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Transition from the orientationally disordered to the quadrupolar glass phase in solid hydrogen
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A quantum Hamiltonian, starting from the electric quadrupole-quadrupole interaction between mole-
cules in solid hydrogen, is constructed for an ortho-para hydrogen mixture with the quadrupolar mo-

menta of the orthohydrogen species randomly frozen out. With use of this Hamiltonian, the effective
functional Landau-Ginzburg-Wilson Hamiltonian has been derived. A field-theoretic renormalization-

group analysis leads to a conjecture that the system undergoes a discontinuous transition from the orien-
tationally disordered to the quadrupolar glass phase. This transition is smeared out by the influence of
the random local crystal field.

In the past 15 years there has been considerable experi-
mental' and theoretical ' work, including Monte
Carlo simulations, ' ' on the orientational ordering of
randomly distributed quadrupole-bearing molecules of
orthohydrogen, (o-Hz) in a matrix of spherical parahy-
drogen species (p-Hz) for concentrations x of o-Hz mole-
cules smaller than 55%%uo (the crystal lattice is hcp for
x (55% ). The static and dynamic NMR data'
show that, for such concentrations, no long-range order
has been observed, and it has been suggested' that solid
ortho-para hydrogen mixtures for x (55%%uo form a qua-
drupolar glass (QG), in which the local orientational or-
der parameters vary randomly from site to site without
any long-range spatial correlation. The aim of this paper
is to obtain —starting from a microscopic Hamiltonian,
which describes electric quadrupole-quadrupole (EQQ)
interactions in the ortho-para hydrogen mixture —the
effective Landau-Ginzburg-Wilson (LGW) Hamiltonian
and, by the renormalization-group (RG) method, to study
the phase transition from the orientationally disordered
to the QG phase.

As Nakamura' has shown, the EQQ interactions are
the most important orientational interactions between
molecules in solid hydrogen. The Hamiltonian for these
interactions is

separation vector R;. between molecules i and j relative
to a coordinate system fixed in the crystal. In Eq. (2),

6e Q

25R

is the EQQ coupling constant for a rigid lattice, where eQ
is the molecular quadrupolar momentum and R is the in-
termolecular separation between nearest neighbors. In
solid hydrogen, only the rotational states of molecules
with the lowest J are occupied, and therefore Hamiltoni-
an (1) can be rewritten as

T p &t&JH(1 )

I)J
(i' )

(3)

where x; =0, 1 for p-H2 and o-H2 molecules, respectively.
Because in the QG state the local averaged quadrupolar
momenta of a o-H2 molecules are randomly frozen out, it
is convenient to specify the orientation of the o-H2 mole-

cule at a given site relative to the local coordinate system
chosen so as to coincide with the principal axes of the
molecular quadrupolar momentum tensor (cf. Ref. 18).
The transformation of Yz M(Q, ) to this coordinate sys-

tem is

where

+2
X g C(2, 2, 4;M, N)Y4M+~(Q; )

M, X= —2

X Y~ M(Q, )Y, ~(Q, ) . (2)

+2
YqM(Qt)= , g Dt)tt, (X()Y~„(co,)

p, — 2

where D~„ is a rotation matrix' and y,- denotes the triad
of Euler angles a;, P, , y, specifying the orientation of the
local coordinate axes to the coordinate system fixed in the
crystal, and co,- describes the orientation of ith molecule
relative to the local axes. In the J=1 manifold, one can
replace Yz „(co, ) by their operator equivalences (cf. Ref.
20},

Here C(2, 2, 4;M, X} denotes a Clebsch-Gordan
coefficient, Y2 ~ is a spherical harmonic, and

Q, =(e, , g, ) and Q,"=(e;,P, ) specify the orientations
of, respectively, the ith molecule and the intermolecular

Y~ „(a); ) = A „Ot',

where

(4)
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P—F we use the well-known replica procedure (cf., e.g. ,

