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We study the advance of an interface separating two magnetic domains in a three-dimensional
random-field Ising model. An external magnetic field causes one domain to grow. Three types of
growth are found. When disorder in the medium is large, the interface forms a self-similar pattern
with large scale structure characteristic of percolation. As the disorder decreases, there is a critical
transition to compact growth with a self-afBne interface. Finally, for sufficiently weak disorder,
simple faceted growth occurs. The transitions between these growth morphologies are related to
results for bootstrap percolation. In the self-similar and self-adBne growth regimes there are also
critical transitions at the onset of steady-state motion. These are studied numerically, and found
to lie in different universality classes. The critical exponents obtained f'rom our simulations obey
general scaling relations derived in the context of fluid invasion.

I. INTRODUCTION

A variety of important physical processes involves
driven motion of an interface through a disordered
medium. Examples include magnetic domain-wall
motion, i 4 fluid invasion of porous media, s ir and
spreading on heterogeneous surfaces. is In each case the
disorder is time independent or quenched. This leads
to very difFerent behavior than time-varying random
forces. i~ss Studies of two-dimensional (2D) systems
have revealed a wide range of interface morphologies and
critical transitions as the relative magnitudes of the driv-
ing force, the disorder, and the local surface tension en-
ergies are varied. s 4 io i4 is These results are briefly re-
viewed below. We then present a study of such transi-
tions in a three-dimensional model —magnetic domain-
wall motion in the random-field Ising model on a cubic
lattice.

Much progress has been made in experimental and the-
oretical studies of fluid invasion of 2D porous media. s

In this process, a preexisting fluid in the porous medium
is displaced by an invading fluid, which is driven by an
applied pressure P. The interface between the two Huids
is pinned at pressures below a value P„and advances
continuously at higher pressures. The onset of motion
is a critical transition, and scaling relations have been
derived between many of the associated exponents. is is

The results fall into diferent universality classes depend-
ing on the effective strength of the disorder. There is a
direct correspondence between these universality classes
and the structure of the marginally stable interfaces at
P, . Self-similar, self-afBne, and faceted structures have
been found. ' '

The effective strength of the disorder depends on both
the magnitude of fluctuations in the pore geometry and
on the wetting properties of the invading fluid. "
%Then the invading Quid wets the porous medium less

well than the displaced fluid (nonwetting invasion), ad-
jacent segments of the interface are uncoupled and ad-
vance independently. Growth is well-described by the
invasion percolation model, s which maps the problem of
penetrating the most easily invaded regions of the pore
space on to bond percolation. Cooperative invasion by
neighboring segments of the interface becomes impor-
tant as the invading fluid becomes more wetting, and
the invasion percolation model breaks down. 7 s i4 Theo-
retical studies of model porous media constructed from
disks with random radii indicate that there is a criti-
cal transition from the self-similar fractal growth char-
acteristic of percolation to a smoother structure. i4 is If
the distribution of disk radii is narrow, lattice anisotropy
is important and the interface becomes faceted. i4 If the
geometrical disorder is large enough to suppress lattice
anisotropy, the interface is a self-affine fractal with a
roughness exponent n 0.8.i4is Several independent
experiments have found similar values of a, i i is and con-
firmed the sharp change in growth morphology with wet-

ting properties. ~ss ~0

The discovery of a system with a = 0.8 provoked a
great deal of interest because most models for interface
growth in 2D give a universal exponent of o. = 0.5.i~2s
However, all of these models assume time-varying disor-
der. Martys et at. have suggested that the increase in a is
associated with the critical state at the onset of motion. is

This state only occurs in systems with quenched disorder,
and work in progress confirms that the roughness expo-
nent is only equal to 0.8 at P, . 4 At higher pressures, the
roughness exponent crosses over to 0.5 at large length
scales. A similar crossover from self-similar to self-aFine
growth with o, = 0.5 occurs in percolating systems.

