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Variational theory for the pinning of vortex lattices by impurities
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We derive a variational replica-symmetry-breaking theory for the effect of random impurities on equi-
librium properties of general ordered (crystalline) structures, in particular two- and three-dimensional
vortex lattices and magnetic bubble films. We investigate the role of a finite correlation length for the
random potential and show that the short scale behavior of the correlation functions corresponds to the
results of Larkin and Ovchinnikov. For larger scales, we find that the translational correlation functions
decay as stretched exponentials with exponents, which take different values: one must distinguish be-
tween a regime where the typical displacement is much smaller than the lattice spacing and a regime
where it is much larger. We predict that, in the absence of dislocations, long-range orientational order is
maintained in three and two dimensions. Our results appear to be in agreement with existing experimen-
tal data.

I. INTRODUCTION

In the past few years, considerable progress has been
made in describing the infiuence of quenched impurities
on the properties of ordered systems. Theoretical con-
cepts which emerged from the study of spin glasses,
random-field magnets, and polymers in random
landscapes can now be usefully transposed to many other
situations. One example, which we shall study in this pa-
per, is the classic problem of the effect of impurities on
the Abrikosov lattice of vortex lines in type-II supercon-
ductors. Although many important ideas have been put
forward since the seminal paper by Larkin' in 1970, the
present theoretical description is still not satisfactory, in
particular because the widely used and exactly soluble
model introduced by Larkin has unphysical features,
which we shall describe below. Furthermore, detailed ex-
perimental observations are now available through high-
quality Bitter decorations of (bulk) high-temperature
(HT) superconductors, the interpretation of which might
require rather precise theoretical predictions. Indeed, a
convincing statistical interpretation of the observed dis-
torted lattice could provide indications on the pinning
mechanism (i.e., the nature of the "impurities") and thus
a better understanding of the transport properties of
these materials. The two-dimensional (2D) (thin film)
version of this system is closely related to lattices of mag-
netic bubbles on disordered substrates, for which experi-
ments have also been reported very recently. Other sys-
tems such as pinned charge-density waves also bear a
strong resemblance to disordered Aux lattices. '

In this paper we analyze a realistic model for pinned
lattices using a variational replica-field theory. This gen-
eral approach to the study of the equilibrium impurity-
induced deformations of any ordered (crystalline) struc-
ture, some aspects of which are discussed in Sec. IV B,
was introduced recently for the related problem of a

"directed manifold" in a random potential. The results
we obtain for certain observable quantities are quite
different from those derived using the Larkin model and
appear to be in good agreement with available experi-
ments. A Letter describing some of the results explained
here has previously appeared.

II. MODEL AND SUMMARY OF THE RESULTS

The model we choose to focus on is the triangular
Abrikosov lattice of vortex lines in three dimensions in-
teracting with randomly located impurities. Generaliza-
tion of our results to other dimensions (in particular to
thin films) is not difficult and will be given in Sec. IVB.
The situation we want to describe is that of a
dislocation-free, "solid" array of Aux lines, for which the
energy of small distortions is given by the following elas-
tic Hamiltonian H„„„,(see, for example, Ref. 8):

=1H„„„,=— d xdz (C„—C66) gB uelastlC

+C«y (a.u, )'+C„y (a,u. )'
a, P

where o. and P are indices denoting the (in plane) x and y
directions. x and z are "internal" coordinates labeling
the vortex lines in the xy plane and z direction and coin-
cide with the unperturbed position of these lines. The
field u(x, z) is the displacement in the xy plane of the vor-
tex line from its equilibrium position, and C», C66, and

C44 are the bulk, shear, and tilt moduli, which might in

general be wave vector dependent. For definiteness, we

consider here the three-dimensional problem. The two-
dimensional case is obtained by dropping the z integral
and setting C44 =—0.
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This elastic Hamiltonian does not describe a possible
entangled, liquid phase. The fact that we neglect the
presence of dislocations restricts our theory to high-
vortex-density regimes where the distance between dislo-
cations is large. ' Recent attempts at including the
effects of dislocations can be found in Refs. 10 and 11.

In the original Larkin model, as well as in subsequent
elaborations on it, ' ' ' the presence of impurities is de-
scribed by a pinning Hamiltonian

H„,„„;„=f1 x dz u(x, z) f(x,z),

in which each vortex is subject to an independent random
force. This exactly soluble model is rather unrealistic
since two different vortices which wander to the same
point in space at different times "feel" diferent pinning
forces when they are at that point: The random force is
assigned according to the label of the vortex (x,z) and
does not depend on its position in space, r. A related
consequence of this form of disorder is that there are no
metastable configurations of the vortex lines: The
minimum of [H,~„„,+H„„k;„](u)is unique and can be
explicitly constructed for any given set of forces. As we
shall see below (and as previously recognized by
Feigel'man et al. ' ), Larkin's model may be justified at
small length scales, but fails to describe the correct phys-
ics at larger length scales.

In our model we use the same elastic Hamiltonian (1),
but take a pinning potential that depends on the position
in space of the vortices. For technical reasons only, it is
convenient to consider a general model where the pinning
potential also depends on the "internal" label x. We take
care to include the discrete nature of the vortices: The
labels x build a triangular lattice of spacing ao. The posi-
tion of the vortex line labeled x is r(x, z) =x+u(x, z). We
are interested in the case where the displacement field u is
smooth on the level of one lattice spacing
[~u(x+aoi) —u(x)~ &&ao] so that we can still safely use
the continuum model (1}for the elastic energy. The pin-
ning potential is now

H;„=f dz g V(r(x, z), z, x), (3)

U2

Q2
exp

(r —r'} (z —z'} ~x —x'~

26„„26, &o

(4)

where the overbar denotes a disorder average. U is the
square of the typical interaction energy between impuri-
ties and the vortex core, while 6 and 6, are the correla-
tion lengths in the plane and z direction, respectively. In
what follows, all distances (including the displacements

where V is a Gaussian random pinning potential with
zero mean. In the case of a layered superconductor with
the field parallel to the layers, an extra pinning term
should be added to describe the periodic modulation im-
posed by the layers. This leads to an interesting phase di-
agram (see Ref. 16). We assume

V(r, z, x) V(r', z', x')

with z =0. 8 measures the growth of fluctuations with
distance and behaves in general as a power law =x for
large (v is generally called the "wandering" exponent). It
is directly related to the translational density correlation
function measured on Bitter patterns (see Sec. V).

Our final results for the three-dimensional case are
summarized in Fig. 1. When the correlation length of the
potential is small compared with the lattice spacing
(6=—4„~/ao &&1), we find three different regimes, de-
pending on the order of magnitude of B (in the following
qualitative presentation, we ignore the tensorial nature of
B ). At short length scales, we recover the results of Lar-
kin and Ovchinnikov

B(x)-b (6a)

for 1«x «gz, with gz=b, C6 C4~ /Uz. Here and in
the rest of the paper, we shall assume that C& &&C6, i.e.,
that shear is much easier than compression, which is thus
avoided in low-energy configurations. At intermediate
length scales gz «x «g', we find the same behavior as
for the n =2, d =3 "random-manifold" problem, for
which one has (within the replica variational theory)

1/3

B(x)— (6b)

u) will be written in units of ao in the xy plane and in

units of 6, in the z direction. We introduce

C& =—C&&aoh„C6=C66aoh„and C4—=C44aoh, ', which
have dimensions of an energy, and define
8'= (2—vr) U h„ao, which has the dimension of an en-

ergy squared and is a natural measure of the strength of
the disorder.

