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Vortex dynamics in a type-II superconducting film and complex linear-response functions
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The dynamics of interacting vortices in a type-II superconducting film responding to a distribution of
currents parallel to the film is investigated. The nonlocality of vortex interactions is taken into account
by use of an expansion in normal modes of the flux-line lattice and a wave-vector-dependent dynamical
matrix. The theory is applied to obtain linear response functions including the complex mutual induc-
tance and film impedance. For a particular geometry of driving current and pickup coil, the complex
mutual inductance is calculated and it is shown that only longitudinal modes contribute to the measur-
able change in flux when pinning is absent or when it is represented as a linear restoring force acting the
same way on each vortex. The configuration so described provides a sensitive means of studying vortex
dynamics.

I. INTRODUCTION

Complex response functions such as impedance, sus-
ceptibility, self- and mutual inductance, and conductivity
form a related family that can be used to describe the
electrodynamic response of superconductors. For in-
stance, in the absence of vortices, the imaginary part of
the impedance (or conductivity) contains information on
the intrinsic (or London) penetration depth, and the real
part of the impedance (or conductivity) contains informa-
tion on the quasiparticle excitations. Similarly, the real
part of the susceptibility (or inductance) is connected
with the diamagnetic response or intrinsic penetration
depth, while the imaginary part of the susceptibility (or
inductance) is associated with power dissipation. '

SuKciently detailed measurements of response functions
then allow the possibility of deriving basic information
concerning the superconducting pairing state and pair
concentration. Moving vortices are known to influence
the response functions, sometimes very strongly, when a
type-II superconductor is in the mixed state. An effect of
oscillating and flowing vortices is to alter the effective
penetration depth for small-amplitude time-varying elec-
tromagnetic fields.

In this paper we consider the response to external driv-
ing currents of a vortex lattice in a type-II superconduct-
ing film. This theory is then applied to obtain various
linear response functions, including the film impedance
and the complex mutual inductance between the drive
coil and a receive coil. Such a study is all the more per-
tinent since high-quality thin films of high-temperature
superconductors can now be made. Of these, commercial
applications in electronic devices may be possible. The
theory here complements that of Refs. 3 and 4, where an
external microwave magnetic field applied parallel to a
superconductor surface results in a driving current densi-
ty also parallel to the surface. In the present geometry
the external driving magnetic field has components both
perpendicular and parallel to the film surface. Such an
arrangement is realized in practice with two displaced co-

axial coils' whose axes are normal to the film's surface.
In the following section we derive general results for

the film's linear response when an external drive-coil
current distribution flows parallel to the film. We calcu-
late the response initially in the absence of vortices, giv-
ing the Meissner response of the film. We use Fourier
transforms extensively throughout the paper, and Sec. II
contains our conventions. In Sec. III, our general results
are specialized for a drive coil producing an oscillating
magnetic dipole field. In particular, we show that the di-
pole moment generated by the currents induced in an
infinite superconducting film is exactly opposite that of
the driving dipole. The resulting magnetic field can then
be discussed in terms of the driving and induced dipoles.
In Sec. IV, we calculate the response in the presence of a
vortex lattice in the film. In this treatment we calculate
the total current density induced in the film, and include
all interactions between vortices by calculating the
Lorentz force on vortices self-consistently. We also cal-
culate the resulting magnetic field throughout all space.
In Sec. V, we obtain the complex dynamic mutual induc-
tance between a drive coil above and pickup coil above or
below the film.

The structure of an isolated vortex in a superconduct-
ing film was investigated in Ref. 10. Results for the vor-
tex vector potential and supercurrent and their Fourier
transforms are used here. The nonlocality of vortex in-
teractions is taken into account by use of an expansion in
normal modes of the flux-line lattice and a wave-vector-
dependent dynamical matrix. For a particular geometry
of circular driving current distribution and circular pick-
up coil, it is shown that only longitudinal modes contrib-
ute to the measured mutual inductance. The flux rela-
tionships derived for the inductance make this calcula-
tion similar to, although more complicated than, that for
finding the complex permeability of a type-II supercon-
ducting slab with a parallel driving field. In the succeed-
ing section, an additional response function is calculated,
namely, the complex film impedance. The present theory
for a two-coil mutual inductance method provides a sen-
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sitive technique for measuring superconducting sheet im-

pedances and penetration depth.
The frequency of the driving current is assumed to be

well below the gap frequency so that pairs of super-
current carriers are not broken. We also assume the
effects of vortex inertia"' to be negligible. Such effects
are probably significant only for frequencies near the gap
frequency. " ' Under these assumptions, a good ap-
proximation to the electrodynamic response of the super-
conducting film is given by the quasi-static London
theory, where a local relation exists between the super-
current density and vector potential' in the absence of
vortices.

In the following we include the quasiparticle contribu-
tion to the current density by using a two-fluid model.
This feature allows our results to be continuously valid
through the transition temperature, and also in principle
through the upper critical field for high-temperature su-
perconductors. The two-fluid inclusion then allows the
description of eddy currents in the normal state. In this
sense, our treatment generalizes eddy current probes to
the superconducting state. Since such probes have found
valuable applications in nondestructive evaluation of met-
als' we may expect similar applications for type-II su-
perconducting films. ' In fact, measurements of high-T,
film transition temperature and critical current density
have been made in a contactless way with these pro-
cedures. ' Especially since high-T, film preparation and
processing have been constantly changing and the materi-
al properties are not always easily reproducible, nondes-
tructive testing of the films is a desirable method.

An important early work on analytical solutions for
eddy-current problems in axially symmetric geometry is
that of Dodd and Deeds. ' Our normal-state mutual in-
ductance expression involving integrals of first-order
Bessel functions corresponds to what would be derived
from the solution for the magnetic field in planar
geometry by Dodd and Deeds.

An analysis of sheet impedance based on an integral
equation linking the total vector potential and sheet
current density was used in Refs. 5-7. A numerical solu-
tion of this equation gives the complex mutual induc-
tance and sheet impedance. The response of a vortex lat-
tice was considered as well as the possibility of a

)IL

Kosterlitz —Thouless-type transition. . Another ap-
proach to the electromagnetic response of thin-film su-

perconductors was used in Ref. 18. There, an analysis
based on the BCS electrodynamical kernel was developed
for calculating the surface impedance. The wave-vector
dependence of the microwave-superconductor interaction
was examined by variation of the film thickness and mean
free path. The dominant wavelengths for the BCS kernel
mere of the order of the coherence length, whereas here
they are either of the order of the London penetration
depth or of macroscopic size. The vortex response was
not included in the analysis of Ref. 18.