The physics of domain-wall motion in Ising ferromag-
nets is very similar to that of Quid invasion. ~ 4 In this
case, an interface separates regions of up and down spins.
Growth of one domain is driven by an external mag-
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netic field H, and disorder comes from local variations in
the exchange coupling (random bonds) or magnetic field
(random fields). Both types of disorder have been consid-
ered in recent studies of domain growth on 2D lattices.
As in fluid invasion, fractal percolative growth is found
for strong disorder. In this limit, the state of each spin
is independent of its neighbors. As the degree of dis-
order decreases, advance of neighboring sections of the
interface becomes increasingly correlated. There is a di-
rect transition from percolative to faceted growth in all
cases studied. s 4 zs Subtle differences between the growth
rules for magnetic domains and fiuid invasion suppress
the self-affine regime found in fiuid invasion. s is In par-
ticular, there is no way to decrease the degree of lattice
anisotropy without increasing the strength of the disor-
der. The absence of a self-affine phase in the 2D random-
field Ising model appears to be related to the fact that
arbitrarily weak disorder suppresses ferromagnetism.
Ferromagnetism and disorder can coexist in higher di-
mensions, thus one might expect a richer nonequilibrium
phase diagram. This is confirmed by the data presented
below.

Previous work on magnetic domain-wall motion in
three and higher dimensions has focused on a continuum
model which assumes that the interface is a single-valued
function of position. This is an important simplifica-
tion because self-similar percolating domains necessarily
have multivalued interfaces. Only faceted or self-affine
interfaces can be treated in this model.

Bruinsma and Aeppli applied scaling arguments to
the continuum model, and concluded that disorder could

pin the interface in less than five dimensions (H, ) 0).
Koplik and Levinez studied the model numerically, and
reached different conclusions. In particular, they found
no pinning in dimensions greater than three. Neither of
these works considered the possibility of a critical tran-
sition at the onset of interface motion, or studied the
morphology of the advancing interfaces.

More recently Kessler et al. have looked at interface
roughness in a 2D version of the continuum model. zs

They found that the large scale structure of moving in-

terfaces was always self-affine with o. = 0.5. However,

their results could be fit to an apparent o. near 0.75 at
small length scales and velocities. Kessler et at. argued
that this value resulted from a crossover between fractal
percolation behavior at small length scales (o, = 1) and

the large scale exponent of 0.5. They suggested that a
similar crossover might produce an apparent exponent of
0.8 in fiuid invasion at finite velocity. This view contrasts
with that of Martys et al. who found a well-defined in-
trinsic exponent of a = 0.81(5) at large length scales in

the limit of zero velocity.
In this paper, we consider magnetic domain-wall mo-

tion in 3D. As in 2D, there are faceted and percola-
tive growth regimes at low and high disorder, respec-
tively. There is an additional self-affine growth regime
at intermediate disorder which is like that found in 2D
fluid invasion. As there, the roughness exponent is much

larger than the exponent for continuum models with
time-varying noise. The value of the exponent is an in-

trinsic property of the marginal interface at H, . Several

other parallels to fluid invasion are found. The transition
from percolation to self-afBne growth is characterized by
the divergence of a coherence length, or fingerwidth.
The critical behavior at the onset of motion depends only
on the morphology of the marginal interface. Self-similar
growth is well described by 3D percolation exponents and
self-a8ine growth belongs to a new universality class. The
critical exponents for each case are obtained numerically
and tested against scaling relations derived in Ref. 16.

The paper is organized as follows. In the next sec-
tion we describe the random-field Ising model and our
growth algorithm. Section III contains a discussion of
the changes in growth morphology as the strength of dis-
order varies. These changes, and the values of H„are
related to results from bootstrap percolation theory. "
The critical transitions at the onset of interface motion
are analyzed in Sec. IV, and the final section presents a
summary and conclusions.

II. RANDOM-FIELD ISING MODEL
AND GROWTH ALGORITHM

The Hamiltonian describing the random-field Ising
model is

where the Ising spins on sites i can have values 8, = +1,
the first sum is over all nearest-neighbor pairs, 8 is the
external magnetic field, and h, represents the random
local field. For eonvenienee, we have set the exchange
constant to unity and will assume the lattice constant
also equals one. The probability of finding a given lo-
cal field, h, at a site is given by a distribution function
P(h). The strength of disorder is characterized by the
range of the distribution. Throughout this paper, we
use a uniform distribution between —6 and h. Other
distributions have been studied in 2D and yield similar
results. 4

We consider zero-temperature single-spin-fiip dynam-
ics of Ising spins on a cubic lattice. Since only pores on
the interface can be invaded in the fluid invasion prob-
lem, we only allow spins on the interface to flip. In a
true magnetic system, spin flips can occur anywhere in
the system. However, as discussed in Ref. 3, we do not
expect this to lead to substantial changes in the large
scale structure of the growth pattern.