For convenience, we have also introduced in (4} an
"internal" correlation function f (x), which serves as a
regularization for some intermediate steps of the compu-
tation. This function is supposed to behave as x for
large x; the physical limit we are interested in is A, ~O,
since all the vortex lines "see" the same pinning poten-
tial. It is interesting to note that if f (x}were instead a 5
function, our model would become identical to a d =3 di-
mensional directed manifold with n =2 transverse com-
ponents in a random potential (see, e.g., Refs. 6, 15, and
17), where each particle "sees" an independent pinning
potential. Larkin's random-force Hamiltonian (2), on the
other hand, is an approximation of the real pinning po-
tential (3), which is valid only for very short length scales
(such that the typical displacements of the vortices are
much smaller than both the correlation length of the dis-
order and the lattice spacing, as we shall see later). In
this paper we shall mainly concentrate on the behavior at
large length scales, where the random-force approxima-
tion is not valid and the existence of many metastable
states becomes crucial.

The quantity we shall be most interested in is the in-
plane displacement correlation function, defined as

B &(x,z)=([u(x, z) —u(0, 0) ][u(x,z)&—u(0, 0)&]),
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B(x} one finds z —(QC4/C6)x and hence the short-distance
result

U2
B (x) u 2 x P ( —1/2( —3/2

4 6

- c&}zc3/2

W

FIG. 1. Schematic plot of the growth of the fluctuations with
distance, B(x), showing the three regimes discussed in the text:
short-distance regime, where B(x) « 5', where Larkin' s
random-force model is justified; the intermediate-distance re-
gime 1»B(x)»h, where the random-manifold exponents are
expected; and the asymptotic regime B(x)))1, where new ex-
ponents prevail.

In the second (intermediate) regime, the typical displace-
ment is much larger than 5, but much smaller than the
lattice spacing ( = 1). Hence vortices do not wander
sufficiently far to "realize" that they are all subject to the
same potential. The random potential is effectively in-
dependent for each vortex, and the problem is indeed
equivalent to an n =2, d =3 random manifold, for which
the variational theory predicts v= —,'. Finally, in the last

regime x »g, the displacement is much larger than the
lattice spacing, allowing many favorable configurations,
differing by a local translation of the lattice, to exist. A
modified Imry-Ma argument can be used to recover the
long-distance result given in Eq. (6c). For a random po-
tential (rather than a random force), one writes the ener-

gy as

with now g—= Cs/ C4 /IV. Finally, at large scales
x »g, we obtain, in the physical limit A, =O,

' 1/2

'2 2

5E= C6 — +C4 — x z —U~&lnu (x z)'

(7b)

B(x)—
lnx

(6c)

U
x z — u(x'z)'" .

The potential energy is indeed the sum of x z independent
terms of order (U /b, )u. Minimizing the energy cost,

In Eqs. (6) the precise numerical prefactors have been
omitted, and will be given below [Eqs. (49)—(51)].

Before entering the details of our variational calcula-
tion, we shall explain in simple physical terms the mean-
ing of the above results. In the first regime (x «g~), the
displacement u is much smaller than the correlation
length of the disordered potential b and thus also much
smaller than the lattice spacing. Hence one can expand
V(x+u) as V(x)+ f(x)u+ . ; we are in a region where
Larkin s Hamiltonian can be justified. The short-distance
result summarized in Eq. (6a} can be obtained using an
Imry-Ma argument (but see also Ref. 12) by minimizing
the energy of a given volume x z:

2 2

5E= C — +C (7a)
x 4

where the term &1n u expresses the fact that larger dis-

placements probe the tails of the Gaussian disorder and
hence improve slightly the energy gain. From the minim-
ization of the energy cost in Eq. (7b), one indeed finds

B(x)-u —(x/Jinx)' (with the correct power of the
logarithmic correction).

If the correlation length of the disorder were larger
than the lattice spacing, the intermediate random-
manifold regime would disappear and one would find, for
x «gg,

B(x)-4 4
with g~=b, "g=g~/h~, which would cross over to the
same long-distance behavior as given in Eq. (6c) for
x »(Ix.

Finally, while translational order is destroyed, we find

that in the absence of dislocations, orientational order
remains in three and two dimensions, contrary to the
findings of Chudnovsky. '

III. REPLICA VARIATIONAL THEORY

A. Saddle-point equations

To make analytical progress in computing the free energy F, we first average over the disorder using the replica
method. ' We find an effective replica Hamiltonian

H„=—g fd xdz (C, —C ) gB u' +C g(B u$) +C g(B,u'}1

2 a a aP a

g g f dz 5' '[x+u'(x, z) —x' —u (x', z)]f(~x—x'~ },
2T b t

(9)

where T is the temperature and a and b are replica indices which run from 1 to n,. We have also taken, for simplicity,
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the limit h„„,b,, «ao and replaced the Gaussian correlation function appearing in Eq. (4) by a 5 function, which is

justifiable if we focus on distances much larger than ao. The modifications due to a finite correlation length will be con-
sidered in Sec. IV C.

Our method is to find the best quadratic approximation of the Hamiltonian (9) in the limit n =0. We take, as a trial
Hamiltonian (in Fourier space),

d d
H =— 'qq, G ', qq, &

—q, —q,2 (2m') ab

(10)

and use the convexity inequality F(G)=Fo+—(H„Ho—)0 ~ F to find the best G, minimizing F(G). (The notation (( A )o
means that we take the average of A over the trial Hamiltonian Ho. )

It is convenient to define

8'p(x) = ( [u (x,z)' —u(O, z) ][u(x,z)p —u(O, z)p] )0 (11)

and to decompose G'p(q) and 8'p(x) into their longitudinal and transverse components in the standard way. For ex-
ample,

G:p(q q, }—= ~.p — GT'(q, q, )+ GL (q q, }
qp b q qp b

q q

From their definitions [Eq. (10)],8 is connected to G by the equations

d qdq,
BI' (x)=Tf '

[[Gl"(q,q, )+Gl (q, q, ) 2GL (q,—q, )c so(q. )x]c so(t2

+[Gf'(q, q, )+Gr (q, q, ) 2Gf. (q, q, )c—os(q x)]sin PJ .

(12)

(13)

(x = ~x~, q = ~q~, and ()(( is the angle between q and x.) The corresponding formulas for the transverse components Br
are obtained by inverting the roles of cos P and sin P. Using the fact that, within the variational ansatz, I u(x, z)' } are
Gaussian variables, the trial free energy F(G) is easily found to be

F(G) T d qdq, g (C, q GI". (q, q )+Cbq GP(q, q, )+C4q, [GL'(q, q, )+Gf-'(q, q, )]V 2 (2m)

—[ln[TGr(q, q, )]]"—[ln[TGL (q, q, )]]"}
1 —x ~/28 ub(x )

e (x),
(2n. )[8' (x)8' (x) ]'

where Vis the volume of the system.
G is chosen to minimize F(G) and thus satisfies

BE(G)
BG,bP(q, q, )

which leads to the saddle-point equations

—x l2BL (x) 2 2
z 2 W e f(x) ( )&

sin(I) cosP
2~T ~ [Baa( )Baa( )]1/2 ' Baa(x) Baa(x}

[8' (x)8' (x}]' 8' (x) 8' (x) 8' (x)

X1—
BL'(x )

(14)

(16a}

and

[Gi '].~b(q q. )=—
/2B ( )

cos(q.x
[8ab(x )8ab(x ) ]1/2 8 ab(x ) 8ab(x }

X

BI' (x)
(16b}

Similar equations are obtained for the transverse com-
ponent G&, with C6 replacing C& and by inverting the
roles of cos ()5 and sin P. As always in the replica
method, one must take eventually the limit n ~ 00.

The disorder average of the fluctuations is determined

I

from the diagonal components of 8; for example,

2

Bz(x(=Bz'(x(=( [u(x, zl —u(O, z(].—
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while the thermal part of the fluctuations is governed by
the "connected" part G' of G, defined as

i&

V(x)

GL, , T(q 'q ) GL„T(q q. )+ g GL", T(q q
a&b

which satisfies the relation

1

(GL T)'(q, q, )

(18)

(19)

(GL r)'(q O, q, )=CL rq +C4q, , (20)

thereby defining the renormalized bulk and shear rnoduli.