II. MEISSNER-RESPONSE CURRENTS IN
AND FIELDS ABOUT A SUPERCONDUCTING FILM

DUE TO A DISTRIBUTION
OF PARALLEL DRIVING CURRENTS

For specificity, we consider the following geometry (see
Fig. I). The superconducting film of thickness df is cen-
tered on the xy plane. The film, with surfaces at
z =+df/2, is taken to extend infinitely in the x and y
directions. The external drive currents are assumed to be
confined to the semi-infinite region of space z & zo)df /2. The regions df /2 ~ z (zo above and z ~ df /2—
below the film are current-free.

We consider a single frequency component of the ac
driving current, given by

Jz(r, t) =Jo(p, z)e (2. l)

where p=xx+yy. The currents are assumed to Qom

parallel to the xy plane; z.Jo(p, z) =0. We are initially in-

terested in the electromagnetic behavior of the supercon-
ductor in the Meissner state. This will be useful as a
starting point when vortices are introduced. The pertur-
bations in the fields and current densities due to moving
vortices will be taken up in Sec. IV.

Here we derive general results for an external current
distribution flowing parallel to the film. The external
currents generate a magnetic field, which is screened by
the superconducting film. It is desired to calculate the to-
tal (or net) current density in the film, from which the
Lorentz force on vortices can be obtained, together with
the magnetic field throughout all space. Since the film is
assumed to be of infinite extent in two dimensions (2D), a
Fourier transform approach to finding the current densi-
ty and vector potential is advantageous. We employ the
2D Fourier transforms defined as

Zp

df/2

f(p, z) =f f(q, z)e'q t',
(2m )

f(q, z) =fd p f(p, z)e

(2.2a)

(2.2b)

-df/2

We use the usual convention in which the argument p or
q distinguishes a function from its Fourier transform.
Because of the parallel driving current distribution as-
sumption, Jo, (q, z) =0. In addition, from

FIG. 1. Sketch of the film geometry studied in this paper.
The superconducting film (crosshatched) is in the region
~z( (df /2, and the external drive coil is in the space z & zo.

V Jo(p, z) =0

we have, by taking the Fourier transform,

(2.3)
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Jo(q, z) =q, Jo, (q, z), (2.4) we have

where q, =z Xq is the transverse wave vector. (The vec-
tors z, q, and q, form an orthonormal triad used hence-
forth. ) We will see that relation (2.3) implies that the
magnetic field can be described by a transverse potential.
In the following A, denotes the field-dependent penetra-
tion depth' and A=2K, /df denotes the 2D screening
length appropriate for thin films. ' '

A. Image fields

When the film is very thick, an excellent approxima-
tion to the fields is provided by the method of images. In
the limit of df ))A, and zp ))A., the magnetic field distri-
bution above the superconductor is given to good approx-
imation by a vector sum ao(p, z)= Ao(p, z)+ Ao(p, z) of
the vector potential Ao(p, z) generated by Jo(p, z) in the
absence of the superconductor and the image potential
Ao(p, z) generated by an image current density Jo(p, z).
The image current density is given by
Jo(p, z)= —Jo(p, df —z), i.e., the reflection of Jo(p, z) in
the top surface of the superconductor. By this image
construction, sketched in Fig. 2, the field satisfies the
boundary condition b, =0 at z =df /2. When the condi-
tions df ))A, and zp ))A, do not hold, the screening pro-
duced by the superconductor is less complete, and correc-
tion terms need to be added to ap. We solve for these
terms below after finding ap.

Setting

Pp Jo(P', z')
ao(p, z) = d'p' dz'

4~ [( i )2+( i )2 j
1/2

(2.7)

By Fourier transforming and using integration results for
Bessel functions ' we have

ao(q z) =qtaot(q z» (2.8a)

where

ao, (q, z) = f dzj'o, (q, z')ePp
(2.8b)

ao, (q, z)= dz'Jo, (q, z')(e q' '' —e ) .z —z' ql~ —d +~'I

(2.8c)

where z ~ df /2.

B. Correction fields

In obtaining Eq. (2.8) we have made use of
jo(q, z)=q, jo, (q, z), which follows from Eq. (2.4) for the
driving current density Jp, and similar relations for the
image current density Jp and the sum jp= Jp+ Jp. Equa-
tion (2.8a) shows that the vector potential is transverse,
with the defining Fourier transform property
q ao(q, z)=0. Noting that Jo, (q, z)=0 for z &zo, we
find that Eq. (2.8b) can be written more explicitly as

ao(p, z) = Ao(p, z)+ Ao(p, z),

jo(p, z) =Jo(p, z)+ Jo(p, z),
and recalling that

po, J,(r')
Ao(p, z) = f d r'

4m /r —r'/ '

(2.5a)

(2.5b)

(2.6) a & (p, z) =ao(p, z)+a, (p, z), (2.9)

As noted above, for arbitrary values of df and zp, the
vector potential (2.5a) needs to be modified to account for
the incomplete screening of the superconductor. In the
region z & df /2 we take the vector potential to be

Zp-

Zp

where ao(p, z) is the vector potential generated by the
driving current Jp and its image Jp, and the function
a, (p, z) is to be determined. Because ao includes the
effects of the driving current density and a& is transverse,
a, (p, z) satisfies the Laplace equation in the region above
the film. Using the 2D Fourier transform (2.2) we then
obtain the differential equation

i( df/2
2

a'—
q + a, (q,z)=0.

az'
(2.10)

zo-dt/2
Choosing the solution which decays as z~~, we can
write

1

I I

I 1

—q(z —df /2)
a, (q, z) =q,a„(q)e (2.11)

FIG. 2. Sketch of the image construction used to obtain the
vector potential ao(p, z) and corresponding field bo(p, z) =V X ao,
which approximates the Meissner-response field generated
above the superconductor (z & df /2) by current density distri-
bution Jo(p, z) in the drive coil (z )zo). Several magnetic field
lines generated by Jo(p, z) and the image current density distri-
bution Jo(p, z) = —Jo(p, df —z) are shown.

