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Theoretical normal-state transport properties of K3C6o
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Lowest-order variational solutions to Bloch-Boltzmann scattering theory are used in conjunction with

first-principles band-structure results to predict the normal-state resistivity, Hall coefficient, and thermo-

power for K3C6p. These properties, their pressure coefficients, and other Fermi-liquid-related parame-

ters are compared with the available experimental data, with the goal of evaluating the extent to which

these novel superconducting materials can be understood within the Fermi-liquid picture without strong

correlations.

Since the initial demonstration of T, =18 K in K3C6p,
the superconducting properties of the A3C6p compounds
(A =alkali metal) have been the focus of intense scrutiny.
Significantly less attention has been given to the normal-
state properties of these metallic materials. Structural,
spectroscopic, and transport measurements have been re-
ported, but several fundamental questions remain to be
addressed. Are these metals fundamentally bandlike ma-
terials, as assumed by several explanations of the super-
conductivity in terms of strong e1ectron-phonon cou-
pling, or does the small intermolecular overlap lead to
correlated carrier motion? What effect does the observed
orientational (merohedral) disorder of the A3C6O phase
have on both normal and superconducting properties?

Regarding the first question, we note that calculations
of the effective intramolecular Coulomb repulsion in a
fulleride crystal lead to values of order 1 eV. Since the
calculated band width is 0.6 eV, significant corrections
to the band description may be necessary. Considering
the three dimensionality, multiband character, and lack
of strong Fermi-surface nesting, however, the band pic-
ture may well be more viable than the highly correlated
limit. The effect of orientational disorder is also an open
question: One study shows that random disorder rear-
ranges the spectral density, although the electronic states
remain itinerant.

The experimental situation is not entirely clear either.
Photoemission data indicate an occupied band width for
K3C6p of —1 eV, a factor of 4—5 larger than the calculat-
ed band width, possibly indicating strong electron corre-
lation effects. However, Tycko et al. have used the
NMR spin-lattice relaxation rate (a bulk probe) to esti-
mate a Fermi-level total density of states N(eF)-35
states/eVcell; the bulk and electron paramagnetic reso-
nance magnetic susceptibility results are 31 and 22
states/eV cell, respectively. ' These values are consistent
with (if somewhat larger than) our calculated value of
13.2 states/eV cell, and are strongly suggestive of normal
Fermi-liquid behavior.

TABLE I. Calculated values of normal-state and supercon-
ductivity parameters for K3C6p. Symbols are defined in the text.

Parameter Value

Band width, W
N(eF )

VF

%Op

A (clean limit)
A (dirty limit)
l (300 K)
p (300 K)
a lnp/aP

H
Rxyz
8 lnR, /BP
S (300 K)
aS/aP (300 K)

0.61 eV
13.2 states/eV cell (both spins)
1.77X10' cm/s
1.22 eV
1600 A
3000-3500 A
7 A/~tr
780 X A,«pQ cm
—0.041 kbar
0.70X10 m /C
—0.003 kbar
—15.4 pU/k
—1 pV (Kkbar)

One approach to these questions is to begin in a well-

defined limit, calculate a number of normal-state proper-
ties, and then try to understand the corrections required
in order to provide agreement with experiment. %ith
this study, we begin such a program: Starting from the
band viewpoint, we use first-principles electronic-
structure results and formal expressions from Bloch-
Boltzmann transport theory (assuming the normal state
to be a standard Fermi liquid) to calculate several
normal-state transport coefficients (resistivity, Hall
coefficient, thermopower) and superconducting-state
properties. Our results are summarized in Table I.

The validity of Bloch-Boltzmann theory rests on
several conditions. " First is the nominal assumption that
the carriers are quasiparticles in a periodic crystal, and
hence have a well-defined dispersion relation ez. Howev-
er, the formalism can be readily extended to impure crys-
tals, and even to metallic alloys, where the excitations
may not be quasiparticles at all, but for which the physi-
cal properties are qua1itatively the same. Thus, the ob-
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served merohedral disorder in A3C60 does not invalidate
the formalism, but may only rearrange the spectral densi-
ty and alter the quantitative predictions. Second, the
scattering events are assumed to be independent, al-
though phonons, defects, and even Coulomb scattering
can be treated if their scattering rates are additive. We
will concentrate on scattering by phonons. Although this
scattering may be strong enough that the excitations
(coupled electrons and phonons) are no longer quasiparti-
cles, the formalism survives nevertheless. Finally, there
is a question of how in general to describe an interacting
electron-phonon system when the phonon frequencies ap-
proach the electron band width, which is the case in these
materials.