(The notation GL T is just an abbreviation for two equa-
tions, one for Gt and one for GT.) From Eqs. (16) one
readily sees that, in general,

/
/

/

RS

RS
(b)

B. Replica-symmetric solution

The simplest solution to the saddle-point equations (16)
is the replica-symmetric one, obtained by setting 6 =G"
and 6—:O' . To invert the corresponding OXO ma-
trices, one uses Eq. (19) for G'=—G —G and
(G ')' = —G/(G') . From Eq. (16b) one finds that, in
the small-q limit,

gL„T
L T LT (C p+C 2)i

4qz
(21)

where gL r are constants. It is easy to see, using Eq. (13),
that this q divergence induces a linear growth of B(x)
with distance: 8(x)=(x/g„s) ", with v= —,

' [and more
generally v=(4 —d)/2]. This is precisely the result
found in Refs. 12 and 13, using the Larkin model. How-
ever, the correlation length gas which we obtain in this
replica-symmetric approach is proportional to
(QCL/C~)T /Wand thus goe's to zero at T =0, which
is clearly unphysical (fluctuations would diverge on all
length scales). This solution must therefore be discarded.
In any case, the instability of this solution to replica-
symmetry breaking can be demonstrated along the lines
of Ref. 6.

C. Replica-symmetry broken solution

Following the work of Ref. 6, we look for a replica-
symmetry-broken solution. Before entering the technical
aspects of this procedure, let us recall, following Ref. 6,
its physical interpretation within the present variational
approach. For graphical convenience we shall imagine
that the phase space of the problem is one dimensional;
the energy landscape can be, very schematically, of two
types. In Fig. 2(a) is represented a single-well potential
and the best Gaussian approximation to the Boltzmann
weight, which represents a reasonable approximation.
For a disordered potential such as the one drawn in Fig.
2(b), many nearly degenerate minima exist. The descrip-
tion of the system with a unique Gaussian is clearly
inadequate —the weight is scattered among well-
separated minima. The replica-symmetric solution to the
variational equations is an attempt to describe a given
disordered sample with a unique Gaussian centered

FIG. 2. Two di6'erent types of energy landscapes: (a) single-
well potential, for which a Gaussian approximation is reason-
able, and (b) the situation where many degenerate minima exist,
and the description of the Boltzmann weight by a unique Gauss-
ian (the center of which is optimized) is clearly very bad
(replica-symmetric solution).

around a sample-dependent point. The position of this
point for different samples is itself distributed according
to a Gaussian. The two variational parameters (corre-
sponding to the diagonal element G and to the unique
oF-diagonal element G introduced above) are thus the
width of the two Gaussians: one for the thermal fluctua-
tions inside a given sample, the other for the sample to
sample fluctuations of the average position.

As detailed in Ref. [6], the replica-symmetry broken
solution permits a much more versatile description of the
system. The Boltzmann weight for a given sample is ap-
proximated by an (infinite) sum of Gaussians, the height,
width, and position of which are parametrized by a whole
function on the interval [0,1]. The variational calculation
is used to determine this function. Although the con-
struction implied by Parisi's breaking scheme cannot
reproduce all distributions of Boltzmann weights, it was
shown for the case of random manifolds that the main
physical features of the problem were correctly caught by
this ansatz.

Technically, G' (q, q, ) is chosen to be a hierarchical
matrix, which, in the limit n =0, is parametrized by a
function G(q, q„u), where u is a continuous variable
0~ U ~ 1. The hierarchical organization of the matrix is
in correspondence with a hierarchical organization of
low-lying configurations. From the physical interpreta-
tion [see, e.g. , Ref. 6, Eq. (6.8)], T/u can be thought of as
a free-energy difference between two low-lying
configurations at a level of the hierarchy characterized by
the number u. These (0X0) hierarchical matrices obey a
well-defined algebra; we will need, in particular, the rule
for inverting such a matrix, which is summarized for
completeness in Appendix A.
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The long-distance behavior is dominated by the regime

q «1, u «1. The scaling solution of the stationarity
equations (16}, which we shall describe below, has
different behaviors depending on the ranges of q and U

with respect to some crossover values v' and qt' T (there
are different momentum crossovers for GL and GT), given

by

C~C ' (C4C CL r)'
(22}

Our study is restricted to the case of low temperature and
weak disorder (small W) for which qL" T «1 and v' « 1.
Furthermore, we shall keep, for simplicity, to the physi-
cally relevant case where CT«CL. The solution we
have found for each propagator GL (q, q„v) and

GT(q, q„v) has two main scaling regimes (Fig. 3). Re-
gime A corresponds to U « v' or q «qL T. We shall call
it the long-distance regime since it will turn out to dom-
inate the long-distance correlations of flux-line displace-
ments. Regime B, the intermediate-distance regime, cor-
responds to 1&)v))U* and 1&&q&&ql*T. In regime A
we have found a solution of the type

+ co

dq, GL r(q, q„v )

T 2+ 2v r

v/v'
(q/qz' r )

(23)

where

1+U
2/co —1/2

0 p 2
(24)

+ aa N
dq, GL T(q, q, )=

T(qT* }
h„( ac ), (25)

for q «qL'T, and a similar expression with v, co, and N
replaced by v', co', and N' for q ))qL, T.

To establish that Eqs. (23)—(25} give a solution to the
saddle-point equations and to determine the exponentsv" and co" and numbers N", we shall proceed as fol-
lows. From the saddle-point equation (16b), one deter-
mines the off-diagonal part of the inverse of 6, which we

and N is a pure number, which we shall determine to-
gether with the exponents v and co (v, tv, and N are equal
for the two propagators GL and GT). A similar solution
is found in regime B, with a different set of exponents and
constant: v', ~', N'. The exponent v governs the Quctua-
tions of vortex displacements, while ~ turns out to be the
"energy" exponent, governing the growth of free-energy
fiuctuations with distance. Indeed, as T/v is a free-
energy difference AF between two low-lying
configurations, the scaling variable v /q" means that for a
given length scale L =q ' one should compare hF to L"
(co is also called 8 by Fisher and Huse' ).

As for the diagonal part of the propagator, G(q, q, ),
the solution behaves as

' 2+2v

q
i

V l'Liibl

q%

Ilu'

I,-Vs

~xiy i1/g I

I

Iilq, G(q,V)" (b)
22+29)

mq T'

(qiqN}4& V/V~

)~q, G(q,V) (c}
32+&1))

(qtq )
'

Y/V'

will denote as —X (X is a "self-energy"), in terms of B.
With the help of Eq. (20) giving the connected part of G
in the small-q limit, 6 can be constructed from X using
the inversion rule mentioned above. Using Eqs. (23), a
self-consistent equation for G is obtained. Let us
proceed.

1. Sma/1-v regime v && v

From the assumed form for the propagator given in
Eq. (23) and the definition (13), one finds that B is (for
CT «CL, i e , ql «qT). .