For fields within the superconducting film, we use the
subscript f. The vector potential in the film is af, and

the local magnetic induction in the film is bf =V'Xaf.
At low frequencies and temperatures the response of the
film is almost purely inductive, and the fields may be as-
sumed to obey the London equation, where spatial varia-
tion of the fields is governed by a real penetration depth
A, . At higher frequencies and temperatures, however, dis-
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sipation from excited quasiparticles (the normal fluid)

gives rise to an imaginary part of the penetration depth.
We approximate this effect by using the two-fluid model,
in which the total electrical current density is expressed
as jf=jf,+jf. where the superfluid component obeys

jf, = —af I@ok, and the normal-fluid component obeys
jf„=o.„fcf. The conductivity of the normal fluid o.„f
can be modeled as cr„f=(T/T, ) o „at temperatures T
below T„where o„ is the normal-state conductivity.
Combining these equations using Ampere's law

(}uojf=V Xbf) and Faraday's law (ef = —af =i coaf ), and
taking the Fourier transform, we obtain

bt(q, z) =qb, i(q, z)+ zb i, (q, z),
where

—q(z —df /2)
b, I(q, z) =qa „(q)e

—q(z —df /2)
b„(q,z) =iqa„(q)e

(2.17)

(2.18a)

(2.18b)

I

bo, (q, z)= f dz'Jo, (q, z')(e ' '—e f ),
Zo

(2.16b)

[note that bo, (q, df /2) =0] and

2
a' 1—

q +
z af(q, z)= af(q, z),az'

Inside the superconductor we have, using Eq. (2.13),
2.12

bf(q, z) =qbf, (q, z)+zbf, (q, z), (2.19)

af(q, z) =q, [af„(q)sinh Qz +af„(q)cosh gz], (2.13)

where Q =(q +A, )'
In the region below the superconductor, z ~ —df/2,

the vector potential is a&(p, z), which satisfies Laplace's
equation. Then a& satisfies an equation of the form
(2.10), so that

q(z+df /2)a, (q, z}=q,a „(q)e (2. 14)

where A,„=A, 2i 5„—f and 5„f=—2/porno „f is the
normal-fluid skin depth. At very low temperature, the
complex penetration depth I, reduces to the London
penetration depth A, , while for T~T,2(H) or 8—+8,2(T),
the upper critical field, A,(8, T) diverges,
5 f~5„=( 2/porno „)', and the normal-state value
A, ~(1+i)5„/2 is obtained. [Here T, (zH) is the field-

dependent transition temperature and 5„=(2/Jpocoo „)'
is the normal-state skin depth. ] Once the normal state is
attained, our results describe the response of induced
eddy currents in the film. The solution of Eq. (2.12) may
be written as

where

bf, (q, z) = —Q [af„(q)cosh Qz +
a f&p(q)sinh Qz],

(2.20a)

b»(q, z) =iq [af„(q)sinh Qz+af„(q)cosh Qz] . (2.20b)

Below the superconductor we have, using Eq. (2.14),

b, (q, z)=qb&1(q, z)+~b &,(q, z),
where

q(z+df /2)
b t(q, z) = —qa, (q)e

q(z+df /2)b, (q, z) =iqa, (q)e

(2.21)

(2.22a)

(2.22b)

In order to enforce continuity, we apply equations
(2.5a), (2.9), (2.11), (2.13), and (2.14) for the vector poten-
tial and Eqs. (2.15), (2.17), (2.19), and (2.21) for the mag-
netic field at z =+df/2. In writing the solution for the
coefficients we define

bo(q z)=qboi(q z)+zbo. (q, z},
where

(2.15)

By applying boundary conditions at the film surfaces,
we can evaluate the q-dependent coefficients a&„af„,
af„, and a, . We require the continuity of both the vec-
tor potential and magnetic field at the planes z =+df /2.
Enforcing the continuity of the (2D) Fourier transforms
of these two functions provides the four needed equa-
tions. For reference, we here give the form of the Fourier
transform of the magnetic field in each of the three re-
gions: above, in, and below the superconductor.

Above the superconductor, we have the field

b&(p, z)=bo(p, z)+b, (p, z), where bo=VXao(p, z) and
b, =VXa, (p, z). Using Eqs. (2.8c) and (2.11) and Fourier
transforming, we have

pp —
q (z' —df /2)

a(q) —= dz'Jo, (q, z')e
Zp

We then have

1+(q/g)tanh Qdf

1+[(Q +q )/2qQ]tanh Qdf

qa(q)/2
Q cosh(Qdf /2)+q sinh(gdf /2)

qa(q) /2

Q sinh(gdf /2)+q cosh(Qdf /2)

a(q) sech Qdfa„(q)=
[1+[(Q +q )/2qQ)tanh Qdf ]

(2.23)

(2.24a)

(2.24b)

(2.24c)

(2.24d)

pp
boI(q, z) = — dz'Jo, (q,z')

Zo

X(e ~' '+ f )

(2.16a)

In the limit of vanishing London penetration depth A, ,
where Q~ ~, we have a„,af„, af„, a «~0. This pro-
vides a partial check on the solution for the correction
fields. The expressions (2.24) completely specify the vec-
tor potential for all values of z, as well as for all values of
8f, zp, and A, . %'e have therefore solved for all the
Meissner-response fields everywhere as generated by the
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driving currents Jd(r, t)
Note that, in performing this calculation, we also have

solved for the fields everywhere when the film is normal
and the currents in the film are induced eddy currents.
We have only to set A, = OD and 5„=5„in the expression
for A, such that Q =(q 2—i5„) ~ in Eqs. (2.24), where
5„=2/Pocdo „ for nonmagnetic normal metals. (For
strongly magnetic metals with magnetic permeability
p, &) 1, we must use the expression 5„=2/pnttcdo „.)

C. Current density and net Lorentz force

jI(q,z) = —
( I/poi, )a/(q, z), (2.25)

where aI is given by Eqs. (2.13), (2.24b), and (2.24c). Let-

We next solve for the induced current density in the
film j& in preparation for a calculation of the force per
unit length on a vortex arising from the interaction with
Jd(r, t) Wr. iting the London equation in Fourier space
we have

F&(p) =K&(p) Xfo, (2.27)

where Po is the flux quantum. By Fourier transformation
we obtain

Fd(q) = (0o/po)qa(q)f i(q)f2(q)q (2.28)

where a(q) is given in Eq. (2.23) and the functions f, and

f2 are defined by

fi(q)=Q '~ '

fz(q) = [ I+(q/Q)coth(QdI/2) ]

We then have in real space

(2.29)

ting the surface current be

df /2

KI(p)= f dz jI(p,z), (2.26)
f

we find that the electromagnetic force on a vortex at p
arising from the Meissner currents induced by driving
currents is

d2
Fd(p) = —f z f d p' f dz'Jo(p', z') Xpof &(q)fz(q)e e'q't'

21T 2 f
In the case of a thick film, where d/ ))

~
A, ~, we have f, (q)f2(q) ~(Q —q) /Q.

