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We have recently developed a scheme, based on the linear-muffin-tin-orbital (LMTO) formalism in the
atomic-sphere approximation (ASA) and the recursion method, which allows us to perform first-

principles, spin-polarized, density-functional electronic-structure calculations in real space. Here we use

the real-space linear-muffin-tin-orbital (RS-LMTO-ASA) approach to study the behavior of 3d impuri-

ties (V,Cr, Mn, Fe) in a Cu host. We obtain the local density of states, the charge transfers, and local
magnetic moments of the impurity and four adjacent shells of Cu atoms. Even though the procedures
are quite different, our results for 3d impurities in Cu agree very well with those obtained using the well-

established ab initio Korringa-Kohn-Sham Green s-function formalism. The RS-LMTO-ASA method
does not require symmetry and can be used, with no extra effort, to study interstitial impurities and local
disturbances in hosts with hcp or more complex structures. It can also be applied in the presence of lat-

tice relaxation.

I. INTRODUCTION

A knowledge of the electronic structure is usually
needed in order to understand the properties of metallic
systems. For simple systems, the standard first-principles
methods, implemented in reciprocal space, can be used to
provide this information. But in the case of nonperiodic

systems and systems with an extremely large number of
atoms per cell, these methods are often inappropriate or
inefficient. For these complex metallic systems, alterna-
tive ways of obtaining information about the electronic
structure should be investigated. The recently developed
first-principles real-space linear-muffin-tin-orbital (RS-
LMTO-ASA) scheme' can often be helpful in this con-
text.

The RS-LMTO-ASA scheme, ' based on the LMTO-
ASA formalism ' and on the recursion method, allows
us to perform first-principles, spin-polarized, self-
consistent, density-functional calculations directly in real
space. The procedure is very similar to the regular k-
space LMTO-ASA formalism, but the solution of the ei-

genvalue problem is done in real space with the help of
the recursion method. The RS-LMTO-ASA scheme has
been used with success' to obtain the electronic struc-
ture of nonmagnetic Zr2Fe, ferromagnetic FeNi3, and an-
tiferromagnetic FeMn. In all cases, the results are in
good agreement with those approached using the more
traditional reciprocal-space approach. ' The RS-
LMTO-ASA scheme has also been applied to obtain the
distribution of charge transfer in a large cell of 40 atoms,
simulating amorphous Zr. Because in the RS-LMTO-
ASA scheme the effort grows linearly with the number of
inequivalent atoms, these calculations could be per-
formed on a medium-sized machine (Digital Equipment
Corporation VAX-6330 computer). ' We should also note
that, due to the use of the recursion method in the solu-
tion of the eigenvalue problem, the RS-LMTO-ASA
codes can be easily implemented on parallel machines.

The problem of impurities is a classical problem, which
has been understood in a qualitative way for a long time,
within the context of empirical tight-binding model Ham-
iltonians. In the last few years there has been a renewed
interest in the area, stimulated by new experimental tech-
niques and more exact ab initio calculations. Recently,
first-principles calculations of electric field gradients, iso-
mer shifts, and hyperfine fields have also become avail-
able. These calculations can help with the interpretation
of experimental data in these systems, and give informa-
tion about the local environment around the perturba-
tion.

There are several ways of treating local perturbations
using a first-principles density-functional approach; one
can use supercells in conjunction with the standard
reciprocal-space methods, one can perform cluster calcu-
lations or use the Green's-function approach within some
well-established formalism such as the Korringa-Kohn-
Rostoker (KKR), LMTO, etc. The advantage of the
Green's-function methods as compared to the other two
approaches is that the embedding of the defect in the
ideal crystal is described correctly.

