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We construct a Landau-Ginzburg theory for a new class of epitaxial semiconductor antiferromag-
nets with built-in strain. Using present knowledge from experiment we extract the mean-field phase
diagram of these systems as a function of the built-in strain field. We find both the commensurate
(type-III) and incommensurate (helical) phases seen in experiment as well as a new commensurate

phase not yet seen to our knowledge.

Quite recently, a new class of layered magnetic struc-
tures has been synthesized by the use of state-of-the-
art molecular-beam epitaxy techniques,'™ consisting of
magnetic layers of MnSe or MnTe sandwiched between
nonmagnetic layers of II-VI semiconductors such as ZnSe
or ZnTe and grown in a superlattice configuration. Be-
cause of the mismatch between the cubic lattice constants
of the magnetic and nonmagnetic layers, the magnetic
layers are created with an intrinsic built-in strain field
whose sign and strength can be tuned via the choice of the
nonmagnetic material. The magnetic layers themselves
grow in the zinc-blende structure and are found to be
type-I1I Heisenberg antiferromagnets at zero strain.2 The
strain engineering technique described above then allows
one the unique opportunity to systematically vary the
strain field and thus the magnetic interactions in these
systems. This is particularly interesting since zinc-blende
Heisenberg antiferromagnets are prototypes of frustrated
magnets.

Four systems from this new class of semiconductor an-
tiferromagnets have been grown and characterized, two
having built-in compressive strain [ZnSe/MnSe (Ref. 1)
and ZnTe/MnTe (Ref. 2)], one with built-in tensile strain
[ZnTe/MnSe (Ref. 3)] and a strain-free system [MnTe
(Ref. 2)]. The magnetic ordering for the strain-free sys-
tem consists of the three possible type-III domains, one
for each of the cubic axes. For compressive strain, how-
ever, only the type-III domain with a doubled unit cell
along the growth direction (001) is seen. In the case of
tensile strain, the magnetic order consists of a helicoidal
spin wave with a wave vector along either of the cubic
axes in the growth plane and with a wavelength which is
incommensurate with the underlying crystal structure.
In contrast, type-III phases are commensurate with a
wavelength equal to twice the lattice constant.

Each of the four systems discussed above is character-
ized by a single and different value of the built-in strain
field, and thus one can visualize them as representing
four isolated points along a continuous strain axis. Of
immediate interest is then the construction of the com-
plete phase diagram as a continuous function of the built-
in strain field. Using well established methods, we will
show that one can construct a Landau-Ginzburg theory
for this purpose which predicts the phases seen in experi-
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ment, provides naturally for the observed strain-induced
commensurate-incommensurate transition, and predicts
the existence of a new commensurate phase not yet seen
in experiment.

Our work builds on an earlier Landau-Ginzburg theory
developed by Mukamel? to study the critical behavior of
a type-III antiferromagnet, the ground state of the mag-
netic multilayers at zero built-in strain. By extending
Mukamel’s work to include the coupling of the strain
field to the magnetic degrees of freedom we arrive at
the desired Landau-Ginzburg theory whose mean-field
ground states are the strain-induced phases. Without
knowledge from experiment, however, one cannot unam-
biguously determine the ground state and so we discuss
the derivation of relations between the Landau-Ginzburg
parameters which allows such specification. We begin
with the group theory necessary to construct the Landau-
Ginzburg theory.

As is well known,® the type-III antiferromagnetic struc-
ture is described by the wave vector ki = (27/a)(3,1,0).
The magnetic multilayers grow in the zinc-blende struc-
ture, which has the space group F43m. One then
finds that the star of k; consists of the six vectors
ki = (27r/a)(%,1,0), ki = (27r/a)(—%,1,0), ko, = (2n/
a)(O,-12-,1), k; = (27r/a)(0,—%,1), k3 = (2m/a)(1,0, 1),
k3 = (27/a)(1,0,—3). The group of k; is Sq which has
both one- and two-dimensional representations, implying
that the magnetic order parameter is either six or twelve
dimensional. In fact, present experiments! are unable to
distinguish between the magnetic structures that corre-
spond to the six- and twelve-dimensional representations.
We take the simplest approach and construct a theory
based on the six-dimensional representation which corre-
sponds to a noncollinear structure, termed Keffer type-I1I
ordering.® A theory for the twelve-dimensional represen-
tation will be presented in a future publication. ~

The order parameter components are denoted ¢;, @;
for i = 1,2,3 (z,y,2) corresponding to the two pos-
sible orderings along each of the three cubic axes. A
schematic of one of these structures is shown in Fig 1;
the remaining five are obtained from it by applying the
symmetry operations of F43m. Standard group theoret-
ical techniques®7-8 then yield the part of the free energy
depending only on the magnetic order and given by
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where we use the notation ¢; ; =8¢;/9z; and ¢; ;;=8%¢;/
0z? (z1 = z,22 = y,x3 = 2). Consistent with the na-
ture of incommensurate phases in many other magnetic
systems,® we have only considered spatial derivatives in
the direction of the unit cell doubling. Thus we have
omitted from Eq. (1) symmetry allowed terms of the form
¢?) and ¢?, for i # k. We further note that the pres-
ence of the commensurate (type-III) phase in the absence
of strain requires 3,y > 0.