The growth of the interface is simulated in the follow-

ing way. We start from an initial interface between up
and down spins. This interface is chosen to be a flat
horizontal plane at the bottom of a simple cubic lattice
containing L x L x L spins. Up spins are below this plane
and down spins are above. Periodic boundary conditions
are imposed along the horizontal directions. Down spins
on the interface are flipped only if this lowers the total
energy. Since T = 0, flipped spins will never flip back to
the down orientation.

We begin by setting H equal to the value where the
first down spin on the initial interface will flip up. This
spin is flipped, which changes the exchange force on
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neighboring spins. If any of these become unstable, they
are also flipped. When two or more spins are unstable,
the most unstable spin is flipped first. Growth stops
when all spins on the interface are stable at the given
H. The value of H is then increased to the value where
the first spin on the new interface becomes unstable and
the process is repeated. The number of spins which flip
following each increase in H is stored as a measure of the
degree of correlation between spin flips. Growth contin-
ues in this way until the pattern of flipped spins spans
the system. The value of H required to span the system
approaches a constant critical field, H„asthe system
size increases.

I L

I

FIG. 2. Vertical cross sections of the domain structure for
(a) b, = 2, (b) b, = 3, and(c) 4 =4.4. Darkregions represent
flipped spins, and growth was started from a flat interface at
the bottom of the cubic lattice.

III. TRANSITIONS IN GROWTH
MORPHOLOGY

For systems with zero disorder (6 = 0), the exchange
coupling causes the interface to remain flat throughout its
motion. Thus growth always yields a faceted pattern. In
the opposite limit of strong disorder (b, » 1), spin flips
become independent of each other and domain growth
reduces to an invasion percolation process. s 4 ~s Previous
studies of domain growth in 2D have shown that there
is a direct transition from percolative to faceted growth
at 6 = 1 on the square and hexagonal lattices. On the
honeycomb lattice the transition is depressed to 6 = 0.

Figure 1 shows that the phase diagram of 3D systems
is much richer. The critical external field H, is plotted
against the degree of disorder A. Values of H, were ob-
tained by extrapolating H, (L), the mean value of H re-
quired to span systems of edge L, to infinite system size.
Two cusps in H, are evident at b' = 2.42 and Az = 3.41.
As illustrated in Fig. 2, these cusps separate the three
types of growth morphology. Cross sections of stable do-
mains in L = 100 systems are shown at the highest field
before the flipped spins spanned the entire system. Dark
regions represent flipped spins. Isolated islands of flipped
spins come from overhangs. They are connected to the
domain through the dimension perpendicular to the cross
section.

For systems with weak disorder (6 & b,~&), growth
yields faceted patterns [Fig. 2(a)]. In this regime, the
exchange coupling between neighboring spins dominates

the growth process. As discussed below, an entire plane
of spins adjacent to the interface can flip as soon as one
spin on the interface becomes unstable. s Thus the grow-
ing interface remains flat.

For intermediate disorder, b,
&

& b & 6', the do-
main walls are self-affine fractals [Fig. 2(b)]. Self-similar
fractals such as percolation clusters are isotropic and are
scale invariant when magnified equally in all directions.
In contrast, a self-affine fractal is anisotropic. s Different
scaling factors are required in the longitudinal and trans-
verse directions, and at large scales the interface appears
flat. The degree of anisotropy is described by the rough-
ness exponent n which is the logarithmic ratio of the
transverse and longitudinal scaling factors. One way of
determining n is shown in Fig. 3. The rms fluctuation
of the interface height, 6h, is calculated over horizontal
regions of width 6x. Self-affinity implies a power law re-
lation: bh ~ bz~. Figure 3 shows log&e(bh) vs log&e(6x)
for 6 =2.8 and system size L = 300. Values of 6h were
calculated for the last stable interface before the domain
spanned a system. They were then averaged over all re-
gions of width 6z and different configurations of random
fields. Results for L = 50 and 100 were analyzed to
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FIG. 3. Variation of bh with bx for A = 2.8 in systems
with L = 300. The slope of the linear fit is 3.
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check for finite-size effects. From the slope of these plots
we found o. = 0.67(3). We have also determined n for
6 = 2.6 and 3.0, and obtained the same value within the
quoted error bars.