BL T(x, v)=
2v/co

bL r[qL r(V/V ) x ]

x »1, (26)

FIG. 3. (a) 06'-diagonal propagator (integrated over q, ) is a
function of the transverse momentum q and the replica parame-
ter v. In the limit q «1, v « 1, there are three main scaling be-
haviors of the propagator [see Eq. (23)]. In the long-distance re-

gime A, it is characterized by the exponents v and co given by
Eq. (34). In the intermediate-distance regime B (q » q
v )&v ), the exponents v' and co' are given by Eq. (46). In re-

gime C the propagator is exponentially small in q(v /v)' ".
Also shown are the crossover lines q/q*=(v/u*)' " (dashed
line) and q/q =(u/u )' " (dot-dashed line). Note that the
propagator integrated over q (i.e., the one governing the proper-
ties in the z direction) also depends on the value of q, QC4/C6.
(b) and (c) Shape of f dq, G (q, q„v}for a fixed q, as a function of
v: (b) q & q* and (c) q & q*.
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with

bL(r)=2N f d k 1

(2')' k'+'"

( ao )
—h„cos(kr cosP) sin (P)

N 2

where

e(b )co/2v (28)

(29)

Upon the change of variables z =x( v /v, )', one finds

(2+ A, )v/co V/CgJ

W v U

XL T(q, v)=
U

L, T

(P is the angle between the integration vector k and one
axis} and br(r) is obtained from bt (r) by changing
sin (P) into cos (P). We suppose that v is so small that
BL r(x = 1,u) ))1. This is true for u much smaller than

where

at (t)—= —f e ' [(1 z—)cos /+sin P]z
2 dz —z/2

v'3 2m

Xcos(tz cosP) (30)

[q
e

( v /v e )I/cu] Ice/2v

We shall find that v, is of order v' and

bt. r[qL T(u, lv')' ]=bt y'(0)=bp .

In this regime the argument of the exponential in Eq. (16}
is small in magnitude when x is not too large. Hence a
large number of terms will contribute to the sum in the
right-hand side of (16b), which we approximate by an in-
tegral. The exponential damping starts to be important
when [Xt., r](q u)= v

8' v

C

' (2+A, )v/co

&LT
C

V/CO

and similarly for cr T by inverting the roles of cos P and
sin P. Note that at (t) goes to a constant for small t and
decays quickly to zero when t ~ ~.

In order to compute the propagator Gt r(q, q„v), we
must now invert XL r(q, u} in the sense of hierarchical
matrices. As recalled in Appendix A, this inversion re-
quires the knowledge of the "connected" propagator
Gt' T, which has been derived in Eq. (20), and of the
"bracket" transform (defined in Appendix A) of XL „,
which is equal to

The condition ( u /u '
)
'/ qt* rx, « 1 is automatically

satisfied when v «v' since v&1. Hence, for all x con-
tributing to the integral (16b), one may write

bL T[qL*T(v lu*)' x]=br (T0)=bp

(31)

where

&L T(t)=oL r(t) dw w—' + '" oL 7(tw "
) .

1

1 7 0 t

and

BL T(x, v)=(u/v )
t C

The propagator GL r(q, q„v) can now be read from Ap-
pendix A, and the q, integration gives

f dq, GL, T(q q v)= 1

q+C C " [1+[Xt r](u)ICL Tq ]' P w [I+[XL r](w)/CL Tq ]'

(33)

Let us now focus on the regime (q, u)~0 with a fixed ratio v/q . For v&1, q(v/u, )
/ goes to zero in this limit, and

0 L T can be replaced by a constant 8(0},identical for L and T components. A look at Eq. (33}then shows that in this
regime, fdq, G(q, q„v) is indeed of the form assumed in Eq. (23) upon the following identification: 2=~+(2+A, )v,

co=l+2v, and N / =(bp) / " ' "0(0). 0(0) and bp are computed in Appendix B. Our final result is, therefore, in

this long-distance regime,

1 6+k
4+k ' 4+X

- —(2+X)/(4+X)-
1 2+A, gP 1

A
2

—g/2
2v'3 4+x

2/(4+ A, )
(34)

Note that the relation co=1+2v relating the energy and
wandering exponents can, in fact, be obtained by a simple
scaling of the elastic terms of the Hamiltonian. The self-
consistency of the assumption for the diagonal part of the
propagator given in Eq. (25) will be checked after the

study of the v » v* regime.
Before turning to this v » v* situation, let us note that

the only additional hypothesis we used to derive (23) in
the regime v « v" is the replacement of q (u/v, )

' by
0 in (32). This hypothesis is wrong when
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q & qb
= ( v /v, ), and this defines a small region ( C in

Fig. 1), where it turns out that [X]L T and thus GL T are
very small. (They go to zero exponentially when one
departs from the boundary line q =qb. ) We shall not
need to compute GL T more precisely in this region since
it will not give any contribution to the physical quanti-
ties.

BL (O, v)=BT(O, v)=
U

which implies

X (v}= v'

2v /co

4v'/co'

bo, (36)

2. Intermediate-v regime

In this case the argument of the exponential appearing
in (16b) is already large when x = 1. We thus only retain,
in the sum in the right-hand side of (16b), the very first
term x =0. Hence

W 1
XL r(v)=

2n T B~ T(0, v)~
(35)

The saddle-point equations are thus of the same form, in
this regime, as those obtained for the random-manifold
problem in Ref. 6.

We shall see below that BL r(0, v) takes the form

In order to compute the propagator, we need the bracket
transform [X]z T(q, v), which also receives some contri-
bution from the regime U & U*. However, it is easy to see
that this contribution is negligible, so that

' 4v'/a)'

[XL T](v)= . . . v
2~Th' +4v U'

(38)

The inversion formula (33) giving J dq, GL T(q, q„v) still

holds. Again, this formula involves an integral over w

between 0 and U, which we subdivide into a contribution
from the region [O, v'] and another contribution from
the region [v ', v ]. Thus we write

fdq, GL (rq, q„v)=Gz' (Tq)+G L (Tq, }v,

7T dw 1

q+C C 0 w (1+[XL,7](w)/CL Tq J
rr2

1 1 dw 1

v [1+[X,T](v)/C, Tq']'" "w' [I+[XL,Tl(w)/CL„Tq']'"

(39)

Let us first consider the case where q »qL' T. Then it is clear that GL T(q, v) takes back the assumed scaling form (23),
provided that

'2
2=co'+4v', u' = 1+2v', (N') 1 4v' 1

2m a)'+4v' ho
(4$

In this same regime q &&qL*, T, GL T takes the form
'3

GL', T(q}= qL„T

T(qT')' 2(2—co)
(41)

and one can check that this is indeed much smaller than GL T, which proves the validity of the solution with parameters
v, co', N' in the regime q ))qL T, U ))v*.

When q «qL" T (but still v »v"), one finds, on the contrary, that G «G . This regime is still dominated by a
scaling form (23}, but with the parameters v, m, and N of the v «v regime. One easily checks that within this hy-
pothesis one gets G =n/(v*q+C4. CL T), which is much smaller than G, so that, in this regime,

' 2+2v

f qL., T
dq, GL T(q, q„v)=

T(qT*)'
b (oo) . (42)

The last missing step is to compute the value of N' from (40). We need b 0, which is derived from

B (0,v) =XL (v)+ST(v),

dq, [GL r(q, q, ) GL„T(q,q„v ) ] . —
(2m. )'

(43)

It is convenient to use the sum rule (A5) of Appendix A to express GL T(q, q, ) —GL T(q, q„v). Performing the q, in-
tegration, we get

2V C&CL T 0 2~ v[1+[XL T](v)/CL Tq ] w [1+[XL z. ](w)/CL T
(44)
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This q integral must be divided into two pieces q & qL T and q )qL T since [X]L T takes different forms in these regions.
One finds that the small-q integral is much smaller than the other one, so that

2V /63

XL T(U)= (N')' "
21/ C4CL T

dk 1 p du 1

o 2~ (1+k —2)1/2 J
1 u2 (1+k —2 2/co')1/2 (45)

Denoting by K(co') this last integral (computed in Appendix B), this gives back the form (36) for 8(O, U), with
bo =(1/2)N" / 'K(oi'). From the self-consistency condition (40), we can now write the full set of parameters which
characterize the scaling solution for q ))qL T, U &)U':

v'= —' a)'= —' N'= —'m'v —6, 6) —3, —
3

7T (46)

Finally, we also need to check the self-consistency of the diagonal part of the propagator, f dq, GL T(q, q, ) in (25).
Appendix A provides the sum rule

f + QQ 1 t. & dU 1

(( 2)1/2 Jo 2 (( 2)1/2dq, GL T(q, q, )= +f 1

[CL, Tq +[XL,T](v)]'
(47)

We cut the U integral into two pieces u & U* and U & U*.
It may be seen that the first piece dominates when

q «qL*T, while the second one gives the dominant con-
tribution for q )&qL T. This gives back the assumed
form (25), with exponents v, co or v', co' depending on the
regime.