(2.30)

III. CURRENTS AND FIELDS NEAR
A SUPERCONDUCTING FILM GENERATED

BY AN OSCILLATING DIPOLE

I

vortices.
The current density in the coil is

Jd (r, t) =Jo(p, z)e (3.1)

To demonstrate how this method can be applied, we
now specialize the results of the previous sections to a
certain driving current density distribution Jo. We con-
sider the case of a single-turn coil of radius R& parallel to
the superconducting film. The coil is located in the plane
z =z&, such that z&=d&/2+DE. We further assume a
single-turn pickup coil of radius R is located a distance
D from the bottom surface of the film, i.e., in the plane

z~
= —dI/2 D~ (Fig. 3). —We easily can obtain the vec-

tor potential, from which the magnetic field, current den-

sity in the film, and Lorentz force on a vortex can be de-
rived. These results are to be used later for finding the
mutual inductance between the driver coil and the pickup
coil located below a superconducting film that contains

where

Jo(p, z)=JI5(p —Rd)5(z —z&) .

Its 2D Fourier transform is

Jo(q, z) =q, Jo, (q,z),
where

(3.2)

(3.3)

Jo, (q, z) = 2ni J, (qR—d )IRd5(z —zd ) . (3.4)

(Here J, is the first-order Bessel function. ) The quanti-

ty a(q) of Eq. (2.23) furnishes both the vector potential
via Eq. (2.24) and the Fourier transform of the Lorentz
force on a vortex in the film via Eq. (2.28). For the
current distribution (3.2) we have

z = df/2+ D~

—qDd
a(q) = i (2~poIR„/q—)J, (qR„)e (3.5)

Dd

fd(
z)i

We note that expressions such as (3.4) and (3.5) consider-
ably simplify when the radius of the drive coil becomes
very small. For instance, using J&(x)~x/2 as x~0,
we have

Dp

z = -(jf/2 - D

—qD~
a(q) = ipome— (3.6)

FIG. 3. Geometry of two-coil mutual inductance
configuration considered in Secs. III and V. The drive coil in

the plane z =df /2+DE has radius Rz and the pickup coil in the

plane z = —df /2 —D~ has radius Rp.

where m =vrR&I is the magnetic dipole moment of the
driver loop. Thus the important wave vectors introduced

by the dipole obey 0 q ~1/Dz, where we assume that

Dd » iA,

Of interest for finding the magnetic Aux through the
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pickup coil is the nature of the field below the film. It is
appropriate to think of the vector potential in this region,
a&(p, z), as the vector potential generated by two current
distributions, that of the original driving dipole and that
of a dipole generated by the induced current distribution
in the film. The currents in the film generate a dipole mo-
ment

mf = ,' J—rXjfdr . (3.7)
film

From Eqs. (2.13) and (2.25) and the London equation we
see that the dipole moment mf has only a z component.
By using Fourier representations, we calculate mf, in Ap-
pendix A and show it to be mf, = —m. Therefore the in-
duced dipole moment mf = —m exactly. In Appendix B,
we describe the resulting quadrupole character of the
magnetic field at large distances from the film. The quad-
rupole moment is calculated explicitly in both the thin-
and thick-film limits.

In summary, the magnetic field distribution far from
the superconductor is to lowest approximation that of
two opposed dipoles of magnitude m. At large distances,
in both the regions above and below the film, due to can-
cellation from the image dipole and driving dipole, there
remains only a quadrupole field. To lowest approxima-
tion the magnetic field is parallel to the surface.

where G (h) is the elastic matrix, with entries given by

(4.2)

The dynamical matrix D(q) is the Fourier transform
over real space lattice vectors of the elastic matrix:

D(q)= g G(h)e'q'
h

(4.3)

Its eigenvectors are the polarization vectors e~(q) which
we employ, with eigenvalues D

D (q)e~(q) =Dq~e(q) . (4.4)

In the long wavelength limit, the polarizations can be
identified as either transverse (with index p =t) or longi-
tudinal (p =1). In terms of the basis ez(q) we have

u(l, t) = g e' q'e~(q) Q~~(t), (4.5)

B. Vortex dynamics

where Q~~(t) are the normal-mode amplitudes and the
sum on q is over the first Brillouin zone. The explicit in-
verse relation and accompanying orthogonality relations
for the polarization vectors are given in Ref. 25.

IV. VORTEX LATTICE RESPONSE
INCLUDING THE EFFECTS OF PINNING

A. Expansion of vortex positions in normal modes

We assume that vortices in the superconducting film
form a 2D lattice. The elastic response of a flux-line lat-
tice is nonlocal in the sense that the interaction force on a
vortex in general depends on the position of all other vor-
tices. Typically the range of the vortex interaction is A, ,
which we assume satisfies A, &)ao, the intervortex spac-
ing. Since the vortex lattice response is nonlocal, the as-
sociated elastic constants are wave vector dependent. To
mathematically treat the nonlocality, we employ an ex-
pansion in Fourier space. We first recall a few facts con-
cerning the normal modes of a flux-line lattice; Ref. 25,
e.g., may be consulted for more detail.

We take u(l, t) to be the average displacement of a vor-
tex whose equilibrium position is at I. Here u can be ob-
tained from an average of the microscopic vortex dis-
placement s over an area of size l,„where l && l,„&&Dd,
lz being a characteristic distance between pinning
centers, i.e., u(l, t)=(s(l, t))& . We assume a linear

av

response for the lattice; the vortex displacements are tak-
en to be small in comparison with ao. We take the pin-
ning force to be characterized by a constant a. (Labusch
parameter ). In general, ~ depends upon temperature,
vanishing as T~T,2(II), the field-dependent transition
temperature.