Our result for n is substantially larger than the rough-
ness exponent n = 0.4 obtainedz from the Kardar-
Parisi-Zhang (KPZ) equationis for surface growth. The
KPZ equation describes models where the disorder is an-
nealed, i.e. , the random force on a site averages to zero
over time. Our random fields are independent of time
so that fluctuations can not average out. As in 2D fluid

invasion, ii is this produces a rougher interface.
The calculated roughness exponent agrees well with

the prediction of scaling theory for the conformation
of the lowest energy interface in a random-field Ising
model. Comparing the energy gain due to interactions
with the random field, to the energy cost of increased
interfacial area, one finds an optimal size bh for defor-
mations over interface regions of size bz. The associated
roughness exponent is n = (5 —d)/3, where d is the spa-
tial dimension of the medium. zs It is interesting that an
external field drives the system to a final stable config-
uration which has the same scaling properties. While
this final state has the maximum pinning force, it need
not minimize the energy. Note that the above expres-
sion gives n = 1 in 2D. This corresponds to isotropic,
self-similar scaling, and is consistent with the fact that
no self-affine growth regime is observed for 2D magnetic
domains.

Figure 2(c) shows the typical growth morphology in
systems with strong disorder (6 )Az). The domain ex-
hibits the intricate self-similar structure characteristic of
3D percolation clusters. M's To quantify the comparison
we have calculated the fractal dimension of domains, Df,
using the box counting method. s Patterns used to calcu-
late the fractal dimension were obtained by terminating
growth when a stable interface spanned the system. Re-
sults were averaged over at least 20 different configura-
tions of random fields at 6 = 6. Several different system
sizes were used (L = 64, 128, 256) to check for finite-size
effects. We found that growth patterns were self-similar
and that the fractal dimension was Dy = 2.5(1). This
value is consistent with the fractal dimension of ordinary
3D percolation. 3

The large scale structure for other values of 6 ) Az is
characterized by the same fractal dimension. However,
the patterns become markedly coarser at short scales as
6 decreases. This coarsening reflects coherent flipping of
larger and larger regions of neighboring spins. To quan-
tify the increasing range of correlations, we introduce a
mean fingerwidth m. This quantity is obtained by making
parallel lines slicing through the system, and calculating
the mean length of the segments which lie inside the do-
main of flipped spins. The same measure has been used
in our 2D simulations, as well as in experimental
and theoretical studies of fluid invasion.

Figure 4 shows the fingerwidth as a function of 6 for
three different system sizes. For large 6, i' is small (a
few lattice constants) and independent of system size.
As 6 decreases, m increases and the growth pattern
coarsens. However, the structure remains self-similar at
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FIG. 4. Fingerwidth m vs 4 for the indicated system sizes
L. Note that m saturates at L for A & Az. The inset shows
m/L vs A. It is independent of L for b, & A2.

scales larger than ui, with the same fractal dimension. As
6 approaches the critical point b,'z= 3.41 from above,
w would diverge in an infinite system. This signals a
transition from percolation to self-affine growth. Similar
divergences are observed at the transition from percola-
tion to faceted growth in 2D magnetic systemss 4 and at
the transition from percolation to self-affine growth in 2D
fluid invasion i4 ~5

The divergence of iU is most clearly seen from the inset
of Fig. 4 where i'/L is plotted against h. For 6 ( b, i,
the fingerwidth always equals the system size (i'/L = 1)
and growth is faceted. For 6 & bz, results for differ-
ent system sizes collapse onto a universal curve. Thus
m scales with L and would diverge in an infinite sys-
tem (L ~ oo). Based on our 2D studies4 we expect m to