In this paper we show that the RS-LMTO-ASA ap-
proach' can also be used to investigate local perturba-
tions such as impurities, vacancies, etc. , in metals. To il-
lustrate the approach we obtain the local density of
states, magnetic moments, and charge transfers for 3d
impurities (V, Cr, Mn, and Fe) in a Cu host. The calcula-
tions for Fe have been previously reported. The RS-
LMTO-ASA approach allows us to work with very large
clusters, of order of several thousands of atoms, avoiding
the surface problems which make the embedding so cru-
cial when using cluster methods. It uses a tight-binding
Hamiltonian which allows for a more direct comparison
with the model Harniltonians frequently used to treat the
impurity problem. Because the effort grows linearly with
the number of atoms with inequivalent local density of
states, the cost of treating n shells of atoms self-
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consistently is just n +1 times the effort of a single-site
calculation. Again, the calculation can be performed on
relatively small machines. The RS-LMTO-ASA scheme'
does not require symmetry and is extremely flexible. It
can be applied to interstitial impurities and is rather use-
ful in the presence of lattice relaxation. The RS-LMTO-
ASA scheme is also helpful when studying other kinds of
local perturbations, such as defects and vacancies, and
can be applied when the hosts have hcp and more com-

plex structures. The scheme is also efficient in the study
of local perturbations in metallic compounds with more
than one type of atom in their cell, which are normally
difficult to handle by other methods.

The paper is organized in the following way: in Sec. II,
we briefly review the LMTO-ASA formalism in its
several representations. In Sec. III, we describe the RS-
LMTO-ASA scheme and discuss the modifications which
have been introduced into the original scheme, in order
to treat local perturbations. In Sec. IV, we give the re-
sults for 3d impurities in a Cu host. Finally, in Sec. V, we

present our conclusions.

II. THE LMTO-ASA FORMALISM

In this section we give a brief description of the
LMTO-ASA formalism to point out the approximations
used and establish notation. The LMTO-ASA formalism
is well known and has been described in several pa-
pers. ' ' ' A review of the method and its several repre-
sentations from a real-space point of view, with varying
degrees of sophistication, can also be found in the litera-
ture. ' '

In the present work we use the atomic-sphere approxi-
mation (ASA), where the space is divided into Wigner-
Seitz (WS) cells, which are then approximated by WS
spheres of the same volume. We note that the LMTO is a
linear method and the solutions are most accurate near a
freely chosen energy E . Here, as in most of the litera-
ture, E„is taken at the center of gravity of the occupied
part of the given (s, p, or d) band. Finally, we should
note that in the present paper we use a first-order Hamil-
tonian, where terms of order of (E E, ) and higher ar—e
neglected. As we sha11 see later, in this approximation
the Hamiltonian has a simple tight-binding form, and the
problem can easily be solved in real space.

The LMTO-ASA basis functions are chosen in order to
optimize the efficiency when solving a given problem.
Normally, the information needed to set up the Hamil-
tonian can be divided into two independent parts. The
first one depends only on the structure (the position of
the atoms in space), while the second depends only on the
solution of the Schrodinger equation at energy E inside
each inequivalent WS sphere, with appropriate boundary
conditions. For the first part, the basic information is
given by the canonical structure-constant matrix
S„.L. «, which depends only on the structure, but not on
the type of atoms occupying the sites. ' The second part
yields the so-called potential parameters for each site.
The fundamental quantities in this case are the functions
g„(r),defined as the radial part of the solution of the
Schrodinger equation for a spherical potential inside each

Here we follow the hterature and use quantities with
bars (S, QI, CI, and Zl) to denote the most localized (TB)
representation and quantities without bars (S, Q&, C&, and
b, &) to denote the nearly orthogonal representation. The
structure-constant matrix S for the TB representation,
defined by a mixing Q&, is written in terms of the original
canonical structure matrix S as

S—So(I Qso) —1 (2)

Here I is the unit matrix and Q is a diagonal matrix with
elements Q, . The mixing Q&'s which define the TB repre-
sentation are found empirically, by adjusting their value
in expression (2), in order to obtain a localized structure
constant matrix S. The values of mixing were found to be
approximately independent of the structure ' and are
given for s, p, and d electrons by Q, =0.3485,
Q~ =0.05303, and Qd =0.010714.

The mixing QI, and the other potential parameters CI
and 51 in the orthogonal representations, are given in
terms of linear combinations of the solutions y (r) and
jo„(r),with appropriate logarithmic derivatives, substitut-
ed at the boundary of each WS sphere. These potential
parameters have different values for every nonequivalent
atom in the system. The potential parameters in the TB

WS sphere at energy E, and its energy derivative jo (r)
defined at energy E .

