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Ab initio calculation of stacking-fault energies in noble metals
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The defect energies for the intrinsic and extrinsic stacking faults and for the twin fault in Cu, Ag, and
Au were calculated by supercell calculations based on the ab initio mixed-basis pseudopotential method
and the linear-muffin-tin-orbital method in atomic-sphere approximation. The calculations correctly
reproduced the experimentally observed trend, i.e., very low fault energies for all noble metals, being
lower by a factor of about 2 for Ag than for Cu and Au. The physical mechanism (s -d hybridization) is

discussed and illustrated by charge-density plots.

In the 1950’s Seeger!? pointed out that the energy of
intrinsic stacking faults, y;, plays the role of a “hidden”
parameter for the plastic deformation of fcc metals. In
these materials the dislocations which mediate the plastic
deformation are dissociated into partial (incomplete)
dislocations®* separated by a stacking-fault band, the
width of the band being controlled by the stacking-fault
energy y;. The activation energies for the processes
occurring during plastic deformation depend strongly on
the width of the extended dislocations and hence on y,,
and therefore the paramount importance of the stacking-
fault energy for the plastic deformation is obvious. The
accurate experimental determination of y;, however,
remains a highly delicate problem.’ Because in many
cases the uncertainties arise® from the application of less
than adequate theoretical relationships between experi-
mental measurables and y;, accurate ab initio calcula-
tions of the stacking-fault energies are of invaluable im-
portance. It is the scope of this paper to demonstrate as
an example for the case of noble metals that for an accu-
rate determination of stacking-fault energies by ab initio
electron theory one should not use a shape approxima-
tion for the self-consistent potential but should perform a
full-potential calculation.

The uncertainties are especially large for the noble
metals Cu, Ag, and Au where the stacking-fault energies
are considerably lower than for instance in Ni, Pt, Ir, or
Rh. Gallagher’ critically reviewed all the results for y;
up to 1970, yielding the following scatter in the experi-
mental data: Cu(24-163 mJ/m?), Ag(14-65 mJ/m?),
Au(10-61 m)/m?). By forming weighted mean values,
he recommended the stacking-fault energies of 55, 21.7,
and 50 mJ/m? for Cu, Ag, and Au, i.e., y = yit=2y8e
This trend can be understood qualitatively by assuming
that the stacking-fault energy is determined by covalent
bonds between the hexagonal planes produced by s-d hy-
bridization.? In Ag the d density of states at the Fermi
level is smaller by a factor of 0.6 than in Cu or Au,® and
hence the s-d hybridization is expected to be smaller.
The question remains whether the experimentally ob-
served trend can be reproduced also quantitatively by
electron theory.

Early calculations on the basis of empirical interatomic
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model potentials’~!? yielded stacking-fault energies de-
pending critically upon the form of the interatomic po-
tentials, sometimes even negative stacking-fault energies
for noble metals.® Similarly, an effective medium
theory,"® including many-atom interactions, which is
based on an ab initio calculation within the framework of
the density-functional theory, gives y; values which de-
pend critically on the assumed cutoff radius for the in-
teratomic interactions, yielding stacking-fault energies
between —17 and +79 mJ/m? for Cu. Considerably
more successful were ab initio calculations within the
framework of the fully self-consistent layer-Korringa-
Kohn-Rostoker (LKKR) technique for a variety of met-
als, 417 including the noble metals, and within the
framework of the linear-muffin-tin-orbital (LMTO)
method for Al and Pd.!® Both types of calculations are
based on shape approximations for the potential, namely
the muffin-tin geometry'* !¢ or the atomic-sphere ap-
proximation.!”!® It is well known that these potential
approximations produce rather accurate results for ideal
close-packed structures, but may fail badly'>% for the
calculation of energies for defects which have a substan-
tially larger free volume than the bulk material. Because
the stacking faults in fcc metals remain close packed, the
potential approximations may yield rather accurate quan-
titative results for y;, as demonstrated by the above dis-
cussed ab initio calculations.'* ™ !® To test for the absolute
accuracy, comparison with full-potential calculations for
some materials, especially for those with rather lower
stacking-fault energies, is desirable.

We therefore have used for the whole series of noble
metals an ab initio pseudopotential approach, within the
local density approximation, which represents (apart
from the frozen-core approximation) a full-potential
method and which was already successfully applied for
the calculation of the stacking-fault energy in silicon.?"?2
In a second step, we then performed the calculations
within the LMTO theory in atomic-sphere approxima-
tion and compared the results of the two calculations.