I

diverge as a power law, m oc (b.—b,z)
' . We have deter-

mined the exponent v' using a finite-size scaling ansatzs 4

(2)

As in 2D, the scaling variable (6 —6z)/6 gives better
fits than (6 —A~z)/h, ~z. Best fits to data from L = 30 to
300 give v' = 3.0(5). The large error bars reflect substan-
tial corrections to finite-size scaling that appear for either
scaling variable. Our 2D studies show that v' is not uni-
versal, but depends on the analytic form of the edges of
the distribution of random fields. 4 The same arguments
apply here.

The changes in growth morphology with disorder are
closely related to variations in the probabilities that spins
with different local environments will flip. In the Ising
model this probability only depends on H, P(h), and the
number n of neighboring spins which have flipped. The
fraction of spins which would flip at H, if they had n
flipped neighbors is given by
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Hc

P(z —2n —H)dH = (H, —z+ 2n+ b, )/24,

(3)

where z = 6 is the coordination number of the cubic
lattice and the last equality only holds for a uniform dis-
tribution of local fields. The calculated variation of f„
with 6 is shown in Fig. 5. Note that fi becomes non-
zero at the transition from faceted to self-affine growth
(rh'r ) end f4 becomes less then unity et the transition to
percotetion rhs)

As in 2D, these trensitions cen be better understood
by using an analogy between domain growth and boot-
strap or difFusion percolation. z~ In bootstrap percola-
tion lattice sites are occupied randomly with probability
p. Then all sites which do not have at least m occu-
pied neighbors are removed. In the corresponding diffu-
sion percolation problem, unoccupied sites with at least
z —m+ 1 occupied neighbors are occupied. The percola-
tion probability p, is defined as the minimum probability
required for the final set of occupied sites to span the sys-
tem. The magnetic domain growth problem corresponds4
to a continuous generalization of such models in which
the probabilities of occupation are not unity, but are in-
stead given by f„.

The value of H, in the faceted regime can be obtained
from results for diffusion percolation on a square lattice.
The initial interface is a square lattice at the bottom
of the system. Interface spins have n = 1 Hipped spin
and 5 unflipped spina as neighbors. The lowest field at
which a spin can flip is thus Hi = 4 —b, . At any field
greater than Hi there will be a finite fraction of flipped
spins on the interface. Studies of difFusion percolation
on the square lattice show that p, = 0 if all sites with
two occupied neighbors become occupied. In our system,
spina with two flipped neighbors on the planar interface
would have a third flipped neighbor in the plane below,
giving n = 3. All such spina would flip by Hs ——6,, since
the net exchange interaction is zero for n = 3. Thus
bootstrap percolation tells us that as long as Hi ) Hs
the entire interface will flip at Hi. This implies

Hc =4 —& (4)

H, = 2 —(1 —2f2)6 = 2 —0.17246. (5)

The intersection between this line and Eq. (4) gives our
best determination of the location of the transition to
faceted growth, b, i = 1/fq = 2.417(4). The intersection
of this line with the line where f4 begins to differ from
1 gives our best estimate of the transition to percolation
A2 ——2/(1 —fz) = 3.412(5).

In the limit of very large 6, the exchange coupling is
irrelevant and all of the f„converge to a common value.
As shown in Fig. 5 this is consistent with the normal
percolation probability on the cubic lattice, p, = 0.3117.
An exact bound on H, can be obtained by noting thatf„)fi for n ) 1. Then if fi ——p, all other f„'sare
higher and the pattern must percolate. (Note that iso-
lated sites, n = 0, are irrelevant. ) Thus from Eq (3).

H, & (2p, —1)b, + 4 = 4 —0.37666. (6)

In the limit of large b, , the exact H, becomes parallel to
this line.

IV. CRITICAL ONSET OF
DOMAIN-WALL MOTION

in the faceted regime. The faceted regime actually ex-
tends beyond the regime where Hi ) Hs (i.e. , 6 ( 2).
The reason is that there is a substantial probability
(fs ) 0.4) that spins with only two neighbors will flip. In
diffusion percolation this probability would be zero and
percolation would be more difficult.