Andersen and Jepsen have shown that one of the
characteristics of the LMTO-ASA formalism is that a
variety of new basis sets can be constructed by taking ap-
propriate mixing of the original standard LMTO basis
functions. The mixing can be judiciously chosen to build
into the problem some particularly desirable property.
Because the sets are related through mixing, they can be
obtained from each other. There are three very impor-
tant LMTO-ASA representations. The first is the stan-
dard representation, in which the LMTO was originally
formulated. The second is the nearly orthogonal repre-
sentation where the mixing parameters Ql are chosen to
make the overlap matrix close to unity. ' Finally, we
have the tight-binding (TB) or most localized representa-
tion, with a mixing chosen to make the interactions be-
tween neighboring sites as short ranged as possible. ' In
real space, it is convenient to work with a first-order
Hamiltonian, where terms of order of (E E„)a—nd

higher are neglected. To this order, the nearly orthogo-
nal and TB representations coincide, and we can take
advantage of both features. Within this approximation, it
is possible to work in the orthogonal representation, but
express the orthogonal Hamiltonian in terms of localized
parameters of the TB representation. Normally, the first-
order approximation works quite well for metallic sys-
tems and one can always work with energy windows, if a
higher precision is required.

In its present form, the first-principles RS-LMTO-ASA
scheme is implemented within the approximations de-
scribed above. Then the orthogonal Hamiltonian H, writ-
ten in terms of TB parameters, has a very simple tight-
binding form. '

H =C+6' Sh'
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representation C& and 5&, which appear in expression (1)
for the Hamiltonian, can be obtained from the orthogo-
nal parameters C&, 2) &, Q& for a given E„bya simple ex-
pression:

g 1 /2 C —E
g 1 /2

In the orthogonal representation the overlap matrix is
close to unity, giving rise to a simple eigenvalue problem
of the form

(H E)Q =—0,
gF.

= g tcp„(re�)+(E E„)r'p—,(rlt )t Yr. (r2t )"L,w(E) .
R, L

change and correlation terms which we use in real space
are exactly the same as those used in the regular k-space
LMTO-ASA formalism. It can be shown' that the
spherically averaged potential inside a WS sphere and the
corresponding potential parameters are uniquely deter-
mined if some fundamental quantities are given. Those
are the occupation m ~ ' for each local (s, p, and d) band
at the site, the first moment (taken to be zero) and second
moment m' ' of the local density of states relative to E,, ,
and the logarithmic derivative of rP„(r) at the sphere
boundary. Normally the logarithmic derivative D& can
diverge, and to avoid numerical problems, the related
quantity P&, which varies between zero and one, is often
used:

(4)
P& =0.5 —arctan(D& ) /rr . (5)

In the first-principles RS-LMTO-ASA scheme' we use
the recursion method and the solutions of the
Schrodinger equation within the WS spheres to find a
self-consistent solution to this problem.

III. SELF-CONSISTENT RS-LMTO-ASA SCHEME
FOR IMPURITIES

Here we briefly describe the recently developed RS-
LMTO-ASA scheme, which allows us to perform first-
principles, density-functional, electronic-structure calcu-
lations in real space. A more detailed description of the
scheme can be found elsewhere. ' We also discuss the
modifications which had to be implemented in the RS-
LMTO-ASA scheme in order to treat local perturbations.

The RS-LMTO-ASA self-consistent scheme is very
similar to the regular LMTO-ASA k-space procedure,
but when solving the eigenvalue problem to find the local
density of states, we substitute the k-space diagonaliza-
tion by a real-space recursion procedure. As in recipro-
cal space, the problem of obtaining the Hamiltonian in
RS can also be divided into two independent parts. The
first part gives the structure-constant matrix S which
connects each structurally inequivalent site to itself and
to its close neighbors. These matrix elements are ob-
tained by performing the matrix inversion of Eq. (2), on a
small cluster of about 20 atoms around each site. The
operation is done only once, because S does not depend
on the potential and stays fixed during the self-consistent
procedure. We note that because the inversion procedure
does not require symmetry, it can be applied to intersti-
tial sites and used in the presence of lattice relaxation and
similar situations. The second part gives us the potential
parameters, which change at each self-consistent step.
To obtain C&, and 6&, we first determine the orthogonal
potential parameters C&, b, &, and Q&. To get them we