3. Prediction for the auerage fluctuations

I

of these constants are

IT = (2v+1)IL = IL,6+ A.

4+1, (51)

(C C3 )1/2

W
(4g)

The result is (see Fig. 1)

2V

X
L, T if x ))g,

BLT(x)= '

X
L, T

2V

if 1«x «g,
(49)

where IL'T are pure numbers, which are equal to

IL T=2Nh ( ~ )N, , (v) . (50)

[The integrals N, , (v), which come from the evaluation of
(13), are defined and computed in Appendix B.) The
values of IL T are given by the same expression as (50}
with co, v, N replaced by co', v', and N'. The final values

We are now in position to obtain the physical quanti-
ties of interest, namely, the displacements of the vortex
positions in the transverse plane. These are measured by
the displacement correlation 8 it(x) between vortex x
and vortex 0, defined in (5). This correlation is related to
the diagonal propagator GL T(q, q, ) through Eq. (13)
(with a =b) We just n. eed to substitute the solution (25)
for the propagator. In the limit CT «CI, the leading
contribution to (13) comes from the transverse propaga-
tor GT. The q integral in (13) is dominated either by the
regime q &(qT' (if qT*~x~ )&1) or by the regime q &&qT* (if

qT ~x~ (&1). We thus find two different scaling behaviors
for the correlation functions BL T(x), depending on the
relative values of IxI and the correlation length g:

IT =(2v'+1)IL = IL—
For x —g, BL T(x)—1, which means that the typical

relative displacement is of order 1. The change of ex-
ponents at this scale reflects the fact, anticipated in Sec.
II, that vortices start realizing that they are all standing
in the same landscape when they can be moved by at least
one lattice spacing. Note that the ratio of BT to BL is
fixed in each regime and is equal to 2v+1, where v is the
effective exponent of the regime under consideration.
Three more remarks should be made.

(i) The whole computation, based on linear elasticity,
only makes sense if B(1)« 1, i.e., g » l.

(ii) The growth of the fluctuations in the z direction
(along a vortex), defined by Eq. (5) with x=O, depends on

the combination Q(C6/C4)z. If Q(C6/C4)z «1, the
interactions between the vortices (i.e., C6) can be neglect-
ed and the vortices behave as isolated directed polymers in
a random environment, for which d = 1 and n =2.

2VDp
Within our approximation we thus find 8(z)=z, with

vDP= —,'. (Numerical simulations and the conjecture of
Refs. 15 and 17 suggest rather vDP-——,'.) In the asymptot-

ic regime (QC6/C4)z » 1, 8(z) is simply obtained from
8(x) by substituting x with (QC6/C4)z (up to a numeri-

cal prefactor).
(iii) The reduced structure factor S(q)

= f+"dq, S(q, q, ) can be obtained by noticing that the

vortex-density fluctuation 5p is related to u through
6p= —(g 8 u }. Hence the deviation of S(q) from a
usual Brag g-peak structure is given by
6S(q) =q j+"„dq,G(q, q, }. In particular, S(q) =q
(q~0).
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4. "Connected" equation
and the renormalized elastic moduli

We are now in position, using Eqs. (16), (18), and (20),
to estimate the shift of elastic moduli induced by the

I

presence of the random potential. Let us first note that
this shift is strictly zero for the "random-manifold" case,
where the disorder is uncorrelated from vortex to vortex.
This can be proved along the lines of Refs. 20—22, but
can also directly be seen in Eqs. (16) and (18) using

f (x)=5(x), since

—x /2BI (x)

%0 /8 (x)8 (x} 87.(x) Bt.(x) Bt.(x)

—x ~/2g (x )

~0 QB (x v)8 (x v) Br(x, v) BL(x,v) 8~(x, v)
(52)

(and similarly for Cr). In the opposite case f (x)=1, one
cuts the v integral into two pieces (from 0 to v" and from
v' to 1). The first piece may be seen to be positive, of or-
der (W/T)v'=Cr/g. The second piece may be shown
to be of order exp[ —(g ")]«1, using the fact that, for
v &v', 8(x,v)~8(x) as T~O. Hence, in the limit

g)&1, we find

d=3

Bt(x)= '

3I ( —')
3 X

7~2/3
' 1/2

2 A,x
3) /45

1/3
X=0.27

=0.43

if x «g,
1/2 (54a)

if x )&g

EC] AC6 C6
CC CC +

C) C6 g2
(53) and

which shows that disorder tends to slightly stiffen the lat-
tice.

IV. RESULTS

~48L (x) if x «g,
BT(x)= ', —

—,'BL(x) if x &)g . (54b}

A. Predictions in d =3 and in the physical limit A, =O
Note that the logarithmic correction can be guessed from
an Imry-Ma argument [see Eq. (7)].

1. Limit A, =O

We now examine the physical limit where the random
potential is the same for all the vortices. Thus the corre-
lation function f defined by Eq. (4} does not depend on
x —x' and hence A, =O. This limit is slightly subtle be-
cause N vanishes: N-VA, [see Eq. (34)]. But then the
prefactor of B(x) [see Eqs. (49) and (51)] also goes to
zero, while the exponent v=1/(4+A, ) increases. What
happens in this limit is that the different quantities do not
have pure power-law behaviors, but that logarithmic
corrections come into play. These logarithmic terms can
be obtained through the following arguments. From
physical intuition it is clear that the more correlated the
potential is, the larger the fluctuations, since a favorable
region is of interest to all vortices. Hence 8(x,A, ) should
be, for a fixed x, increasing when A, decreases. From (49)
we, however, find that 8(x, A, )-}(, ' +"'x ' + ' reaches,
for large x, a maximum when A, =4/lnx. What we claim
is that the correct behavior in the limit A, ~O is the en-
velope of the curves 8(x, A. ), which is obtained by assign-
ing to A, the x-dependent value 4/lnx. Another way of
understanding this procedure is to note that for a given
(small) A, the system cannot know whether the correlation
function of the disordered potential f (x) is constant or
actually decays until, say, x =2 or X-1/lnx. Comput-
ing all the numerical prefactors, we finally find that, in

( iK.[u(x) —u(())] )gg x —e 7 (55)

where K is an arbitrary vector. It is easy to show that
within our Gaussian ansatz, g)r(x} is given by

E
gK(x)=exp — [BL(x)cos 8+BT(x)sin 8]

2
(56)

where 8 is the angle between K and x. Thus we predict
that gK(x) should be a stretched exponential, with a radi-
al behavior depending on the (local) wandering exponent
v (=—,

' or —,') as exp( —x ). The angular anisotropy of
the correlation function provides an independent measure
ofv:

1ng&(x, 8=m /2) /IngK (x,8=0)=2v+ 1

(for large x). Another interesting quantity is the orienta-
tional correlation function, defined on a triangular lattice
as

(X) ( 6i[p(x) —p(0)] )g (57)

where (p(x) is the angle made by a given lattice direction

2. Consequence for the correlation functions

The translational correlation function is usually defined
as
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with a fixed axis: qr:——,'(B„u —8 u„). We find that—188,(x)
g6(x) =e " with

7 1 gdq
B,„(x)=— [1—cos(q x)]q GT(q, q, ) .

(2m )
(58)

B. Generalization to other dimensions: Discussion

From Eq. (23}, with the proper values of v, we find that
B,„(x) does not grow for large x and thus that the long-
range orientational order is not destroyed by disorder.
This was also the case for the Larkin model in three di-
mensions; the term "hexatic vortex glass" was coined by
Chudnovsky' to describe this situation where the
translational order is destroyed while the orientational
order is maintained. Note that we predict that
BB„(x)/Bxbehaves as x for large x.