Figure 5 shows that f4 = 1 in the self-affine regime,
and that f2 = (fi + fs)/2 has a constant value of
0.4138(5). Two previous numerical studies give values
of p, = 0.4283(5) and 0.432(20) for diffusion percola-
tion on the cubic lattice with sites with four neighbors
occupied. z~ These values are very close to our value of
f2 in the self-affine regime. They need not be identical
since the domain growth model does not begin by flip-

ping a randomly chosen set of spina to the up position.
Using a best fit value to fs in the self-affine regime we
find

0—

FIG. 5. Probabilities that spins vrith n flipped neighbors
will flip at H, as a function of 1/b, for the indicated values of
n.

In the previous section, we studied changes in growth
morphology with the strength of disorder. In this section,
we consider the critical transitions which occur as H in-
creases to H, in the percolation and self-affine regimes.
The faceted regime does not exhibit an analogous critical
transition because there is a finite range of H between
H3 6 and H, = H& where the only stable interfaces
are (100) planes of the cubic lattice. There is no growth
in this regime and the entire lattice is filled as soon as
H=H, .

The idea that the onset of motion in a disordered
system could be a critical transition was advanced by
Fishers2 in the context of charge-density wave (CDW)
conductors. The basic argument is readily extended to
magnetic domain growth. If the spatial dimension is suf-
ficiently low, the domain wall will be distorted by the
random field until it reaches a local energy minimum. At
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zero external magnetic field, there will be a rich hierar-
chy of metastable states. The interface will initially be
"pinned" in one local minimum. As the magnetic field
increases, that minimum may become unstable, allowing
the interface to advance to the nearest metastable state.
The number of metastable states decreases with increas-
ing magnetic field, so that larger rearrangements of the
interface are needed to reach a new metastable state. It
is natural to associate the scale of rearrangements with
a diverging coherence length. At a critical magnetic field
H„the last state becomes unstable and the entire system
evolves coherently.

Martys, Robbins, and Cieplak have identified sev-
eral quantities which describe the critical behavior as H
approaches H, from below. Two are the total volume
of the domain, Vq, and the total external surface area,
S, . A third is the mean volume, (V), of the incremental
growths which follow each increase in H. All of these
quantities show power law divergences at H, :

Vi(H, L) =L ~g(x),
S (H, L) = L 'gs(x),

(V(H, L)) = L h(x),
(10)

there is a single unknown exponent for self-afBne growth
and two unknown exponents for self-similar growth.

Numerical determination of the critical exponents is
complicated by system-size induced cutoffs in critical
quantities. Thus, following Ref. 16, we use a finite-size

scaling ansatz and data for several diferent system sizes
to obtain values for the exponents. The basic idea is that
near the critical point, H„the only relevant length scales
are the system size L and a correlation length (. Hence,
appropriately normalized quantities should only depend
on the ratio of L to (. This ratio is usually expressed in
terms of a scaling parameter: x = L ~"(H, —H)/H, . By
examining the scaling of quantities with system size at 0,
(x = 0), one determines scaling forms for the diverging
quantities:

Vi oc L (H —H)
S, oc L" '(H, —H) ",

(V) oc (H, —H)

where g, gs, and h are universal functions, and B is given
in Table I.

We have used these relations to study domain-wall mo-
tion for 6 = 3 (compact self-affine growth) and 6 = 6
(percolation-like growth). Values of Df and H, were ob-
tained by using the fact that that Vq/LD~ is independent
of system size at H = H, (x = 0). Thus plots of Vq/L+~
versus H for difFerent system sizes should intersect at a
common point, H, . For b, = 3 we assumed Df = 3 and
found curves for L = 30, 50, 100, and 200 intersected,
within statistical fluctuations, in the range quoted for
H, in Table II. For 6 = 6, Dy was varied. The range
of values for Dg and H, over which there was a common
intersection for system sizes 30—200 is also indicated in
Table II. The resulting value of Df is consistent with
direct determinations using the box counting method.