The effect of the lattice mismatch between magnetic
and nonmagnetic layers is included by treating the mag-
netic layers as a bulk zinc-blende crystal subjected to
a uniform stress arising from the mismatch. Microscopi-
cally, this stress derives from the requirement, for epitax-
ial growth, of a nonvarying growth plane lattice constant

J
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and thus the MnSe or MnTe bonds will stretch and bend

accordingly. Specifically, we assume a uniform stress in
the growth plane which we take to be the z-y plane. The
stress, denoted 7, couples to the strain field giving rise
to the free-energy term

Fr=—(Azz + Ay)T, (2)

where A;; = 1(0u;/0x; + Ou;/dz;) with u; the displace-
ment in the ith direction. The external stress then cou-
ples to the order parameter indirectly through the cou-
pling of the strain field to the order parameter compo-
nents. To lowest order in the strain field these terms are
generically of the form ¢;¢;Akk, and ¢;i¢; ;jAkk. One
then finds the magnetoelastic part of the free energy,

3
Frm-e = /dxz BjAii + ZBZAjj (62 + ¢2) + | D14 + zDzAjj (@2, +82)|, (3)
i=1

J#i

J#i

where Bj, Bs, D1, D, are magnetoelastic constants. We also include the elastic part of the free energy in the harmonic

approximation given by

Fe = %011(.42,, + A?m/ + AZ:) + Clz(Ama:Ayy + Am:Azz + AyyAzz) + 2044(1421, + Af:z + A?,z), (4)

where C13, C12, Cyq are the elastic constants.!® The total Landau free energy, denoted Fp, is then given by

Fo=Fn+Fp-e+ Fe+ F;.

(5)

By first minimizing the free energy with respect to the strain components one obtains the effective free energy given

by

F= / dx [ r1(7) [0 + 82 + 93 + B3] + 72 (7) (65 + B3] + Bu (1) (@3 + B3 + 3, + 3,] + B2 (7) [3., + 63.]

3 2 3 3 3
+u (Z 7 + 5?) +od B2+ +wd ¢34 (7. + )|, (6)
=1 i=1

i=1 i=1

where r1(7),r2(7), B1(7), B2(7) are linear in 7 and are
functions of the elastic and magnetoelastic constants. In
deriving Eq. (6) we have dropped terms of the form ¢? Jz j
and ¢?ﬂ» JZJ which substantially complicate the analysis
and can be shown not to alter the qualitative nature of
the phase diagram.

In principle, one can now obtain the phase diagram
from the mean-field ground state of Eq. (6) as a function
of 7. Given our incomplete knowledge of the Landau-
Ginzburg parameters, however, such an approach is not
possible. In particular, one finds that there are seven-
teen distinct commensurate states, i.e., local minima,
that arise from the possibility of unit cell doubling along
one, two, or three simultaneous spatial directions. In
the experiments on both compressively strained and un-
strained samples, however, one sees only commensurate

1=

[

phases with unit cell doubling along a single direction.
Such states are described by nonzero values of ¢; and ¢;
for a given value of %, with the remaining four components
set to zero. We thus restrict our mean-field solutions to
be of the above form, which we denote by [¢;(z:), ¢:(z:)]-

FIG. 1. Magnetic unit cell for Keffer type-III ordering.
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[Type-III phases have no spatial dependence and are de-
noted (¢i, ¢;).]

Further progress requires some knowledge about the
parameters r1(7T),r2(7), which determine the ordering
direction, and B:1(7), B2(7), which control whether the
phase is commensurate or incommensurate. We find
b1 =B+ A17 and B2 = B+ Az where A; and Aj are
functions of the elastic and magnetoelastic constants
and 8 > 0. In order to account for the commensurate
state seen for the compressively strained systems
ZnSe/MnSe and ZnTe/MnTe, one requires Aj,A; < 0
(T < 0 for compressive strain). One then concludes that
for sufficiently large tensile strain (7 > 0), an incom-
mensurate phase may exist. Thus the Landau-Ginzburg
theory naturally predicts a strain-driven commensurate-
incommensurate transition, as observed experimentally.