have to solve the Schrodinger equation inside each non-
equivalent WS sphere. This part of the problem is often
called "the atomic part" and is treated in the same
manner as in the usual k-space formalism. Actually, we
use the regular LMTO-ASA codes" when solving for the
"atomic part" in the real-space approach. Because the
atomic part gives a11 the nontrivial information about the
potential, it is clear that the approximations for the ex-
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FIG. 1. Diagram of the "atomic" part, which gives the po-

tential and radial solutions y(r)), j(r)), and jo(r) at E, It gen-

erates the potential parameters C, 6, and Q for given values of
the moments and logarithmic derivatives at each WS sphere.

At this point it is useful to give a brief description of
how the "atomic part" works. It can be shown (see Ref.
7) that the spherical average of the charge density inside
a WS sphere can be expressed in terms of the solutions of
the Schrodinger equation inside the WS sphere and the
moments (m ' ', m ' ~) of the local density of states
(LDOS). To obtain the self-consistent charge density
from given moments in practice, we start from a guessed
charge density. The local density potential is constructed
and rp, (r) and j,(r) are calculated to the given value of
P&. Then a new charge density is made by occupying the
wave functions according to the given moments. This
procedure is iterated, as indicated in Fig. 1, until the
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FIG. 2. Diagram showing the steps used to obtain self-
consistent results within the RS-LMTO-ASA scheme used here.
The "atomic" part, used to obtain the potential parameters C,
6, and Q of the orthogonal representation is described in Fig. l.

solutions inside the given WS sphere are self-consistent.
We should note that when we solve for the "atomic
part, " we choose the potential to be zero at the sphere
boundary. When constructing the Hamiltonian we
should correct the relative energy scale of each WS
sphere by its electrostatic potential ( V„).This correction
includes the Madelung potential due to charged WS
spheres of other sites at the given sphere and also takes
into account the electrostatic contribution of the sphere
itself. As we noted before, here the value of E is chosen
in order to always keep the first moment of the density of
states for the occupied part of the band zero.

The RS-LMTO-ASA self-consistency process used here
for the whole system is summarized in Fig. 2. We start
by giving reasonable initial guesses for the occupation,
second moment, and PI for each of the nonequivalent WS
spheres. Here, nonequivalent spheres are those with dis-
tinct densities of states. For example, all the 12 first
neighbors of a substitutional impurity in a fcc host are
considered equivalent, in this context. With these initial
guesses, we use the "atomic part" of the codes, described
above, to find the nearly orthogonal potential parameters
and use Eq. (3) to obtain CI and b, l. Finally we include

V„in the definition of CI and build the real-space TB
Hamiltonian of Eq. (1). To solve the eigenvalue problem
and find the LDOS for s-p and d electrons at each non-
equivalent site, we use the recursion method on a large
cluster (normally of at lest 1000 atoms), representing the
system in question. We then use the LDOS to find the

new energy E and the new moments for each band at
each nonequivalent site and the new values of Pt. We
mix the old and new values of these quantities and apply
them in the "atomic part" to get the new values of C and
6, which will be used for the next iteration. The results
will be converged when the moments and values of P& ob-
tained from the solution of the eigenvalue problem differ

by less than a prescribed amount from the ones which
generated the Hamiltonian. Because the step involving
the recursion is the most expensive part of the procedure,
it is often useful to implement rigid-band iterations be-
tween two recursion steps, to minimize charge Auctua-
tions, and get better parameters for the next iteration. '

It is clear that to obtain the occupations and the mo-
ments of the LDOS, the Fermi level has to be deter-
mined. In a crystalline system, the Fermi level is deter-
mined at each self-consistent step, by filling the bands
with the correct number of valence electrons. In the case
of impurities and other local perturbations, the V„con-
tribution goes to zero far from the unperturbed region.
In this case, the Fermi level of the perturbed system is
fixed by the Fermi level of the host, and the procedure
has to be modified to take that into account.