(7)

where the powers of L indicate the scaling with the size of
the initial interface. is Such divergences typically reflect
power law correlations at the critical point. In our case,
these correlations produce a power law distribution in the
size of incremental growths at H, :

p(V) oc V

As shown in Ref. 16, these and other exponents can
be related by scaling laws similar to those obeyed at
equilibrium critical transitions. Only three exponents are
needed to determine all others. These are most conve-
niently chosen to be the bulk and external fractal dimen-
sions, Df and D„and the correlation length exponent

(oc (H, —H)

General expressionsis for the scaling laws are given in the
first column of Table I. Subsequent columns give simpli-
fied forms valid for the cases of interest here. In the
self-affine regime we use the fact that Dy = D, + 1 = d.
In the self-similar regime in 3D we have Df ——D, . Thus

TABLE I. General scaling laws obeyed by critical expo-
nents for invasion (Ref. 16), specialized expressions for com-
pact growth where Df = D, + 1 = d, and specialized forms
for 3D percolation where Df ——D, . The expression for 7

'

has been obtained from independent arguments by Gouye
(Ref. 34).

A=3
H, = 1.4797(3)

3
2

0.67(3)
0.75(5)
0.75(5)
1.71(11)
2.2(2)
1.28(5)

A=6
H = 1.011(2)
2.5(l), 2.48(3)

2.5(1)

3D
pere.

2.53(3)
2.53(3)

Df
D,

General
v(Df ~ 1 —d)
v(D, + 1 —d)
1+v(Dr —D, )
Df —D, +v

1+(D,—v ')Df '

Df =D, +1=d

0
1+v

1+v
2 —(1+v )d

Df ——D,
v(Df +1 d)—

1
v 1

2 (vDf)— 0.88(2)
0.45(5)

1
1.13(3)
1.55(2)

0.9(1)
0.47(7)
0.90(15)
1.05(10)
1.59(5)

TABLE II. Critical exponents from finite-size scaling fits
for self-affine (b, = 3) and self-similar (6 = 6) growth. Error
bars in the last significant digit are given in parentheses and
indicate the maximum range consistent with the finite-size
scaling fit. All quantities were evaluated through indepen-
dent fits. For 4 = 6 the leftmost value of Df was obtained
directly from the structure and the rightmost value came from
finite-size scaling fits. Within our uncertainties the exponents
are consistent with the scaling laws of Table I. Exponents for
self-similar growth are also consistent with those for ordinary
percolation. Quoted values for 3D percolation come from
Ref. 31 and error bars reBect the range of values reported
from different methods. For percolation @ = v —P.
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FIG. 6. Finite-size-scaling collapse of Vq at 4 = 3 with
H, = 1.4797 and v = 0.78 and the indicated system sizes.

Given values of H„wedetermined Q and P directly by
fitting the divergences of Vq and (V) to power law forms.
Finite-size effects were minimized by restricting the fit
to regions where results for difFerent system sizes coin-
cided. The resulting values and uncertainties are quoted
in Table II.

Values of v were determined using the finite-size scal-
ing forms for Vt and (V) in Eq. (10). Figures 6 and 7
illustrate the quality of the data collapse for 6 = 3 and

6, respectively. Only data from the scaling regime are
plotted. For 6 = 3 this corresponded to H ) 1.43 and
for b, = 6 to H ) 0.98. At smaller H there is a sys-
tematic deviation from the universal curve because ( is
comparable to the lattice constant. The range of values
for v quoted in Table II reflects the uncertainties in H,
and, for b, = 6, in Dy. The same range of values fit data
for (V). In the latter case we also allowed B to vary inde-
pendently (Table II). This exponent is most susceptible
to systematic uncertainties because of the small range of
L studied.

log io

FIG. 8. Distribution of growths at L = 300 for 6 = 3.
Data were averaged over the range ]Li~"[H, —H]/H, ] ( 1
and the slope of the linear fit is 1.28.