In our pseudopotential calculations the atomic cores
are represented by nonlocal, norm-conserving, scalar-
relativistic ionic pseudopotentials constructed by the
scheme of Vanderbilt.?> These pseudopotentials are for
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the case of noble metals much softer than those accord-
ing to Hamann, Schliiter, and Chiang,* especially for
copper. The electronic wave functions and charge densi-
ties are represented by a mixed basis 2° of plane waves
and five localized numerical d functions per atom, cen-
tered at the atomic sites. Total energies are calculated
using a momentum space formalism.?® The stacking-fault
energy is defined by the difference of the total energies of
a crystal with a stacking fault (calculated by a supercell
method) and a perfect crystal. There are three cutoff pa-
rameters for the mixed basis method, the cutoff energy E,
for the plane waves, the cutoff ¢,,,, in Fourier space for
the pseudopotential and the cutoff c¢,,, in Fourier space
for the representation of the charge density. Because of
the small stacking fault energies y;, the convergence of
v; with respect to these parameters had to be tested very
carefully, and the parameters used in the final calcula-

Ideal fcc crystal: 3-atom supercell, ABC .
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TABLE 1. Cutoff parameters used for the calculations (see
text).

E. (Ry) Gmax (1/2.0)) Cmax (172.0)
Cu 16.5 15.9 28.0
Ag 13.5 11.9 16.0
Au 16.5 11.9 13.0

tions are represented in Table I. It should be noted that
the single total energies of the perfect crystal and of the
crystal with a stacking fault themselves were not yet to-
tally converged for these parameters, especially for Cu.

We considered the ideal fcc structure of the noble met-
als, an intrinsic stacking fault (y;), an extrinsic stacking
fault (y,), and a twin fault (y,) by periodically repeated
supercells according to the following stacking pattern of
the hexagonal planes in (111) direction.

Intrinsic stacking fault: 5-atom supercell, 4B ABC;8-atom supercell; AB ABC ABC;

11-atom supercel AB ABC ABC ABC .

Extrinsic stacking fault: 7-atom supercell, ABCB ABC .
Twin fault: 4-atom supercell, 4B AC;6-atom supercell, ACB ABC .

Our supercells consist of one atom out of each plane,
respectively. Because these planes are hexagonal, we ar-
rive at tubelike supercells with hexagonal axes. The
point symmetry of the supercells is hexagonal for the
twin fault and trigonal for the ideal crystal and the stack-
ing faults. It should be noted explicitly that we did not
use the primitive fcc supercell for the ideal crystal, be-
cause this supercell has a totally different convergence be-
havior with respect to the number of k points in the irre-
ducible Brillouin zone. By using hexagonal axes both for
the ideal and the defective crystal we obtained a much
faster convergence for the fault energies. We thereby
considered an equivalent number of k points in the irre-
ducible Brillouin zones when comparing the ideal crystal
and the faulted crystal. For instance, calculating the
stacking-fault energy from a 5-atom supercell, we use in
the ideal 3-atom supercell a number of k points which is a
factor of 3 larger than the number of k points in the 5-
atom supercell. All calculations were performed for the
theoretical lattice constant of the ideal crystal. The re-
sults for the fault energies are shown in Table II for su-
percells without structural relaxation. The empirical re-
lation y;=vy,=2y, is well fulfilled for the large super-
cells, and there is a remarkable agreement between our
stacking fault energies and the recommended values of
Gallagher.’

Comparing our results with those of the LKKR
method in muffin-tin approximation'® (y, =70, 33, and 44
mJ/m? for Cu, Ag, and Au, respectively) shows that the
potential approximation indeed yields the correct order
of stacking-fault energies for the noble metals. Neverthe-

TABLE II. Results for the fault energies ¥ (in mJ/m?) for
Cu, Ag, and Au for the pseudopotential theory (PS) and the
linear-muffin-tin-orbital method (LMTO). n, and ng denote
the number of atoms in the supercell and the number of irreduc-
ible k points, respectively.