V(r, x) V(r', x') = W5'"'(r —r')f( ~x
—x'~ ) (61)

' 2(4 —d)/(4+d)
XB(x)- (62)

for x «g=(C /IV), with Y= 1/(4 —d) (random-
manifold regime), and

and f (x)=x for large x. The main difference with the
vortex-glass case is the fact that u has d dimensions, in-
stead of 2 in the case of "lines. " The replica-symmetry-
broken solution again distinguishes two regimes, separat-
ed by a crossover value U*, which separates a random-
manifold regime from a "correlated" regime (by which
we mean that the fact that all "atoms*' evolve in the same
landscape is relevant}. The growth of the fluctuations is
then found to scale as

1. Case ofglms XB(x)-
' 2(4 —d)/(4+A, )

(63)
In the case of a bidimensional disordered solid (corre-

sponding, e.g. , to flux holes in thin superconducting films
or to magnetic bubbles on a disordered substrate ), de-
scribed by Eq. (9) with C4=0 and no z integral, similar
calculations lead to the final result

BL(x)= '

3I (2 }2
' '2/3

X

8 2/321 /3

if x «g,
g1/2X

2/3

=0.25
X

1 m

31/2
=0.32

P ln(x}

if x»g

(59a}

and

—',BI (x) if x «g,
BT(x }= '

2BL(x) if x »g, (59b}

with, however, a different expression for the correlation
length g(d =2)=—CT/3/W. Because we find v&1, the
orientational correlation function B„(x)does not grow
with x, and hence the orientational order is maintained
even in d =2 (always neglecting dislocations). This is at
variance with Chudnovsky's calculation, which leads to
g6(x}-x,where a is an exponent depending continu-

ously upon the strength of the disorder in the form
a ~ 8'/C~.

2. d-dimensional disordered solid

It is instructive to investigate the problem of a d-
dimensional (isotropic) elastic solid in a random potential
characterized by the Hamiltonian

H~= —Jd x C g 8 u +g V(r(x), x), (60)
1

a=1,d X

with, e.g.,

for x » g (correlated regime). The formula v
=(4—d)/(4+d), which we obtain in the random-
manifold regime, is a specialization of the general formu-
la obtained in Ref. 6 for a d-dimensional manifold with n

accessible dimensions in a short-ranged correlated poten-
tial:

4 —d
vMp 4+ (64)

4—d
4+n /2

(65)

which gives the correct result for n =d =1. The ex-
ponents obtained from (65} for the vortex-glass problem
are slightly higher than ours: v= —,

' instead of —,
' in d =3

and v= —', instead of —,
' in d =2. Let us mention that Fish-

er has put forward general arguments which suggest
that, in general, the random-manifold exponent obeys the
bounds

4—d 4—d
4+n v (66)

A calculation of Nattermann, based on the same
random-potential model [Eq. (3)] predicts v=0, i.e., a
very slow, logarithmic, growth of B(x}. We believe that
the difference between our results and those obtained in

Ref. 25 comes from an incorrect treatment of the poten-
tial energy in Ref. 25, which amounts to keep only sub-

leading terms and discard the leading term. As above, in

the limit A. =O, we find logarithmic corrections:

Here n =d, while in Sec. IV A, d =3, n =2. This formu-
la for v has the status of a Flory formula, since it can also
be obtained by imposing that both terms in (54) behave
similarly under rescaling. The exact value of v is not
known. The approximation vMP is clearly wrong for the
"directed-polymer" case ( n =d = 1), where v =

—,'.
Based on functional renormalization and heuristic argu-
ments, Halpin-Healy' and Feigel'man et al. ' have sug-

gested the formula
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(4—d) /2
X

B(x}
lnx

(67}

which is, again, the result obtained from a simple Imry-
Ma argument [cf. Eq. (7b)]. In all the above cases, our
theory predicts that the "energy" exponent co is related
to v through co=d —2+2v. While this relation is prob-
ably exact in the random-manifold regime, it is not obvi-
ous that it still holds in the correlated regime (see Ref. 21
for a related discussion).

C. Disorder with a nonzero correlation length

and the replica-symmetric exponents

Let us turn now to the case where the correlation
length h„=Lao of the disordered potential is finite, but
still much smaller than the lattice spacing a. Let us fur-
thermore focus on the random-manifold regime (x «g
and v & v'). The of-diagonal saddle-point equation (35)
reads, in this limit and assuming replica-symmetry break-
ing,

2mT [BL z(O, v)+b, )]
(68)

Since BL z (O, v) diverges for small v, one finds that there
exists a new crossover value v such that BL z (O, v) »b,
for v «v and BL r(O, v}«b, for v »v. From Eq. (36)
we find that

8 WT

C4C~
(69)

From Eq. (68) one thus finds that for v » v,

XL z.(q, q„v)= W/2mTA, while for v «v the previous
results are recovered. This modifies the computation of
the average displacements (Sec. IIIC3): There exists
now a large q, sho-rt scale regi-me in B(x): If
Crq'»[o']&M(v ) or x «gz=b g, one finds

(70)

which correctly crosses over to the random-manifold re-
gime [(x/g)' ] for x =x. We thus recover the perturba-
tive Larkin-Ovchinnikov (see also Ref. 26) exponent
vLQ (4—d)/2= —,

' if B(x)«6, i e , as lon. g. as the po-
tential does not vary wildly. As discussed in Sec. II, this
is reasonable, since in this case one may locally expand
V(x) and the perturbative results are expected to hold.

It is easy to show that the condition v &&U* coincides
with 6 ((1. In the other limit, the random-manifold re-
gime entirely disappears, and along similar lines one es-
tablishes the behavior given in Sec. II [Eq. (8)].

Note that the appearance of the "perturbative" ex-
ponents at small scales (when the correlation length of
the potential is nonzero) is probably very general and is
valid beyond our variational approach. It would be in-
teresting to observe this effect in the (1+1)-directed-
polymer problem.

V. EXPERIMENTS: VORTEX LINES
IN HT SUPKRCONDUCTORS

It is now possible to observe the arrangements of the
emerging flux lines over rather large regions of space:
Bitter patterns containing 10000 lines can be analyzed.
As the external field is increased, the density ao of the
flux lattice increases [(v'3/2)Ha o

=$0]. The elastic
moduli also increase with the field since (see, e.g. , Ref. 8)

C44, -C» =H /4~ and C66- (H,—2/8a H)H /4m. , where
K is the Landau-Ginzburg parameter (s =200 in those
samples) and H, 2 is the upper critical field. Taking the
distance between planes to be 6, =1.5 nm, we find that
the following order of magnitudes for the scaled elastic
moduli:

C4-—2. 1X10 K, C6-—6.7 K,
independently of H, and

Cl —-30H (K),
with H expressed in gauss. (C6 has been estimated here
for ~=200 and H, 2 ——10 G. Let us recall that
H /4m=6. 5X1.0 K/nm for H =1 G.)

The stiffening of the lattice with increasing field is ac-
companied by a gradual decrease of the density of dislo-
cations. For the H =69 6 picture, the distance between
dislocations appears to be significantly larger than the
picture size; and hence our dislocation-free description is
justified. Our basic predictions in this regime are (i) that
the translational correlation function decays as a
stretched exponential and (ii) that the orientational order
is maintained, both in three and two dimensions.

The truly asymptotic behaviors (i.e., beyond the dis-
tance between dislocations) cannot be addressed within
the present method. Some conjectures have been put for-
ward by Toner, ' but these are based on a model in which
the disorder is of the Larkin type. Another possibility
would be to follow the point of view taken in Ref. 11,
where the displacement u is decomposed into an elastic
and a dislocation-induced part, and a phenomenological
core energy for dislocations is introduced. Extension of
the variational approach to this description would be in-
teresting.