In the harmonic approximation, the interaction energy
between vortices can be written in quadratic form as

where rt is the viscous drag coefficient (e.g., Refs. 27 and
28). In writing Eq. (4.6) we ignore the effects of a vortex
inertia term. "' The external force per unit length on
the vortex, excluding the viscous drag, pinning, and in-
teraction forces, due to the current in the drive coil, is

f,„,(l, t) =(1/df )Fd(l )e

By expanding Eq. (4.6) in normal modes we have

rtQ„(t)+(~+D, )Q (t)=f„(t),

(4.7)

(4.&)

where the 2D discrete Fourier transform of the external
force per unit length is

f~(t)= —ge 'q'e~(q) f,„,(l, t) .
I

(4.9)

Here N is the number of vortices, such that NA„»=A,
the area of the sample, where 3„» is the area of the unit
cell of the flux-line lattice. Whether pinning plays an im-
portant role or not depends upon the q-dependent quanti-
ties D /z. Converting the sum in Eq. (4.9) to an integral
gives

f~(t) =( I/A d)fr~( )qFd(q)e (4.10)

The phenomenological equation of motion for a vortex
in the film is

= f,„,(l, t) su(l, t) Q—G (1 1—')u(l', t )—,Bu(1, t)

I'

(4.6)

V(u) =—g u(l, t)G (1—1')u(1', t ),1

I, I'
(4.1)

Now Fd(q) is large only for q ~Rd ', Dd
' «q», where

qzB is a Brillouin zone-boundary wave vector (of order
I/ao). For such small q's, e, (q) =q and
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e, (q)=q, =zXq. Thus, using Eqs. (2.28) and (4.10), we
have

Bokoq'
ql

2

qd/ [1+qA, coth(dI/2A, )]
f,~(t) = (0—o/po~d f)qtz(q)f (q)f (q}e (4.11)

(4.19a)
and f,(t)=0. That is, the dipole excites only longitudi-
nal modes of the vortex lattice. (The transverse mode
amplitudes are zero. ) The equation of motion for the lon-
gitudinal modes is Eq. (4.8) with the index p =l. This
gives for the longitudinal mode amplitudes

Dqi = Bokoq', 2

po qd& (1+qA„)

which in the thin-film limit becomes

(4.19b)

Qqt(t) =fqi(t)/(Dql+tr i tp—q}) . (4.12)

From Eqs. (4.5), (4.12), and (4.11), the displacement
field is given by

where A =2k. /d& is the frequency-dependent 2D
screening length and Bo=npgo is the equilibrium flux
density of the vortex lattice.

d2
u(l, t) = t u(q, t)e'q',

(2qr )
(4.13)

V. FLUX IN PICKUP COIL
AND COMPLEX MUTUAL INDUCTANCE

where

(4.14)

n;„d(p, t)= npV u—(p, t)

40 q~(q)f 1(q)f2(q)
u(q, t) =- 1 Cgt

ij,pd/ (Dqt +K t Cpq} )

From the vortex continuity equation, ' the density of vor-
tices is perturbed from no by an amount

We now wish to calculate the flux, due to the change in
vortex positions, up through a pickup coil, which may be
located either below or above the film. This will provide
the contribution of the moving vortices to the mutual in-
ductance between the driving and pickup coils. Consider
a vortex at the origin. Let a, (p, z) =Pa, &(p,z) denote the
vector potential generated by this vortex at p and z,
where a,&(p, z) was derived in Ref. 10. By Fourier trans-
forming, we have for z (—df /2

where

d2= f 5n(q, t)e'~t',
(2n. }

(4.15) a, (q, z) =q, a„,(q, z),

where [Ref. 10, Eq. (12)]

(5.1)

n;„d(q, t)= —inpq u(q, t) . (4.16)
q(z+d~/2)

(q, z) = i (Pp/q)f &(q—)f2(q)e (5.2)

The longitudinal eigenvalue of the dynamical matrix,
accounting only for the electromagnetic interaction,
js 10,2 1

Bogoq 2f&(q) 1+ „ fi(q)f2(q)
Po qdf

(4.17)

fp(p)= VUp(p) (4.18a)

Equation (4.17) is the form of Dqt which results from the
interaction energy per unit length Uo between two vor-
tices in the film whose cores are treated in the London
limit. ' This limit for the vortex core is suitable for the
present purposes and can be replaced with the
variational-core model' without difficulty. The interac-
tion force per unit length on a vortex at p due to a vortex
at the origin is '

The magnetic flux density at p, z from a vortex at the ori-
gin is b, (p, z) =V X a, (p, z), so that the z component of its
Fourier transform is given by b„,(q, z) =iqa„, (q, z) As a.
consequence of the altered vortex positions in the film,
the z component of the flux density at p, z is

5b, (p, z, t) =fd p'n;„d(p', t )b„,(p p',z)—
d2

2 n;„d(q, t)b„(q,z)e'
(2n )

(5.3)

@ „(t)=f d p5b, (p, z, t) .
P

(5.4a)

The corresponding flux up through a pickup coil below
the film at z =z = —df /2 —D generated by the moving
vortices is

giving

fp(q)= —iqUp(q) . (4.18b)

By employing the Fourier transforms n;„d(q, t) and

b„,(q, z ), Eqs. (4.14), (4.16), and (5.2}, and an integration
rule for Bessel functions, ' we find

The Fourier transform of the interaction force per unit
length for a vortex lattice is f;„d(q, t)=n;„d(q, t}fp(q). '

Then expression (4.17) follows from Eqs. (4.18b) and
(4.16) and the relations

f;„d(q, t)= —npq Up(q)u(q, t}= Dqiu(q, t}—
so that D t =npq Uo(q). A useful approximation for the
longitudinal eigenvalue is obtained for q « iA, ~, where

2qtfpBpIRd Rp4, (t}=
f

qf', (q)f', (q)J, (qRd )1&(qR )fX dq
0 D I+~—icug

Xe qe (5.4b)
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where D=Dd+D . The net z flux through the pickup
coil is

4, (t)=4,d(t)+4,„(t), (5.5)

d2
b &,(p, z) =f b &, (q, z)e'q'~

d2
iqa, q, z e'~ ~

(2qr )
(5.6)

From Eqs. (2.14), (2.23), and (2.24d), we thus have

where N, is the contribution from the moving vortices
and 4 d is the straight-through flux generated by the
driver coil but reduced because of the screening effect of
the film. From Eq. (2.22b) we have for the z-flux density
below the film