Here we describe the alternative procedure that we
have developed in order to obtain the occupations and
moments of the LDOS at each site, in the presence of lo-
cal perturbations. First we perform a RS-LMTO-ASA
calculation for the host and obtain the Fermi level, in the
absence of perturbation, in the usual way. Then we set
the Fermi level to this value and calculate the occupa-
tions and other relevant quantities in the presence of per-
turbation in the region of interest. Whatever extra
charge results from the process inside the chosen region
is placed on its immediate outer vicinity when determin-
ing the V„ateach inner site. The process is repeated un-

til self-consistency is achieved.
In the case of the substitutional impurity considered

here, we start the calculation by fixing the potential pa-
rameters at the Cu sites to their bulk values in pure Cu
and giving an initial guess for the impurity parameters.
Then we use the recursion method to obtain the LDOS
at the impurity site and obtain the occupation by filling
the local band up to the Fermi level fixed by the pure
host. If an extra charge is present at the impurity site, we
assume that it has been transferred from the first shell of
Cu atoms around the impurity. V„atthe impurity site is
then obtained for this configuration of charges. The new
potential parameters at the impurity site are then ob-
tained by considering moments of the LDOS up to the
fixed Fermi level. The new Hamiltonian is constructed
and a new LDOS determined. The process continues un-
til the impurity-site values are converged, with the Cu pa-
rameters fixed at the bulk values. Then we include the
first shell of Cu atoms around the impurity in the self-
consistent process. We find the LDOS for the impurity
and its first Cu neighbor and obtain the occupation at the
impurity and Cu sites by filling the bands up to the fixed
Fermi level. Again, any extra charge is assumed to have
originated in the first layer external to the region, here
the second shell of Cu atoms. V„atthe impurity and
first Cu neighbor is then obtained for this charge
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configuration. A new Hamiltonian is obtained and we
proceed until the values for the impurity and its first Cu
neighbors are all converged. We then include the second
shell of Cu neighbors and the process is continued until
the potential parameters for the last relaxed shell are the
same, within our convergence requirements, as the bulk
parameters. At this point, the charge transferred to the
atoms outside the considered region should be negligible
and all values calculated for the whole system will have
reached convergence.

IV. RESULTS FOR 3d IMPURITIES IN A CU HOST

Here we present results for V, Cr, Mn, and Fe substitu-
tional impurities in fcc Cu. The impurity and four shells
of Cu neighbors are considered. The results for Fe,
which have been previously presented, were hard to ob-
tain because a small mixing is required and a large num-
ber of recursion steps had to be performed. Here, we
kept the same small mixing, but a rigid-band self-
consistency was introduced between the recursion steps,
reducing the number of recursion steps by a factor of 10.
The slight differences in the results for the Fe impurity
relative to the previous results are due to better conver-
gence in the present work.

Here we use the RS-LMTO-ASA scheme to obtain the
LDOS, local magnetic moments, and charge transfers at
the impurity site and four shells of Cu neighbors. To
avoid surface effects we have used a large cluster of 1248
atoms, cut in order to keep the atoms of interest at a
maximum distance from the surface. For all sites and all
orbitals a cutoff parameters L,„=20was taken in the
recursion chain and the Beer-Pettifor terminator' was
used. We note that the recursion method gives only the
general shape of the density of states. The detailed
features can depend on the terminator used. But it is well
known that the recursion method gives a very good
description of integrated quantities and properties which
depend on them. Therefore, the real-space scheme gives
a qualitative description of the LDOS and of the density
of states at the Fermi level, but is very reliable in obtain-
ing magnetic moments, electric field gradients at the nu-

clei, and other properties which depend on integrated
quantities. We note that the occupations and moments
used in the RS-LMTO-ASA scheme are also integrals of
LDOS, and therefore are very well described within the
recursion method.

In the present calculation, to achieve convergence we
have used a very small mixing (0.04 of the new moments
and P& and 0.96 of the old ones) at each iteration. An ex-
change correlation term of the form proposed by von
Barth and Hedin' was used. From the process described
in Fig. 1, it is clear that the moments and P& can be used
to determine the potential inside the WS spheres. Here,
as it is often done in the regular reciprocal-space forrnal-
isrn, we use differences between the moments and loga-
rithmic derivatives of subsequent steps to establish our
convergence criteria. In practice, we start with an initial
guess for the moments and logarithmic derivatives at the
impurity site. After a few iterations, the initial charge os-
cillations are under control and we can start the rigid-
band steps. We perform ten rigid-band iteration steps in

between each recursion step (in the rigid-band iteration,
the shape of each s, p, and d band is maintained, but the
center of these bands are shifted to the new values of C&

at each step). The introduction of these steps consider-
ably accelerates the approach to convergence.