The data presented in Ref. 2, Fig. 2(a), concerns the
angle-averaged (gz(x) )e. The reported behavior is
indeed consistent with a stretched exponential with
2v-0. 4—0.6—a pure exponential fit does not go to one
at the origin as it must. It should be noted that the
effective correlation length g,ft defined by the distance for
which (g~(x})e=e, which is found to be —10 (in lat-
tice spacing units) is considerably smaller than the "bare"
dimensional correlation length g of Eq. (48): In Ref. 2, K
was taken to be a first reciprocal-lattice vector of magni-
tude 4m /3, which means that (using our three-
dimensional results [Eqs. (54) and (56)])

/=[64m I ( —', ) /27]$,$8=0)=570/,$8=0),

so that, at least for these experiments, where the max-
imum length is =50 lattice spacings, we are presumably
in the random-manifold x «g regime, where 2v= —,'.
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This is comparable to the value which can be deduced
from the experimental curve of Ref. 2. A few words of
caution are, however, needed here.

(i) First, as we have emphasized in Sec. IVB2, our
value for v is not expected to be exact, but it should be a
good approximation to the true v.

(ii) Second, it has been recently argued in Ref. 14 that
I

nonlocal elasticity (i.e., the dependence of elastic moduli
on q, in particular C44) should be important in these sam-

ples, especially at "small" scales —x not much larger
than 1. Such nonlocal corrections could be included if
necessary. In the random-manifold regime, these correc-
tions are easily obtained using the sum rule (A5) of Ap-
pendix A for G:

G, ,(q, q, )=, , 1+J
CI. rq +C4(q, q, )q, o w Cz rq +C4(q, q, )q, +[o](w)

(71)

with (for example, see Ref. 14)

C4(q, q, ) =C4(0,0) 1

1+it (q +q, )

and [o] given in Eq. (3g).
(iii) Last, it has been argued by Huse~ that emerging

fiux lines should rather be seen as an e~ecriuely rwo-

dimensional system, i.e., that the configuration adopted
by these flux lines is entirely determined by surface disor-
der and interactions between the surface magnetic
charges. In other words, a Bitter pattern would not be
equivalent to planar "cuts" of the flux lattice. This im-
portant question could be answered through a detailed fit
of the data to our theoretical predictions. The exponent
2v, in particular, is a good indicator of the dimensionali-
ty; it would equal —', in the Huse scenario, which seems to
be appreciably larger than the experimental value. It
should also be kept in mind that the experimental sam-

ples have a finite thickness L, . A rough estimate of the
crossover thickness between 2D and 3D behavior can be
read from the q, q, dependence of our 3D propagators in

1/(C4q, +C6q ): If one considers the systein on some
scale L in the layers, the 2D-3D crossover should be at
L, -L„~QC4/C6. As L„» is measured in units of the
vortex-lattice spacing and L, is measured in units of the
interlayer spacing, this gives, for L =10, a typical esti-
mate of L, of 20 pm for the above values of C4, C6. It
may thus be that the experiments of Ref. 2 are in the
crossover regime.

Our detailed theory for the correlation functions also
allows us to address the following question. What may
be the pinning centers responsible for the destruction of
translational order in these samples'7 The experimental
data suggest (see above) g—:C4' C6 /W-5700. As we

have seen above, a reasonable estimate for C4 C6 is
8 X 10 K, while the definition of 8' gives
W=(2m) (b,„~/ao) U, where ao is the intervortex
spacing, Jaakzy is the correlation length of the disorder in
the xy plane, and U is the typical pinnning energy "felt"
by one vortex. We thus get the following estimate for the
product U 5

Up~ —500 Knrn .

This result seems to be reasonable for the pinning by ob-
jects of atomic size such as, for instance, oxygen vacan-
cies, where one could expect a value of A&y around 5 —10

nm. If one considers a more specific model for pinning
by oxygen vacancies such as the one in Ref. 28, one
should write

H, mDgo
U -noh, m5

where no is the concentration of oxygen vacancies per
unit volume, go-3 nm is the superconducting coherence
length, 6, the interlayer spacing, D -0.4 nm the "diame-
ter" of the vacancy, and 8, -5000 G the critical field

(i.e., the condensation energy). Then one can account for
the above figure for U 6 by choosing the reasonable
values no-0. 3 nm and b,„-2(o—3(o. Using the
Larkin-Ovchinnikov model, Chudnovsky' has also ar-
gued that pinning by oxygen vacancies was compatible
with the observed order of magnitude for (. However,
our analysis indicates that the experiments probe the
random-manifold regime rather than the very-short-
distance regime where Larkin's model holds. In the
former regime, go=6„«ao, and hence g—= Cl C6 /W
should be a decreasing function of the field: g"H
(H '~ for films). Only in the Larkin-Ovchinnikov re-

gime given by Eq. (6a) does the effective correlation
length gz/6 grow linearly with the field, as found by
Chudnovsky. ' Unfortunately, the experiments for small
fields correspond to lattices which are plagued with dislo-

cations, for which our theory ceases to apply. Larger
fields are needed to check our prediction, with the prob-
lem that the lattice spacing will soon become rather small

and Bitter decoration harder to keep neat. It would,
however, be crucial to confirm the hypothesis of a micro-

scopic (i.e., b. «1) disorder.
It would also be of great interest to check our predic-

tions on the two-dimensional magnetic-bubble system
studied in Ref. 3, where deviations from the Larkin-
Ovchinnikov exponents should be even more appreciable.

VI. PERSPECTIVES

The detailed microscopic analysis which we have per-

formed in this paper only studies the static equilibrium
properties of the vortex lattice. It would be, of course,
extremely interesting to extend this type of method to
dynamical problems in order to address quantitatively

the major issues of the value of the critica1 current or the

voltage-current relation. Unfortunately, such an ap-

proach has not been developed yet (see, however, an at-
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tempt in Ref. 33).
Therefore we shall not expand on the dynamics here,

but just present a few remarks. As suggested in Refs. 4,
12, 15, 19, and 29, purely static (equilibrium) calculations
may be used to guess some aspects of the dynamic prob-
lem. The order of magnitude of the zero-temperature
critical current J,(T=O), for example, is obtained by
noting that the random forces acting on each vortex
essentially add in a random way until the scale ga..
Above this scale the vortices can adapt to the local poten-
tial and the pinning forces start contributing coherently.
J,(T =0) is thus the result of an "interrupted averaging"
at scale ga of the local forces 8,„=U~/h. Introducing
back the physical units of length, the correlation volume
becomes gaa0(a(QC4/C6)b, „and thus the total pinning
force density is

4

—1/4
1

HJ, (T—=O) . (74)
&o~. '"

(75)

This expression holds while gz»1; otherwise, the vor-
tices adapt individually to the pinning forces and one
should set ga—= 1. The rough estimate quoted above
based on pinning by oxygen vacancies leads to a reason-
able J,(T=O) —3X10 A/m .