4~(t) =M(to)Ie

becomes

(5.8)

4 d(t) =qrppfRdR

sech( Qdf )J, (qRd )J, (qR~ )
X dq 1+[(Q +q )/2qg]tanh(gdf )

x qD -l~t (5.7)
For the sake of simplicity, in the remainder of this sec-

tion we assume that the macroscopic lengths Rd, R, and
D =Dd+Dp dominate the q dependence of the integrals
of Eqs. (5.4b) and (5.7). We also consider only the thin-
film limit df «A, «L: we assume that for the important
wave vectors, 0 & q & 1/L, where L is one of the macro-
scopic lengths. Thus, 0 & qdf « qA, & A/L «, 1 and
Q=k„', f&(q)=1, and fz(q)=(1+qA„) ', where A„ is
possibly of the size of L. In this approximation, the com-
plex mutual inductance M (cp), defined via

qA„ Bpgp q J, (qR~)J, (qRp)
M(tp)=qrppRdR f dq

"
J&(qRd)J, (qR&)e q + f dq e

2qrdf p (1+qA )2 Dql+xitpqi'
(5.9)

—[D +(Rd+R ) ] ~ E(k) (5.10a)

where E and E are the complete elliptic integrals of the
first and second kind, respectively, and

4Rd R

[D +(Rd+R ) )

When Rd &(D and R &(D, we have

2Ad A
Mo=

D

(5.10b)

(5.11)

where the coil areas are Ad=a.Rd and Ap ~Rp This is
a result of the driving dipole producing a field of magni-
tude 2m /D at the site of the pickup coil.

In Eq. (5.9), the quantity qql =q)IDq& can be identified
as the exponential decay time for a longitudinal mode of
wave vector q and r=ri/v is the exponential decay time
of a plucked vortex. In either of the limits a))Dqi or
a «Dqi, the second integrand of Eq. (5.9) can be
simplified. In the latter case, pinning is negligible, and by
employing the approximation

2Bpgpq

ppdf (1+qA )
(5.12)

from Eq. (4.16) for the thin-film limit, it can be seen that

In the absence of the film, the mutual inductance can
be obtained by ignoring the vortex contribution and tak-
ing the thin-film screening length A —+ ~. The resulting
integral can be evaluated and we obtain

D +R +R
Mo =po

[D +(Rd+R ) ]' K(k}

VI. COMPLEX EFFECTIVE RESISTIVITY
AND FILM IMPEDANCE

By knowing the dynamic response of the vortex lattice
in the film, local total response functions can now be cal-
culated. From the total time-dependent electric field, the
complex effective resistivity and film impedance can be
calculated. We show that a local connection exists be-
tween the total electric field and total surface current in
the film, which yields these functions.

The total electric field is given as

e„,(p, z, t) =e,„,(p, z, t)+ e;„d(p,z, t), (6.1)

where e,„, is the Meissner response to the external field
and e;„d is the response from the vortex motion. The cor-
responding total magnetic flux density is b, ,=b,„,+b;„d,
where b,„, is the flux density generated by the driver
current density but modified by the Meissner response of
the film and b;„d is the flux density caused by the motion
of the vortices and the departure n;„d of the vortex densi-
ty in the film from the constant value np=Bplpp.
Averaging over the thickness of the film gives

I

the mutual inductance depends on the frequency in the
combination tp/B p

If the pickup coil should be located above the film, in
the plane z =z'=df /2+DE, the flux and mutual induc-
tance can be found similarly. If only the contribution of
the moving vortices is detected, then we require only the
term 4~„(t} In this c.ase we use the form of the vortex
vector potential a„suitable for the space above the film. '

The result is simply to modify the distance D in Eq. (5.5)
to Dd+Dp.
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df /2

e„,(p, t) = f dz e„,(p, z, t)
df /2

The respective 2D Fourier transforms of the "bulk" and
"surface" terms are

=e,„,(p, t)+e;„a(p, t) . (6.2) aob(q)=q &ob (q)= q (4~'No/q)f i(q) (6.11a)

We obtain the electric field in the film from Faraday's
law

and

ao, (q, z) =q, ao„(q,z)

e(p, z, t)= ——a(p, z, t) . (6.3) cosh Qz

Q sinh(Qd /2)
(6.11b)

We introduce the Fourier transform in time for quantities
averaged over the thickness of the film by Averaging over the film thickness gives

f(p, t)= f f(p, co)e2' (6.4a)
ao(q) =aob(q)+ao, (q»

where

(6.12)

f(p, co) = f dt f(p, t)e' ' . (6.4b)
ao(q)=qi& oi( q)= q i(2po/df)f, (q)fz(q) . (6.13)

Then by Fourier transforming the Meissner response in
both space (2D) and time, Eq. (6.3) becomes

e,„,(q, co) =icoa,„,(q, co)

From Eqs. (6.11) and (6.13) we obtain

a(q)=[ t'/of, (q)/—ql[1 —qadi, (q)f, (q)]q . (6.14)

and the London equation Eq. (2.25) becomes

j,„,(q, co) = —(1/poA, ' )a,„,(q, co),

where j„,=j„,+ j;„d is the total current density in the
film and atot segt+slgd is the total vector potential. The
portion of the vector potential generated by the motion of
the vortices, a;„d, can be found from linear superposition

by using the vector potential for a single vortex in the
film, ao, and the variation in vortex density n;„d. From
the convolution

Thus, from Faraday's law e;„a(q,co)=icoa;„a(q, co) and
Eqs. (6.8), (4.18), and (4.12), we have

e;„(q,co) = icoB Po—f, (q)[1—qAQ, (q)f (q)]

X [j,„,(q, co)/(D t+Ic icog)—], (6.15)

3O(p z)= job(p)+3O. (p z) (6.16)

where we used f,„,1(q, co) =j,„«(q,co)po.
The current density in the film generated by a vortex at

the origin is'

a; a(p, t)= f d'p'n;„a(p', t)ao(p —p'),

we have

a;„a(q, t) =n;„a(q, t)ao(q),

where

(6 7)
where

hob(P) fJoba(P) k(lo/2~PO~ )&I(P/~ )

whose 2D Fourier transform is

j (oqb) =q j bti(oq)
= qt&'(ko/Vo~ )qf &

(q)

(6.17)

(6.18)

n;„a(q, co) =inoq u(q, co) = inoqu, (q—, co)

as given by Eq. (4.16).
The vector potential for a vortex in the film located at

the origin is'

and jo, (p, z)= —(I/poA, )ao, (p, z). [In Eq. (6.17), E, is

the modified Bessel function of the second kind of order
one. ] Equation (6.13) can be used to find the Fourier
transform of jo, averaged over the film thickness.