Our convergence criteria for these calculations require
that the moments and P& obtained after a recursion step
(with no mixing) not differ from the ones used to obtain
the Harniltonian by more than 0.001. We have noticed
that the occupations, especially the d-electron occupa-
tions, are the last ones to converge. Here these occupa-
tions were converged up to 1 millielectron. We note that
the errors introduced by the cutoff parameter L,„ata
given step can be of the order of several millielectrons.
But as we will see later, due to the action of screening,
the error in a self-consistent calculation is very much re-
duced, being consistent with the convergence criteria
adopted here.

In Fig. 3(a) we show our results for the LDOS at the
impurity site in V, Cr, Mn, and Fe. For comparison, in
Fig. 3(b) we shown results for the same quantities, ob-
tained from KKR Green's-function (KKR-GF) calcula-
tions. " As we have mentioned before, the recursion
method gives only the general shape of the LDOS. Even
so, the agreement between the two approaches is, in all
cases, extremely good. There are some differences in the
LDOS above the Fermi level. We work within a first-
order approximation to the Hamiltonian and E, is
chosen at the center of the occupied band in order to give
a good description of the occupied part of the band.
Therefore, the empty states may be poorly described.

In Table I, we show our converged results for the mag-
netic moment at the impurity site (M~) and the first four
shells of the host (Mi, Mz, M3, and M&). For compar-
ison we also show these same quantities obtained using
the KKR-GF method converged with six shells of host
neighbors. ' Results for charge transfer for six converged
shells are not given, but we could find KKR-GF results
for charge transfers when only the impurity and one shell
of neighbors were treated self-consistently. ' In the last
two rows of Table I, we also compare the charge transfers
at the impurity site (Cz) and at the first Cu neighbor
(C, ), obtained using the RS-LMTO-ASA and the KKR-
GF approaches. In both cases only the impurity and the
first shell of neighbors were converged. In Table II, we
show our RS-LMTO-ASA results for charge transfers for
the impurity (Co) and four shells of neighbors (C„C,,
C3, and C~). The results for C~ and C, are very similar
to those of Table I, where only first neighbors were con-
verged. We should note that the RS-LMTQ-ASA and
the KKR-GF procedures are quite different and the ap-
proxirnations used are not the same. For example, the
density of states for empty states is often used in the
KKR-GF approach when obtaining the real part of the
Green's function for the host. In our scheme, the empty
states are never used. Therefore, the agreement between
the approaches is rather impressive, especially when we
consider the small values of the induced moment at the
Cu shells. In our opinion the different approximations
used could justify larger differences than the ones ob-
served here, when very small quantities are considered.
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FIG. 3. Local density of states for up ( f ) and down ( 5 ) spins at the impurity site for V, Cr, Mn, and Fe impurities in a fcc Cu ma-

trix. In (a) we show results from the RS-LMTO-ASA calculations performed here. In (b), for comparison, we show KKR-GF results
for the same systems. The LDOS is given in units of states/eV atom spin.

This may eventually happen in other systems.
There are in the literature KKR-GF results for the

magnetic moment of 3d impurities in Cu, obtained using
a varied degree of accuracy; the single-site (SS) results, '

where the impurity is converged while the Cu atoms
maintain their bulk characteristics; results including the
impurity and first shell of neighbors in the convergence
and finally the latest ones, where six shells of neighbors
were included. ' It is interesting to compare the changes
in magnetic moment (and charge transfers) obtained by

the KKR-GF method and by our approach, as the num-
ber of shells included in the convergence is increased.

Before we go on, we should comment on our single-site
results for V. In this case we find the rate of convergence
to be extremely slow, with the moment decreasing at each
iteration, indicating the onset of a magnetic instability.
Our results indicate a very small moment for the V im-

purity within the single-site approximation. We find that
the magnetic moment is estabilized when the Cu atoms
are included in the convergence procedure (see Table I).