Figures 8 and 9 show lnp(V) versus lnV for 6 = 3
and 6 = 6, respectively. Data were obtained for system
size L = 200 in a range of fields where the distribution
of growths is cut off by the system size rather than the
coherence length, L /'~H —K,]/H, & 1. In both fig-
ures, p(V) follows a power law over nearly 6 orders of
magnitude. The slopes of the plots give the values of 7'
quoted in Table II. The same values were obtained from
finite-size scaling fits using the ansatz:i

p(V L) = L 'f(V/Lf ) (11)

The independently determined values of Dy, v, Q, P,
B, and 7' provide a test of the scaling relations of Table
I. It is readily verified that all results are consistent with
these relations, subject to the statistical uncertainties.
Note that there may be comparable or larger systematic
errors in the exponents due to the restricted size of the
systems studied. This may explain why the overlap of
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FIG. 7. Finite-size-scaling collapse of V~ at D = 6 with
H, = 1.011, v = 0.90, Df ——2.49, and the indicated system
sizes.

FIG. 9. Distribution of growths at L = 200 for 4 = 6.
Data were averaged over the range ~L "[H, —H]/H, [ ( 1
and the slope of the linear fit is 1.59.
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the range of uncertainties is small in some cases. Note
also that the results for 6 = 6 are consistent with inde-
pendent determinations of critical exponents for ordinary
percolation, and with values of g, P, B, and r' calculated
from Table I.

V. SUMMARY AND CONCLUSIONS

We have studied magnetic domain-wall growth in the
3D random-field Ising model. Three difFerent growth
morphologies occur, depending on the strength of the
random fields, b. When the disorder is large, 4 ) Acz ——

3.41, growth is percolation-like. At intermediate degrees
of disorder, hi (6 ( b,z, growth is compact and the do-
main wall forms a self-affine fractal. For 6 ( Aci = 2.42,
growth is faceted. The self-affine regime seems to be
favored by higher dimensionality. Previous studies of do-
main growth in the 2D random-field Ising model found
a direct transition from percolation to faceted growth. s

A self-affine regime is found in some 2D modelsis's and
in experiments on Quid invasion, ~ and it remains un-
clear what mechanisms are needed to stabilize it in 2D.

The roughness exponent for interfaces in the self-affine
regime is n = 0.67. This value is larger than the rough-
ness exponent obtained from the KPZ model for inter-
face growth, is but agrees with scaling arguments for the
structure of the lowest energy state of a domain wall. 2s

The fractal dimension of patterns in the large disorder
limit is consistent with that for ordinary 3D percola-
tion clusters (Table II). The self-similar scaling begins
at length scales larger than a characteristic fingerwidth,

This length scale diverges at the transition between
self-similar and self-affine growth (Fig. 4).

The transitions between the three growth regimes were
shown to correlate with changes in the probabilities that
local spin configurations were stable. By mapping the
problem onto a continuous family of correlated perco-
lation problems, 4 27 we were able to put bounds on the
critical fields in the three regimes. The random-field Ising
model only spans a small subset of the space of possible

percolation models. It remains to be seen whether still
other growth morphologies may occur in other models.

For both percolation-like and self-one growth, we
studied the critical transitions at the onset of steady-
state motion of the interface. The exponents obtained
from the simulations clearly belong to two difFerent uni-
versality classes. Both sets of exponents satisfy the scal-
ing relations of Ref. 16, and results in the percolation
regime are consistent with ordinary percolation. Larger
systems are needed to provide more precise values for
the exponents. Unfortunately, these correlated growth
models require that the entire interface remain stored in
memory. This prevents the application of tricks which
are successful in treating normal percolation.

There should be related critical exponents for H )H, .
For example, we expect that there is a coherence length
which diverges with the exponent v, and that the mean
velocity of the interface rises from zero as a nontrivial
power of H —H, . These expectations are born out by
preliminary studies in 2D, ~4 but 3D systems remain un-
explored.

Note added in proof. A recent s-expansion calculation
which is applicable to the self-affine regime gives expo-
nents in agreement with our numerical values Q 3,
v = 4s [T. Nattermann, S. Stepanow, L.-H. Tang, and
H. Leschhorn, J. Phys. (Paris) II 2, 1483 (1992)]. Addi-
tional work indicates that these results are correct to all
orders in c [O. Narayan and D. S. Fisher (unpublished)].
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