Ref. 18). Thus, one obtains

(.)PF—= lim —Z'"'
n~0 n

and
Z'"'=In Tr exp —P g H

a=1 av

+2
H= g g x, x y",,'Ot'OJ"

l~J P, v — 2

(iA j)

with
5

(5)

X g C(2 2 4'M N)F4 ~+N(Q J )

M, N

XDM"„(g, )DN', (f')
Because y, , which specifies the orientation of the local
coordinate system, varies randomly from site to site, the
coupling constant y";" (6) itself becomes a random quanti-

ty. The situation appears to be similar to the models of
spin glasses (cf. Ref. 18), though the sources of the ran-
domness of the exchange coupling in the former systems
and parameters y,.j' (6) are quite different. The orienta-
tional free energy Fof our system is

PF=[ln Tre ~ ],„—

with K given by Eq. (5), where the inverse temperature
P= ilk+ T and [ ],„denotes an averaging over ran-
dom orientations of local coordinate axes and
configurations of 0-H2 molecules. In order to calculate

0, =3(J') —2

0*'=J'J —++J+—J'
O+2 (Jk)2

where J,.' and J,—+ =J; +iJ~ are components of angular
momentum operator J; of ith orthohydrogen molecule.
The axis of quantization for J, is taken along the local z,.

axis. Thus, Hamiltonian (3) can be written in the form

n

=ln TrT,exp —g f H~(r)dr
a ——i

where a=1,2, . . . , n is a replica index,

H = g gx;x,.y";."OP~0".
l,J P)V

(iw j)

av

(9)

~ ~ ~ ~ ~ ~ (10)

where [ ]- denotes an averaging over directions of the

local coordinate system at a given distribution of ortho-
hydrogen molecules, and then one averages over
configurations of 0-H2 species. Taking into account Eqs.
(9) and (10), one obtains

H, (r)= g gx;x, yf,""OP (r)OJ",(r),
l~J P, V

(i%j)

and T, denotes the ~ ordering operation. A formal
dependence of the operators OP~(r) on the Matsubara pa-
rameter ~ has been introduced in order to treat them as c
numbers (cf. Ref. 21). In fact, the random variables y;
are correlated with the spatial distribution of 0-H2 mole-
cules. However, as a first step following Ref. 10, we

neglect this correlation, assuming that these variables are
statistically independent. This assumption is quite proper
for the orientationally disordered phase, where the aver-

age components of the local quadrupolar momentum ten-
sor of 0-H2 molecules in the state J= 1 vanish, and there
is a freedom of a choice of the local coordinate systems.
Nevertheless, we hope that this is a reasonable approxi-
mation for the QG phase, at least just below the transi-
tion point. Because of the above-mentioned approxima-
tion, we can use techniques developed for spin glasses.
Now it is convenient to decompose the operation [.. . ],„
into a sequence of two stages as follows:

n

Z'"'=ln TrT,exp ~
—g f dr[H (r)[-+—,

' g f dr f dr'[H (r)H .(r')]'-+
0 0

where [.. . ]'- denotes the cumulant average. The higher-
order terms in the exponent in Eq. (11) are less important
for the QG problem because they do not contain terms
immediately related to the QG order parameter (cf. Ref.
22, where the spin-glass problem has been considered).
The averaging over configuration of 0-H2 molecules shall
be performed towards the end of the calculations because

introducing the operation [ ] to the exponent in Eq.
(11) we wold obtain an incorrect dependence of the QG
transition temperature on the concentration of ortho-
hydrogen molecules. We shall approach the QG phase
from above (i.e., from the side of the orientationally
disordered phase), and the averaging [ . ]- should

X
therefore be performed as for a disordered phase assum-
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ing that the probability distribution of the orientation of
the local coordinate system is the same in each spatial
direction. Taking into account (6) with the help of rela-
tions known in the theory of angular momentum, ' one
obtains