The coefficients 71 (7) and ry(7) are given by

TI(T) =r+ aT[Nl(Bl + B2) - K,2Bg],

(7
ro(T) = r + ar[2k1 B2 — k2By],
where
_(ch-¢c}y) _ C12(Cn1 —Ch2)
K= ———t Ky = —————’

Cu Cu ’
Cii

= (2C3, + C3; —3CuCh)’

One can show that the positive definiteness of the elastic
constants implies @ > 0 and thus the relationship be-
tween r1(7) and ro(7) is specified given the relationship
between the quantities in the brackets in Eq. (7). Such
a relationship can be found from our knowledge of mag-
netostriction in MnTe. Experiments? show the presence
of magnetostriction such that for a type-III domain with
doubled unit cell along z, one has the spontaneous strain
field: Az >0,4,, = A,,<0. For a commensurate phase
oriented along z, and in the absence of external strain,
the Landau-Ginzburg theory yields

A = $3[k1B1 — 2K2Bs)
o CE )

(8)
$[(k1 — K2)Ba — K2 B1]

(k3 — K3)

Ay =4z =

From the extrapolated elastic constants of MnTe ob-
tained from the known elastic constants of the di-
luted magnetic semiconductor alloy Zn;_,Mn,Te,!1:12
one finds k; > k2 (the same relation applies for MnSe).
Requiring that A;;, Ayy, A;, in Eq. (8) agree with the
experiments, one finds that r2(7) < r1(7) for compres-
sive strain and r;(7) < r2(7) for tensile strain.

The Landau-Ginzburg theory can now be solved for
the case of commensurate phases (81,82 > 0). For com-
pressive strain the ground state is of the form (@3, ¢3) as
seen in the experiments on ZnSe/MnSe and ZnTe/MnTe.
For tensile strain we find a commensurate phase of the
form (¢1,$1) or (¢2,2) not yet seen in experiment and
characterized as a type-III phase with doubled unit cell
along a cubic axis in the growth plane. One finds that the
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paramagnetic-antiferromagnetic phase line for compres-
sive strain is determined from r2(7) = 0 and for tensile
strain by r1(1) = 0. In addition the phase boundary
between (¢3,¢3) and (¢1,91) , (b2,d2) is found to be
first order and occurs at zero built-in strain (see Fig.
2). At exactly zero strain we find, as in the experiments
on MnTe, three degenerate commensurate phases corre-
sponding to type-III domains oriented along each of the
three cubic axes.

In the case of tensile strain with either or both of
B1,B2 < 0 the possibility of an incommensurate phase
exists, wherein the order parameter acquires a spatial
dependence. Given the experiments on ZnTe/MnSe find
such a phase (helical) with a wave vector in either the z
or y direction, we assume (; < 2 and B; < 0, so that
the mean-field ground state is of the form (¢1(z), $1(x))
or (¢2(y), 2(y)). The effective free energy is then

F= /dx(n (7) (43 + 63
+61 (T) [ %,x + (tg?,z] + 7( %,zz + 6%,::)

futo) B+ E)+ w¢%a>§) -

which is equivalent to the free energy of a tetragonal
crystal with an easy plane of magnetization.

The thermodynamic properties of such a system
were studied by Michelson.!® Although the mean-field
ground state cannot be found exactly, one can obtain
an asymptotic solution'® valid near the paramagnetic-
antiferromagnetic phase line. For w < 4(u + v) one
finds the helical state seen in ZnTe/MnSe described
by ¢1 = A cos(koz) and ¢, = +A sin(koz) with ko =
(=B1/27)'/? [for w > 4(u+v) the solution is a transverse
sinusoid!3]. We find that the wavelength ) of the physical
helix is related to the wave vector of the order parame-
ter modulation, kg, by A = 2a/[1 — (koa/m)] where a is
the lattice constant in the growth plane. In addition one
finds that the phase line between the helical state and the
type-111 state (41, P1), (@2, d2) is first order for w # 0 and

T
paramagnet
A B C
- —> T
compressive tensile
FIG. 2. Phase diagram in the temperature-strain plane.

Phase A is a type-III antiferromagnet with doubled unit cell
along the growth (001) direction; phase B is a type-III an-
tiferromagnet with doubled unit cell along a cubic axis in
the growth plane; phase C is a helical phase with wave vec-
tor along a cubic axis in the growth plane. The triple point
joining the paramagnetic, helical, and growth plane type-III
phases is a Lifshitz point.
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second order for w = 0. Thus as one crosses this phase
boundary, the wavelength of the helix, A, will change dis-
continuously for w # 0 and continuously for w = 0. In
particular, for w # 0, one finds that Akg ri/ 4 where
Akg is the magnitude of the discontinuity. It is then clear
that the triple point connecting the paramagnetic-(type-
IIT) phase line, the paramagnetic-helical phase line, and
the helical-(type-III) phase line (see Fig. 2) is a Lifshitz
point! characterized by the fact that ko — 0 continu-
ously as this point is approached.

The above predictions of the Landau-Ginzburg the-
ory are compactly summarized in Fig. 2 which is the
phase diagram for this new class of semiconductor an-
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tiferromagnets as a function of the built-in strain field.
As mentioned in the introductory remarks, experiments
have seen the type-III phase oriented along the growth
(001) direction as well as the helical phase. Systems
with weaker tensile strain than ZnTe/MnSe should al-
low access to our predicted type-III phase with doubled
unit cell along one of the cubic axes in the growth plane
and should also permit a study of the nature of the
commensurate-incommensurate phase boundary.

We acknowledge useful discussions with N. Samarth,
J.K. Furdyna, and M.R. Weidmann. This work was sup-
ported by ONR Grant No. N00014-91-J-1062.
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