We obtain the current density generated by the motion
of the vortices from

ao(p z) =aob(p)+ao. (p») . (6.9)

The "bulk" and "surface" contributions in Eq. (6.9) are
given by

l, a(Pt) fd P" a(P t)jo(P P)

giving

(6.19)

aob(p) 4ctobp(p) =424O f dq J&(qp)f&(q)

ao (p z)=Qao a(p z)

f24.f dq J (qp»—)f (q)

q cosh(Qz)

Q sinh(Qdf /2)

(6.10a)

(6.10b)

j;„a(q,co) =n;„a(q, co)jo(q), (6.20)

DqI
j;„a(q,co) = . j.„,(q, co)

Dqr +K 1 CO'g
(6.21)

where jo(q)=q, jo, (q) and from Eqs. (6.13) and (6.16),

jo, (q) = iD~i/Boq. U—sing Eqs. (4.12), (4.16), and (6.20)
we obtain

where we do not include a variational core-radius param-
eter for the vortex' in this presentation. The same pro-
cedure for the complex effective resistivity may be fol-
lowed including such a vortex-core-radius parameter.

so that j„,=j,„,+j,„d is

K 7 COY/j„,(q, co) = . j,„,(q, co) .
D I +K l COY)

(6.22)
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e ot(q ~)=ptot(~)jtot(q t'o)

where

co+i /r+i /rt
Ptat(~) 'Po~~~ to+i /r

(6.24)

(6.25)

and r~=ri/k&=2k, /co5f, r=r)/a We .have introduced
the flux-flow penetration depth, fif:28pea—/ppriro. One
can rewrite Eq. (6.25) with the pinning resistivity,

p = Et'o80$0/K and the flux-flow resistivity

pf =80/0/ri. Since p«, is independent of q, Eq. (6.24)
gives a local relation between e„, and j„,. At high fre-
quencies we have p«t(co) = i pato—A, whi. ch agrees with
the second London equation, e=pal, (t)/Bt)j. At low

frequencies, where co &&~~ ', v. ', we have

ptQt(co)= ipacoA—~(1+Ac/A, ) where )tc=sottpa/@0K is
the square of the Campbell penetration depth. In terms
of characteristic lengths we have

5f 2l AC +XC5f /k
ptat(t'o ) = 'pot'o~~ (6.26)

Sf—2lz~

The relation between e„,and the total surface current

df /2

K«, (p, t)= J dz j (p«, t), (6.27)
f

gives the film impedance Z(co). By Fourier transforming
in time, we have

e„,(p, to) =Z(t'o)&„t(p, to) .

From Eq. (6.24) we have Z(to) =p«t(to)/df.

(6.28)

To find the complex effective resistivity, we write both

e„,and j„,in terms of j,„,. Equation (6.15) relates e;„d to

j,„, and Eqs. (6.5) and (6.6) give

e,„t(q,~)= —ipato)(, „j,„t(q,co). The total electric field is

given by Eq. (6.1), which we approximate in the long
wavelength limit q ((~)t,

~
. In this limit, using Eq.

(5.12) for D &, we have

kl +K l CO'g

etat(q, ra) = i—co j,„t(q,~) .
Dq)+V —l COP

where k&=80/0/pate, . Comparing Eqs. (6.22) and (6.23)
we see that we may write

the results to hold continuously through the transition
temperature or upper critical field. In this way, earlier
work on eddy-current probes was generalized to the su-

perconducting state.
By means of Fourier transform techniques, we were

able to solve for all of the fields in linear response. The
coupled fields considered include the total current densi-

ty, magnetic and electric fields, vortex displacement, and
vortex density. The nonlocality of vortex interactions
was explicitly taken into account by using an expansion
of the flux-line lattice in normal modes. The theory was

applied to find total local response functions, including
the mutual inductance of two coaxial circular coils and
the film impedance. The determined linear response
functions are complex valued, with, e.g., the imaginary
part of the mutual inductance representing the effect of
dissipation. The real part of the mutual inductance is
connected with the film's flux exclusion and is highly
dependent on the two-dimensional screening length. We
discussed the situation when pinning is neglected or else
is simply represented as a linear restoring force acting the
same way on each vortex, where only the longitudinal
modes of the vortex lattice contribute to the mutual in-
ductance.

All the above treatment including pinning holds, of
course, only if the vortices do not move beyond the point
where the linear restoring force applies. At large ampli-
tudes the pinning force is no longer linear in the displace-
ment, hysteresis comes into play, and the situation be-
comes more complicated. It is possible that our theory
can be extended to take into account such effects by using
the Bean critical-state model. With this model the mag-
netic field profiles could be determined for a given field
sweep. An important dimensionless parameter in such a
description is then expected to be the ratio of the mi-
crowave field, derived from the driving current density,
to the field that drives the flux front to the middle of the
film. '

We have ignored the thermal activation of vortices
which considerably complicates the vortex dynamics. In
the presence of this effect, both the transverse and longi-
tudinal modes of the vortex lattice will contribute to the
complex response functions.
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APPENDIX A: DIPOLE MOMENT
OF THE INDUCED FILM CURRENT

Here we describe the calculation of the magnetic dipole
moment mf generated by the induced current density jf
flowing in the superconducting film. The driving current
density, Eqs. (3.1) and (3.2), produces a field which is
screened by the current density
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jf(p, z) = —( I /@ok )af (p, z), (A 1)

where af is given by Eqs. (2.13), (2.24b), and (2.24c).
Writing Eq. (3.7) explicitly for the film geometry we have

df /2

mf= —,
' dz d pp+zz Xjf p, z

f
By using the Fourier representation of the film current
density,

jf(p, z)=f,jf(q, z)e'~iq.
(2m. )

(A3)

by representing the 2D position vector p as a Fourier
transform,

dp=f pe
(2m )

p, = fd'pp

and then by integrating over p in Eq. (A2}, we have

f d q
mf zz p Xjf q, z

(2m )

(A4a)

(A4b)

(A5)

The singular expressions (A4) are to be interpreted in the
sense of distributions. One means of evaluating them is
to use a convergence factor. Instead, we use

that mf, = —m.
The above derivation has employed distributions pro-

portional to the gradient of the Dirac delta function. By
well-known results in functional analysis, ' the two-
dimensional delta function lies in the Sobolev space
H for e)0. Therefore the quantity p lies in the
Sobolev space H

An alternative derivation of the result mf = —m can
be given by employing the delta function alone. This
derivation also points up the importance of the long
wavelength behavior of the quantities appearing in Eq.
(A12). The following does not assume a thin film, al-
though it readily reduces in that limit. It may therefore
be of benefit to outline this approach.