(12a)

and

H(~, ~') =Hi (r, r')+ Ho(r, r') (14)

and

H;(r, r')= g g x,x J,,q, (r, r')q, (r, r') (15a)
ij a, a'=1

(ixj)

is the effective Hamiltonian which depends on two
Matsubara parameters ~ and ~', with

[y";,'y";,' ];,=(5;;5,, 5„„5„
+5;, 5J;5„,.5, „.) A „A g;

where

(12b)
Ho(r, r')= $ $x;x J; P; (r, r')P, (r, r') .

ij a=1
(i' )

(15b)

with

R
IR,, I

5 Here the operators q, (r, r') are defined as follows:

q, (r, r') =+A „Ot' (r)Q; ~(r')(1 —5 )

P

and

(16a)

1/2
35
3

P; ( ,r'r)=/A„O, " (r)0, "(r') . (16b)

Taking into account Eqs. (12a) and (12b), we transform
Z'"' [Eq. (11)) into the following form:

The problem now is to obtain the functional Hamiltonian
of our system. After a functional Hubbard-Stratonovich
transformation (cf. Ref. 21), Z'"' [Eq. (13)] takes the form

Z "'= TrT exp f dr f dr'H(r, r') .
0 0

where

(13)
Z " = f d(q)exp( —&([q], [x, I )) (17)

where d(q) denotes the functional integration over the
field q; (r, r') [q; ' (r, ~') =0] and

n

&([q],[x;])=Bc([x;])+—'g g f dr f dr'v; q; '(r, r')
i j a, a'=1

n—ln exp x, dw d~'q, ~, ~' q,
i a, a'=1 0

with gv, „Jk, =5;, , where
k

TrT, exp f dr f dr'Ho(r, r')P P

0 0

TrT, exp f dr f dr'Ho(r, r')P P

0 0

and

(19)

n

Bo([x, I)=ln f d(q)exp —4$ $ f dr f dr'v, ,q, (r, r')q, ( z'r)

i,j a, a'=1

—lnTrT, exp f dr f dr'Ho(r, ~')P P

0 0

It can be shown that (q, ' (r, r') ) z, where

f d(q)exp[ —&([q], [x, ] ) I(

f d(q)exp[ —A'([q], [x,. I )]

is related to the QG order parameter defined as follows (cf. Ref. 3):
+2

q=AO[x, l&o, &HI~]„+2A,[x;l(o+'&HI~]„= g A„[x, l(op&„l ]„, (20)

where ( 0, ) H denotes a thermal average with the Hamiltonian (5). The terms [x, I ( 0, )H I ],„and [x, I ( 0+ )0 I ]„in
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Eq. (20) measure, respectively, the alignment of orthomolecule along the local axis z; and eccentricity. The last term on
the right-hand side of Eq. (20) results from the fact that in the local coordinate system (0;*)&=0. After detailed cal-
culations, one obtains

—2 n

q= lim g f dr f dr'[x(q; ' (rr'}) ]„
n o n(n —1),

&
o o

2 n p p=—lim g f drf dr'v, , [x, (q, ( rr'))~]„
2 n o n(n —1),

&
o o

(21}

where

TrT,exp f dr f dr'H(r, r') q; (r, r')P P

0 0

TrT,exp f dr f dr'H(r, r')P P

0 0

(22)

Of course, [x;(q; (r, r'))], and [x, (q; (r, r'))~]„are independent of the lattice site i Th. e calculations leading to
Eq. (21) are similar to those used in the theory of quantum spin glasses (cf., e.g., Ref. 23). Thus, q, (r, r') represents
the QG order parameter field. The effective LGW Hamiltonian, which is the starting point for studies of universal criti-
cal behavior, will be calculated with use of &([q], Ix, j ) [Eq. (18)]. Similarly as in the spin-glass problem, ' ' ' we as-
sume that the relevant interaction responsible for the transition from the orientationally disordered to the QG phase is
the cubic coupling between fields q; (r, r'). In our calculations we shall not take into account the effect of quantum na-
ture of the system on the universal critical behavior. Therefore, only the Fourier transform of q; (r, r') with zero
Matsubara frequency will contribute to the LOW Hamiltonian. In other words, we make the replacement

q;
' '(r, r')~q; '=/3 2f drf dr'q; '(r, r') . (23)

0 0

The problem now is to expand &([q],[x; j ) up to third order in q; [Eq. (23)]. The coefficients of this expansion in-
clude some products of the operators q (r, r') [Eq. (16a)] averaged with Ho(r, r') according to Eq. (19).