Method n, ng Y
Cu PS 5 75 46
Ag PS 5 108 23
Au PS 5 75 41
Cu PS 8 75 50
Ag PS 8 108 18
Intrinsic Au PS 8 75 45
Cu LMTO 8 133 58
Ag LMTO 8 133 43
Au LMTO 8 133 61
Cu LMTO 11 96 51
Ag LMTO 11 96 38
Au LMTO 11 96 52
Cu PS 4 75 31
Ag PS 4 108 9
Au PS 4 75 16
Extrinsic Cu PS 7 75 44
Ag PS 7 108 18
Au PS 7 75 41
Cu PS 6 75 29
Twin Ag PS 6 108 12
Au PS 6 75 21
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-8.00

-7.00

1 -12.00 -4.00

2 -6.00 -3.00

3 -4.00 -2.00

4 -3.00 -1.00

5 -2.00 -0.30

6 —1.00 +0.10

-7 -0.30 +0.20

— 8 +0.10 +0.27

— 9 +0.20 +0.30
—10 +0.25

— 11 +0.30 +040
—12 +0.35

FIG. 1. Charge densities in different planes: (a) (100) plane of the ideal Cu crystal; (b) (110) plane of the ideal Cu crystal; (c) (110)
plane with the intrinsic stacking fault in Ag. The charge densities of isolated atoms have been subtracted. The units for the contour

lines are 1.34X 1072 /(a.u. )? for Cu and 9.05X 1073 /(a.u.)’ for Ag.

less, considerable quantitative differences remain, espe-
cially for Ag, where the LKKR result is nearly twice our
result from the 8-atom perpendicular calculation. We
conclude that the muffin-tin approximation seems to be
able to reproduce the general trends for the stacking-fault
energies, but it has to be replaced by a full-potential
method if highly accurate results are required.

As an example, we studied the influence of structural
relaxations near the stacking fault (for fixed stacking fault
volume) for the intrinsic 5-atom stacking-fault supercell,
by vertical displacements of the planes along the hexago-
nal axis. It turned out that the displacements are smaller
than 0.5% of the original distance between the planes,
and the stacking-fault energies are affected by less than
10%. Such a small effect on the structural relaxation was
also reported for silicon.?! It is interesting to note that in
Ag the planes at the stacking fault are attracted, whereas
they are repelled for the case of Cu and Au.

Figure 1 represents the charge densities as obtained by
the pseudopotential calculation. Thereby, the charge
densities of the corresponding free atoms were subtracted
to elucidate the subtle binding effects. Figure 1(a) shows
that the charge densities in the closed packed (111) planes
of the ideal fcc structure are nearly spherically sym-
metric. Figure 1(b) exhibits the (T10) plane which con-
tains one atom out of each plane A4, B, C, respectively.
The enlarged charge densities between these atoms are re-
sponsible for the ABC stacking succession. From Fig.
1(c) it becomes obvious that at the stacking fault this ac-
cumulation of charge between the atoms is removed, and
indeed the electron density in the middle between two
atoms is lower for atoms at the stacking fault than for
those in the bulk, resulting in an increase of the total en-

ergy due to the stacking fault.

Motivated by the success of the LMTO method in
atomic-sphere approximation for the calculation of the
large fault energies in Al and Pd,'® we repeated the calcu-
lations by this method,?’ including partial waves up to
Inax =3 (Ref. 28) and the combined correction term. As
shown in Table II, we obtained larger values than in the
pseudopotential calculation, although the general trend,
i.e., y?“zyf"“z%/f‘g, is fulfilled. Quantitatively, howev-
er, there remain considerable differences for the case of
Ag, where the atomic-sphere approximation overesti-
mates the stacking-fault energy by more than a factor of
2. (It should be noted that most recently there was
another calculation based on the atomic-sphere approxi-
mation: Crampin, Vvedensky, and Monnier!” applied a
layer Green’s function Korringa-Kohn-Rostocker
method and used the force theorem® for the calculation
of the stacking fault energy, yielding 7, =41 mJ/m? for
Cu.)

To conclude, we have shown that a full-potential elec-
tron theory is required to obtain accurate values for the
stacking-fault energies even for close-packed fcc metals,
if the stacking-fault energies are low. We think that for a
reliable determination of defect energies for planar de-
fects in non-close-packed systems (for instance bcc) a
full-potential theory is absolutely essential.

The authors are indebted to A. Seeger for bringing this
interesting subject to their attention. Our pseudopoten-
tial and LMTO programs are based on computer codes
developed in the groups of K.-M. Ho (Ames Laboratory)
and O. K. Anderson (University of Stuttgart).
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