TABLE I. RS-LMTO-ASA and KKR-GF results for local magnetic moments (in units of pz) and local charge transfer (in excess
of valence electrons at the given site) for systems consisting of V, Cr, Mn, or Fe impurities in Cu fcc hosts. We show local moments
at the impurity (Mo) and at Cu atoms in the first four shells (M&, M2, M3, and M4) around the impurity. In the last two rows we

show the charge transfer at the impurity (Co) and at the first Cu neighbor (C, ) when only one shell of neighbors around the impurity
is treated self-consistently.

V
RS-LMTO-ASA KKR-GF

Cr Mn Fe
RS-LMTO-ASA KKR-GF RS-LMTO-ASA KKR-GF RS-LMTO-ASA KKR-GF

Mo
M)
M2
M3
M4
Co
Ci

0.96
+0.0070
—0.0028
+0.0019
—0.0011
—0.53

0.60

1.10
+0.0167
—0.0028
+0.0015
—0.0010
—0.67

0.50

3.03
+0.0193
—0.0061
+0.0032
—0.0017
—0.40

0.04

2.99
+0.0310
—0.0079
+0.0019
—0.0021
—0.49

0.05

3.56
+0.0176
—0.0100
+0.0004
—0.0032
—0.34

0.04

3.40
+0.0226
—0.0090
+0.0003
—0.0022
—0.44

0.03

2.69
+0.0114
—0.0081
—0.0020
—0.0014
—0.20

0.02

2.51
+0.0084
—0.0072
—0.0015
—0.0015
—0.30

0.02
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TABLE II. Local charge transfers (excess of valence elec-
trons at the site) at the impurity (Co) and four shells of Cu
neighbors C„C~,C, , and C4 around the impurity, obtained us-
ing the RS-LMTO-ASA scheme.

Cr Mn Fe

Co

C,
C,
C3

C4

—0.544
0.058
0.000

—0.006
—0.004

—0.410
0.044

—0.001
—0.005
—0.002

—0.340
0.036

—0.001
—0.004
—0.001

—0.208
0.023

—0.002
—0.004

0.000

The fact that the moment of V in a Cu host is close to an
instability seems to be confirmed by calculations for pairs
of 3d impurities as first neighbors in Cu. The Cr, Mn,
and Fe pairs in a Cu host shown large magnetic moments
at the impurity sites whether the V pairs are found to be
nonmagnetic. ' We should note that the convergence on
charge was easily achieved for the single-site V.

In Table III (first row), we show RS-LMTO-ASA and
KKR-GF results for the magnetic moment (SS) at the im-
purity for Cr, Mn, and Fe, using the single-site approxi-
mation. The second and third rows show values for mo-
ments at the impurity (Mo) and first Cu neighbor (M, )

for these same impurities, when both the impurity and
the first shell of Cu neighbors are calculated self-
consistently. The V impurity was not included for the
reasons mentioned above. It is clear from Table III that
the variations between single-site and first-neighbor con-
verged results are much larger in the KKR-GF calcula-
tions than in the RS-LMTO-ASA. This also happens
when charge transfer is considered. The KKR-GF re-
sults in the literature show an increase in the magnitude
of the charge transfer at the impurity site, of roughly a
factor of 2,"when the first shell of Cu atoms is included
in the convergence. In contrast, our single-site results
( —0.51 for V, —0.38 for Cr, —0.32 for Mn, and —0.20
for Fe) are in close agreement with those obtained with
the inclusion of first neighbors, and shown in Table I.

The large variation observed in the KKR-GF results
when the first shell of Cu atoms is included in the conver-
gence is not intrinsic to the KKR-GR procedure. It can
be understood if we analyze how the Madelung contribu-
tion and V„.were included in the RS-LMTO-ASA and
KKR-GF calculations mentioned here. On the single-
site KKR-GF calculation, the first Cu neighbors are tak-
en to he neutral, while the impurity can have rather large

charge transfers. In the RS-LMTO-ASA approach used
here, the extra charge is placed in the first Cu shell when
obtaining V„,in order to simulate charge neutrality.
When one includes the first neighbors in the self-
consistent process, they immediately acquire a positive
charge, which roughly compensates the excess charge on
the impurity. The Madelung contribution due to this
charge shifts the center of impurity band up by a consid-
erable amount, expelling the charge and enhancing the
charge transfer relative of the SS result. The single-site
KKR-GF results could be easily improved, by introduc-
ing a procedure similar to the one used by us, when treat-
ing the Madelung contribution.