Note, that Ho(r, r ) (15a) is invariant under rotations in the space of angular momenta J, for each i and a indepen-
dently [the operator A„O, (r) transforms as the spherical harmonic Y2 „].Such an internal symmetry is characteristic
of the system above the QG transition point and can be taken into account in our calculations because we approach the
QG phase from above. As a result, the coefficients of expansion of &([q][x, j ) [Eq. (18)] with respect of q;

' [Eq. (23)]
are found to be related to the following invariants of the rotation group:

and

+2
P;([x;j)=P f dr f dr' g A„(O/'(r)O; "(r'))o

p= 2

(24a)

P +2
R, ([x, j)= f dr, f dr, f dr, g A„A A„+„C(2,2, 2;p, v)(O/'(r, )O/'(rz)O; " "(r,))o

o o o
p, v 2

(24b)

with ( )o defined by Eq. (19).
We have assumed that (0/~(r)O; "(r'))o and (0/' (r&)O;" (r2)O; " "(r3))o do not depend on the replica index.

After detailed calculations, one obtains

&([q], [x, j)= gv,"q, q,
—

—,'ggx, P;([x j)(q, )z —
—,'ggxR;([x j)(q, )

i,J i a, a' i a, a'

x;P; ([x, j)q, ' 'q, ' 'q, ' '+O(q } .
i a&, a2, a3

(25)

The inessential term &o( [x,. j ) has been omitted. The averaging over distributions of ortho-hydrogen molecules leads to
the Hamiltonian &[q] related to &([q], j x; j ) [Eq. (25)] as follows:

&[q]= —ln exp —W [q], [x; j ) . (26)

We assume that the probability distribution for each random variable x; has the form

P(x; ) =(1—x )5„o+xfi„&,

where x is the concentration of the o-H2 species.



14 484 K. WALASEK 46

Calculating the right-hand side of Eq. (26} we take into account only the first cumulant. The second and next cumu-
lants contribute to the quartic and higher-order coupling of the field q, , which are irrelevant for our analysis.

The result is

2

gvq, q,
——gg(q, }

I,J i a, a'

where

Up Wpgg(q )' — g g ' ' ' ' ' '+0( ')
Ii a, a I CX1, CX2, A3

(27a)

and

u=4[x, P; [x,])]„,
v0=4[x;R; ([x,])]„,

(27b)

(27c)

tvo= —,', [x;P, ([x, j)], .

Now we introduce the spatial Fourier transform of q; defined as follows:
I —k.R.

q
aa e I aa'

qk

(27d)

(28)

where R; denotes the lattice vector and

—2m dk
k

with k inside the Brillouin zone. After this, &[q] [Eq. (27a)] takes the form
—1

~[q]=—,'g f u (k)q „q „— g f f f 8 gk q„q„q„
a, a' 1 2 3

wp0O ~ f f f ~ ~ a)ai asap a(a)

1 2 3Q1, Q2, tx3

(29)

(30)

where

and

(31)

the Brillouin zone (in the continuum limit, A~ ~ ) and
the number of nearest neighbors, which is z = 12 for the
hcp lattice. After the transformations

k~a ' k

uz(k)=Q
( J')(k) (32a)

aa' aa'
q & „cq&

with

(J')( k) =gJ'je (32b)

where a =
~~a&&. ~~, we obtain a LGW Hamiltonian in the

standard form

Here 0 denotes the volume of an elementary cell. The
EQQ interaction is assumed to be short ranged and the
main contribution to the sum in Eq. (32b) comes from
the nearest-neighboring sites. ' Therefore, uz(k) is an
analytic function of k, and we expand u~(k) up to the
second order in