Our approach also justifies a frequent hypothesis of
self-similarity of the energy landscape: Two metastable
configurations which differ on scale x =q ' have a (free)
energy difference of order hF ~x". An estimate based
on thermal activation over energy barriers' ' ' then
leads to a current which decays as a power of 1/[T in(t)]
and to a nonlinear voltage-current relation

P

V~exp J

to get sensible results. The solution we obtain can be

used to predict various correlation functions. We have

shown that three regions of space must be distinguished:
a short-scale region, where the (replica symmetric)
Larkin-Ovchinnikov results are recovered, an intermedi-

ate-scale region for which the random-manifold ex-

ponents hold, and a large-scale region, where the typical
displacement exceeds one lattice spacing and where new

exponents are found. (Another regime, where disloca-
tions play a role, has not been considered here. ) We have

compared our results with experimental data and found

promising agreement. More precise fits, on large-scale
pictures recently obtained by the Bell group and on the
magnetic-bubble problem, would certainly be welcome:
These experimental systems are remarkable in that
they permit a direct observation of microscopic
configurations. They provide an excellent testing ground
for theoretical approaches to the physics of disordered
systems which have been developed during the last two

decades.
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with @=co/(d +v —~). The linear conductivity
aJ/aV~ J—0 is thus zero. The value of p, depends on the
relative position of xj, g, ga, and 1. We find, in particu-
lar,

APPENDIX A: INVERSION
OF HIERARCHICAL MATRICES

AND USEFUL SUM RULES

if l, gs «x «g,
-' ifx»g

for three-dimensional samples, and

if l, g~ «x «g,
-,'ifx»g,

(76a)

(76b)
6'(q, q, )=G"(q,q, )+ g 6' (q, q, ),

aWb

(A 1)

We give here, for convenience and in the notations
used throughout the paper, the rules for inverting Parisi's
matrices in the n =0 limit (these are derived for instance,
in Ref. 6). Defining the "connected" part 6' of 6 as (in-
dices L or T are omitted)

for films. Note that the experimental results of Koch
et al. ' on epitaxially grown films of Y-Ba-Cu-0 suggest
p=0.4+0.2, in rather good agreement with our result for
d =2 in the random-manifold regime.

As a conclusion, let us summarize our central result:
We have shown that a variational treatment of the disor-
dered vortex-lattice problem, based on some Gaussian an-
satz, requires one to break the replica symmetry in order

I

one has

G'(q, q, )= 1

(6 ')'( )
(A2)

We denote by —X,i, the off-diagonal (a Wb) part of the
inverse of G. For n ~0, the two functions G(q, q„v) and
X(q, q„u) describing the off-diagonal elements of 6 and
its inverse are related through

[X](q,q„u) Udw6 (q, q„v) =G, (q, q, ) +
v[6, (q, q, ) '+[X](q,q„v)] 0 w'

[X](q,q„w) +G, (q, q, )X(q,q„O), (A3)
G, (q, q, ) '+[X](q,q„w)
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where the bracket transform [f] of a function f (u) is defined as

[f](u)=uf(u) —f dw f(w) .
0

Two sum rules are often useful:

i dw [Xl(q, q„w)
G(q, q, )=G, (q, q, ) 1+, +G, (q, q, )X(q, q„0)

& w G, (q, q, ) '+[X](q,q„w)

and, for v) 0,

(A4)

(A5)

G(q, q, )
—G(q, q„u) = 1 f&dw 1

u[G, (q, q, ) '+[X](q,q„u)] U w G, (q, q, ) '+[X](q,q„w)
(A6)

APPENDIX B: DEFINITION AND CALCULATIONS OF SOME INTEGRALS

Here we define some relevant integrals used in the text and give their numerical values. From (30) and (32), one has

(2+X)v CO

&(o)=&I, T(0)=~L T(0) ~I. T(0—) 1 —— (B1)

and

crL (0)—: e ' / [(1—z )cos /+sin P]z = ——I 1 ——2
v3 2m v'3 2 2

(B2)

From (27), one has

bo =—bl T(0)=2N f . . . h (~)—h
d2k 1 N

(2n) k+" k"

From (45), one has

~ 1 —2v/co

sin (P)=
4m ru —1

(B3)

dk 1 f du 1

o 2~ ( 1+k
—2) l/2 J ) 2

( 1+k
—2 2/co')1/2

From (50), one has

1 3

2n (co' —1 ) 2~
(B4)

and

N, (v)= f q
' "f dg[1 —cos(q cosP)]sin P= ~+&

dg 1 1(1—v)

(2~)' 2 + 'm. v (1+v)I (v)
(B5)

N, (v)= f q
' f dg[1 —cos(q cosP)]cos P=(2v+1)N, (v) .

(2~)' 0

Finally, from (24), one has

(B6)

(B7)

Current address: Physics Department, Harvard University,
Cambridge, MA 02138.

'A. I. Larkin, Zh. Eksp. Teor. Fiz. 58, 1466 (1970) [Sov. Phys.
JETP 31, 784 (1970)].

2D. G. Grier, C. A. Murray, C. A. Bolle, P. L. Gammel, D. J.
Bishop, D. B. Mitzi, and A. Kapitulnik, Phys. Rev. Lett. 66,
2270 (1991).

R. Shesadri and R. M. Westervelt, Phys. Rev. Lett. 66, 2774
(1991).

4P. A. Lee and T. M. Rice, Phys. Rev. B 19, 3970 (1979).
~B. G. A. Normand, P. B. Littlewood, and A. J. Millis (unpub-

lished).
M. Mezard and G. Parisi, J. Phys. A 23, L-1229 (1990);J. Phys.

(Paris) I 1, 809 (1991).
7J. P. Bouchaud, M. Mezard, and J. Yedidia, Phys. Rev. Lett.

67, 3840 (1991).
E. H. Brandt and U. Essmann, Phys. Status Solidi B 144, 13

(1987); A. Sudbo and E. H. Brandt, Phys. Rev. B 43, 10482
(1991).

D. R. Nelson and P. Le Doussal, Phys. Rev. B 42, 10113
(1990).
J. Toner, Phys. Rev. Lett. 66, 2523 (1991).
A. C. Shi and A. J. Berlinsky, Phys. Rev. Lett. 67, 1926 (1991).
A. Larkin and Y. N. Ovchinnikov J. Low Temp. Phys. 34, 409
(1979).
E. Chudnovsky, Phys. Rev. B 43, 7831 (1991);Phys. Rev. Lett.



46 VARIATIONAL THEORY FOR THE PINNING OF VORTEX. . . 14 701

65, 3060 (1990).
'~A. Houghton, R. A. Pelcovitz, and A. Sudbo, J. Phys. Con-

dens. Matter 3, 7527 (1991).
' M. Feigel'man, V. B. Geshkenbein, A. Larkin, and V. Vi-

nokur, Phys. Rev. Lett. 63, 2303 (1989);M. Feigel'man, V. B.
Geshkenbein, and A. Larkin, Physica C 167, 177 (1990).

' J. P. Bouchaud and A. Georges, Phys. Rev. Lett. 68, 3908
(1992).
T. Halpin-Healy, Phys. Rev. Lett. 62, 1989 (1989); Phys. Rev.
A 42, 711 (1990).
M. Mezard, G. Parisi, and M. A. Virasoro, Spin Glass Theory
and Beyond (World Scientific, Singapore, 1987).
D. S. Fisher and D. A. Huse, Phys. Rev. Lett. 56, 1601 (1986);
Phys. Rev. B 38, 386 (1988).
U. Shultz, J. Villain, E. Brezin, and H. Orland, J. Stat. Phys.
51, 1 (1988).
E. Medina, T. Hwa, M. Kardar, and Y. C. Zhang, Phys. Rev.
A 39, 3053 (1989).

M. Mezard, J. Phys. (Paris) 51, 1831 (1990).
~ See, e.g., C. Henley, D. A. Huse, and D. Fisher, Phys. Rev.

Lett. 54, 2708 (1985); 55, 2924 (1985);M. Kardar, Nucl. Phys.
B290, 582 (1987);Ref. 22.
D. S. Fisher (private communication).
T. Nattermann, Phys. Rev. Lett. 64, 2454 (1990).
E. Brezin and H. Orland (unpublished).
D. A. Huse (unpublished).
E. V. Thuneberg, J. Kurkijarvi, and D. Rainer, Phys. Rev.
Lett. 48, 1853 (1982).
D. Fisher, M. P. A. Fisher, and D. Huse, Phys. Rev. B 43, 130
(1991).

oM. P. A. Fisher, Phys. Rev. Lett. 62, 1415 (1989).
'R. H. Koch et al. , Phys. Rev. Lett. 63, 1511 (1989).
D. J. Bishop, P. L. Gammel, D. A. Huse, and C. A. Murray,
Science 255, 165 (1992).
T. A. Vilgis, J. Phys. (Paris) I 1, 1389 (1991).