By using the Fourier representation (A3) in Eqs. (A2)
and (Al), integrating over the angular variables and the
thickness of the film, we have

mf, = — f dpp f dqq f, (q)f~(q)J, (qp)a(q) .
2pp 0 0

(A13)

Upon the change of scale v =q A, u =p/A, we have

mf, = — f du u f dv v f, (v/A)f~(v/A)
2po o o

p =p'= i (2a)~Vq—5~(q), (A6)
XJ, (uv)a(v/A) . (A14)

to write

df /2

mf, = — z f— dz f d q[V 5z(q)]Xjf(q, z) .
f

Using the vector identity

Vq5~(q) X jf =V X [jf5~(q)]—5~(q)V X jf

(A7)

(AS)

Notice that Eqs. (A13) and (A14) involve a divergent in-

tegral for the p (or u) integration. Rather than perform-
ing the u integral with a convergence factor, we use the
technique of introducing a delta function, by way of the
limit

u/2= lim (1/tv)J, (utv) .
tt}~p

in Eq. (A7) and noting that the first term integrates to
zero by Stokes' theorem, we have

df /2

mf, =—f dz lim z V~Xjf(q, z) . (A9)
2 —df /2 q~o

5(v —tv)
du uJ~(uv)J~(uw),

U 0
(A16)

Then mf, can be evaluated with the aid of the representa-
tion

Since jf(q, z)=q, jf, (q, z), mf, maybe written as

df /2

mf, =—lim dz — [qj«(q, z)] .
2 q-o —df/2 q Bq

(A10)

with p =1 to give

mf lim f &

—f& —a
Jo~ o

(A17)

We employ Eqs. (2.25), (2.13), (2.24b), and (2.24c) for

jf, (q, z) so that mf, may be written as

2 .
mf, = — lim — qaf„(q) —sinh

2po&~ q-o q Bq
" 2

(A 1 1)

which may be further rewritten in terms of the functions

f, and f~ of Eq. (2.29):

mf, = — lim — [q a(q)f, (q)fz(q)] . (A12)
2pp p o q Bq

The similarity of Eq. (A17) to Eq. (A12) can be noted.
Taking the indicated limit, using a(0)=

idiom,

w—e again
arrive at the result mf, = —m.

APPENDIX B: QUADRUPOLAR MAGNETIC FIELD
PRODUCED BY A SUPERCONDUCTING FILM

In this Appendix the magnetic field below the super-
conducting film is first considered. The geometry of the
text is assumed, with the single-turn drive coil located
above the film, as described in Sec. III. Specific results
are obtained in both the thin- and thick-film limits. The
vector potential below the film is

In evaluating the limit q ~0 we use the asymptotic form
(3.6} of a(q}, valid for small q, which contains the mag-
netic dipole moment m of the driver loop. Thus, we find

d2
a (p, z) =f a (q, z)e'~ ~, (B1)
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where a&(q, z) is given in Eqs. (2.14) and (2.24d). In the
dipole approximation, we use Eq. (3.6) for a(q), so that
a «(q}becomes

the screening region, p= —z, and then Eqs. (B5) and (B6)
are the same as the magnetic field components derived
from the magnetic potential of a quadrupole moment

Q& = —4mA,
a&(q)= —(iso/2)me [qA /(I+qA )] (B2)

In the dipole approximation, the important wave num-
bers are those for which 0 q

& 1/Dd or
0&qA„&A„/Dd. Thus, as long as we consider wave-
lengths larger than the 2D screening length (qA„«1)
we may replace qA„by zero in the integrand of Eq. (B3).
The resulting integral may be evaluated (Ref. 23, p. 712)
as

a&(p, z}= A
porn p(z)p
4qr ~

[pz( )+ 2]5/2 (B4)

where p(z) =Dd —df /2 —z. The magnetic field described
by Eq. (B4), b& =V X a &, has components given by

3lsom P(z) [2P (z) —3p ]
4sr ~ [p2(z)+ 2]7/2

b& (pz}= A„
p[p' 4p'(z) l-

4qr
~ [p2(z)+ 2]7/2

When ~z~ &&Dd, we have, well below the film, far from

(B6)

in the thin-film limit df «~/(, ~. Since a«(q) depends
only on the magnitude of q, the angular integration in
(B1) can be performed, with the result

2
Pom m 0 Ji(tlP) q(z+d//2 Dd)—

a&(p, z) =P A„dq e
4m

"
0 1+qA

(B3)

(p, z) =
—,'Q [(z p—/2)/r ], (B7)

where the nonzero components of the quadrupole mo-
ment tensor are Q» =Q2z= —Q33/2= —

Q& /2. Then
the behavior of b & (p, z) for r = (p +z )' »

~
A

~
is

given by

b (p, z) = —V@,(p, z) . (B8)

In the thick-film limit df «
~

A, ~, approximating
a&(q, z) in Eq. (2.24d), we find that Eq. (B2) is replaced
by

—df /A, —
qDda&(q)= 2ip—omqle, / "e (B9)

Then the results for the vector potential and field, Eqs.
(B4)—(B6), are modified by a factor of 4A, e "/A .

—df /A.

In this case the quadrupole moment for the field below—d /A,
the film, Q &

= —16m A,„e / ", is exponentially small as
expected due to the very e8'ective screening of the film.

Similarly, the magnetic field at large distances in the
region above the film can be examined and shown to be
quadrupole in nature. By expanding the leading part of
the vector potential ao, Eq. (2.5a) written in terms of the
drive-coil magnetic moment, in powers of
r—:(p +z )'/2»Dd, the dominant part of the quadru-
pole moment above the film is found to be Qo& =8mDd.
The correction field a„Eq. (2.11), contributes an addi-
tional quadrupole moment of Q» =4tn A .
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