~
k

~
as follows:

u~(k)=(zQP J') ' —0 'u+c ' g ai, khaki + .
k, A. '=1,2, 3

with

c =AQ' z'i PJ

%[q]=—,
' g f (ro+k )qi, q

tX, tX'

g f f f 8 gk q„q„qq

iVO f f f a, a~ a~a, a,a~

1 2 3
CX1, CX2, O.'3

with

ro=A [1—z(PJ) u] .

(33)

(34)

where A and z denote, respectively, the effective radius of Here, the coefticients vp and wp differ form those in Eq.



46 TRANSITION FROM THE ORIENTATIONALLY DISORDERED. . . 14 485

(30) by a factor of 0 'c . In order to study the phase
transition by the RG method in our system, the LGW
Hamiltonian (33) should be considered in d-dimensional
space. This can be easily done by the replacement of the
right-hand sides of Eqs. (29) and (31) by
(2m ) fd "k and (2m ) 5' '(k), respectively, where k
is a d-dimensional wave vector. The second term on the
right-hand side of Eq. (33) appears as a consequence of
the lack of the reflection operation in the internal sym-
metry group acting in the space of O,~. Therefore, Ham-
iltonian (33) differs from that describing the Ising spin
glass. The standard field-theoretic RG calculation
to first order in e=6 dyield—s that the model (34) has the
following fixed points (FP's): (i) Gaussian FP unstable for
d & 6 and stable for d ~ 6, (ii) Ising spin-glass FP (Ref. 24)
unstable in each spatial dimension with U

*=0 and
Sdw' =e/2 [here Sd=2' n. /I (d/2)], and (iii) two
unphysical FP's with v" &0).

The above results lead us to make the conjecture that
the unstable Ising spin-glass FP may govern discontinu-
ous transition from the orientationally disordered to the
QG phase. This is in agreement with the NMR experi-
ment of Sullivan et al. , in which rapid variations of the
line shapes with temperature have been observed for solid
ortho-para hydrogen mixtures with x (55/o. However,
such an interpretation should be treated with some cau-
tion because, from the experimental point of view, the na-
ture of the transition to the QG phase is not explained
unambiguously. At the QG transition point,

r =ao

where a is some constant. The coefficient ro (34) includes
u (Eq. (27b)], which can be written in the form

u =—', x[P, (x; =x, Ix, ~,~;])]„
Hence, it is seen that T -x, which is in qualitative
agreement with the observed concentration dependence
of Tg. In our considerations, we have taken into account
only the EQQ coupling, which plays a dominant role as
an orientational interaction in solid hydrogen. However,
in addition to that interaction in the system, there is a
crystal field caused by zero-point motion, which destroys
the symmetry of the hcp structure. The crystal field
splits the threefold-degenerate J= 1 level of ortho-
hydrogen molecules into two levels with J'=0 and
J'=+1. The splitting is about 8 mK. In the solid
ortho-para hydrogen mixture, the crystal field randomly
varies from site to site. A possible influence of the ran-
dom crystal field on the QG transition can be a smearing
of this transition similar to the classical quadrupolar
glasses. Indeed, the experimental studies of Harris and
Meyer confirmed by a series of experiments by Sullivan
showed a continuous evolution of the QG parameter with
changing temperature.

Summarizing, we have applied methods used in
theories of quantum spin glasses ' to the QG problem
in solid hydrogen. On the basis of RG analysis, the tran-
sition from the orientationally disordered to the QG state
is found to be discontinuous, but this transition is
smeared out by the influence of a random crystal field.
However, further studies on this problem with explicit in-
clusion of the effect of the crystal field are desirable.
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