Phys. B 64, 189 (1986).

18], M. Chapnik, Dok. Akad. Nauk SSSR 6, 70 (1962) [Sov.
Phys. Dokl. 6, 988 (1962)]; Phys. Lett. 72A, 255 (1979); J.
Phys. F 13, 975 (1983); Phys. Status Solidi B 123, K183
(1984).

19A. Lightman and O. Gingerich, Science 255, 690 (1992).

20J, E. Hirsch and F. Marsiglio, Phys. Rev. B 39, 11515 (1989);
F. Marsiglio and J. E. Hirsch, Phys. Rev. B 41, 6435 (1990);

D. Rainer, Physica

Physica C 165, 71 (1990).

213, E. Hirsch, Phys. Lett. A 134, 451 (1989); Physica C 158, 326
(1989); Chem. Phys. Lett. 171, 161 (1990); Phys. Rev. B 43,
11400 (1991); J. E. Hirsch and S. Tang, Phys. Rev. B 40, 2179
(1989).

22A preliminary discussion of the application of this model to
the transition-metal series was presented in J. E. Hirsch and
F. Marsiglio, Phys. Lett. A 140, 122 (1989); further details of
this work can be found in X. Q. Hong, Ph.D. thesis, Universi-
ty of California, San Diego, 1992.

233, C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).

24D, A. Papaconstantopoulos, Handbook of the Band Structure
of Elemental Solids (Plenum, New York, 1986).

25B. W. Roberts, J. Phys. Chem. Ref. Data 5, 581 (1976).

26H. B. Schuttler, M. Jarrell, and D. J. Scalapino, Phys. Rev.
Lett. 58, 1147 (1987).

27F. Marsiglio, Physica C 160, 305 (1989).

28Y. Suhl, B. T. Matthias, and L. R. Walker, Phys. Rev. Lett. 3,
552 (1959).

29X. Q. Hong and J. E. Hirsch, Phys. Rev. B 45, 12556 (1992).

30y, Z. Kresin and S. A. Wolf, Fundamentals of Superconduc-
tivity (Plenum, New York, 1990).

31F, Marsiglio and J. E. Hirsch, Physica C 159, 157 (1989).

32D, K. Finnemore, T. F. Stromberg, and C. A. Swenson, Phys.
Rev. 149, 231 (1966).

33M. Tinkham, Introduction to Superconductivity (McGraw-
Hill, New York, 1975).

343 E. Hirsch, Physica C 199, 305 (1992); 201, 347 (1992).

35B. T. Matthias, Phys. Rev. 92, 874 (1953); F. E. Hoare and B.
Yates, Proc. R. Soc. London Ser. A 240, 42 (1957); D. W.
Budworth, F. E. Hoare, and J. Preston, ibid. 257, 250 (1960).

36C. M. Hurd, The Hall Effect in Metals and Alloys (Plenum,
New York, 1972).

37C. M. Varma and R. C. Dynes, in Superconductivity in d- and
f-band Metals, edited by D. M. Douglass (Plenum, New
York, 1976), p. 507.