If one were to correct naively for the Madelung term
by including the shift due to the charges of the first
neighbors at the impurity site directly in the converged
single-site results, the charge transfer would be unreason-
ably large for a metal. But, due to screening, if the con-
vergence is achieved under the appropriate conditions,
the results are not too different from those of the single-
site calculation, where the charge in the Cu neighbors
was neglected. We have just a factor-of-2 difference in
the charge and a few percent discrepancy in the moments
as can be seen from our discussion of the KKR-GF re-
sults. It is interesting to note that a similar effect makes
the errors, introduced in our RS-LMTO-ASA calcula-
tions by the finite cutoff parameter L,„used in the re-
cursion method, much smaller than we initially anticipat-
ed. We find that the differences in occupations when we
change the value of the cutoff parameter in the recursion
chain, from L,„=20to 18 or 19 are typically a little
more than 5 millielectrons. But, due to screening, if we
now try to achieve convergence of the system for
L,„=18,19, and 20, the difference between these con-
verged values will be less than 1 millielectron.

Finally, since the Hamiltonian used here is of the
tight-binding form, we can easily verify whether a local
Stoner criterion ' is closely obeyed at the impurity site.
To verify this, we determine the difference between the
centers of the (up and down) d bands (b,Ed ), from our
converged results and relate it to the d band polarization
at the impurity site. We find that the ratio between the d
magnetic moment at the impurity site and (b,Ed) is al-
most constant for all impurities, of order of 0.066 Ry for
Fe and Mn and of order of 0.062 Ry for Cr and V. These
ratios are close to the value of the Stoner parameter for
Fe, but slightly high when compared with the Stoner pa-
rameter of the other impurities.

TABLE III. RS-LMTO-ASA and KKR-GF results for the local magnetic moment (in units of pz) for systems consisting of Cr,
Mn, or Fe substitutional impurities in Cu fcc hosts. In the first row we show the magnetic moments at the impurity (SS) when a
single-site calculation is performed. We also show the magnetic moment at the impurity (Mo) and first shell of Cu neighbors (Ml),
when both the impurity and the first shell of Cu neighbors are treated self-consistently.

Cr
RS-LMTO-ASA

3.05
3.03
0.02

KKR-GF

3.06
3.09
0.03

Mn
RS-LMTO-ASA

3.58
3.57
0.02

KKR-GF

3.23
3.44
0.02

Fe
RS-LMTO-ASA

2.71
2.70
0.01

KKR-GF

2.30
2.55
0.01
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V. CONCLUSIONS

We have presented a first-principles density-functional
approach which allows us to obtain the electronic struc-
ture and related properties of locally perturbed metallic
systems. The approach is a version of the recently
developed RS-LMTO-ASA scheme, which was modified
to treat local perturbations.

We have applied this RS-LMTO-ASA approach to
study the behavior of 3d impurities (V, Cr, Mn, and Fe)
in a fcc Cu host. The results are in excellent agreement
with those obtained by the well-established KKR-GF for-
malism, confirming the accuracy of our method.

Sometimes because of external limitations, calculations
are restricted to a single site. We show that the single-
site results can be improved if the excess charge on the
calculated site is compensated, in order to preserve
charge neutrality, when calculating the Madelung contri-
bution.

We note that the RS-LMTO-ASA scheme does not re-
quire symmetry and is extremely flexible. Therefore, the
method presented in this paper can be applied to study
interstitial impurities and can also be used in the presence
of lattice relaxation. It is probably one of the most

efficient approaches, if one wants to investigate local per-
turbations in complex hosts.

Finally, in the RS-LMTO-ASA scheme, the effort
grows linearly with the number of sites with an ine-
quivalent local density of states because the recursion
procedures has to be repeated for each of these ine-
quivalent sites. But the size of the computer used does
not have to be increased. Therefore, the calculations do
not require the use of supercomputers and the codes can
be efficiently implemented on parallel machines.
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