We assume here a crystal with orientationally ordered
C60 molecules. Rietveld refinements of powder x-ray
data have obtained good fits by assuming that two orien-
tations are randomly populated. However, several work-
ers have noted that even at very low temperatures, nomi-
nally "ordered" solid C6O actually contains substantial
short-range disorder. ' ' We suggest that A„C6O materi-
als that are "disordered" may (conversely) have some
short-range order that could make our assumption of an
ordered crystal more reasonable than it first appears.

For band metals with cubic symmetry, the resistivity is
given by p=4m/Qz~. The temperature dependence is
contained in the scattering rate 1/~, which is given' by
variational solution of the scattering equation as

h co/2k~ T
fi/r( T) =4irk& Tf a,g (co)

oi
' sinh(h co/2k~ T )

The integral is over all phonon frequencies and a„F(co),
the electron-phonon transport spectral function, is close-
ly related to the spectral function a F(co) of Eliashberg
theory. All of the band-structure effects are contained in

the Drude plasma frequency, Q~ = e v~N(e~), where
4~

U~ is the Fermi-surface-averaged electron velocity. For
K&C60, we have used local-density-approximation (LDA)
band structure to calculate UF = 1.8 X 10 cm/s,
N(e~) =13.2 states/eV, and the resulting Drude plasma
frequency AQ =1.2 eV. In BCS theory, this quantity
determines the clean-limit London penetration depth,
A =c /0 = 1600 A. The corresponding value for a dirty
superconductor is larger by a factor (1+(/! )', where l
is the mean free path and ( is the intrinsic coherence
length; this value is roughly 3000—3500 A, in quite
reasonable agreement with the reported values of 2400 A
(lower critical-field measurements' ), 4800 A (muon-spin
relaxation' ), and 6000 A (NMR, Ref. 9).

We first examine the high-temperature behavior of the
resistivity. At large T, the bracketed expression in Eq. (1)
may be expanded to yield'

fi/r(T)=2iriL„kiiT[1 —0((oi )„/T )),
where

X„=2f (dco/cv)a, g(co) .

From Eq. (2), it is clear that regardless of the shape of the
transport spectral function, p(T) will be linear in T at
sufficiently high temperatures, with a slope proportional
to kt As its form suggests, k„ is closely related to the
superconductivity coupling strength A., and is within 10%
of A, for a variety of metals. ' For K3C60, theoretical esti-
mates of k range from -0.5 to —1.0. We will set k„=1,
so that the resulting p( T) may be considered either as
semiquantitative or simply as normalized to this value.

For the A3C6o compounds, (co )I, is of order 1000 K,
making the linear approximation of Eq. (2) useless for
temperatures of practical interest. Nevertheless, if there
is sufficient spectral weight at low frequencies, this linear-
ity will extend down to more modest temperatures as
well. Suppose we take for the spectral function a single
Einstein oscillator coo. Then for temperatures larger than
coo/4, the linear piece of Eq. (2) is within 20% of the ex-
act solution. For a superposition of Einstein oscillators,

a,g(co)= g A;5(co —co;), (3)
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FIG. 1. Calculated normal-state resistivity, p( T ), and

dp{ T)/dT (arbitrary units) for K3C60.

contributions to 1/r( T) will be weighted by A;/oi;. Low
frequencies are given extra weight in the integral, so that
any nonlinearity in the resulting temperature dependence
is limited to temperatures less than the lowest frequencies
with appreciable spectral amplitude.

Although calculations' and experiments by several
groups have indicated which phonons may be important
for electron pairing in K3C60, no detailed information ex-
ists for either a F(co) or a,g(co). At the lowest level of
approximation, a,g(co) may be replaced by F(oi), the
phonon density of states (DOS). Here we use results from
inelastic neutron scattering ' for the cross-section-
weighted DOS, G(co), in which the frequency range
20—1600 cm ' was probed. By sampling G(co) at 25
cm ' intervals, we represent the spectral function in the
form of Eq. (3), normalizing to 1,„=1.Carrying out the
integration in Eq. (1) we obtain an explicit prediction for
p(T). The result, shown in Fig. 1, is indeed remarkably
linear down to 50 K, a consequence of substantial low-
frequency intensity in G(co). From numerical solution of
the Eliashberg equations, Dolgov and Mazin' have con-
cluded that there must be a very low-frequency peak in
a F, and presumably in a,g as well. Any such additional
weight would make p(T) even more linear. Here, we
note a slight (-20%%uo) supralinear effect over the range
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50—500 K. The room-temperature resistivity is calculat-
ed to be -800k,„pQ cm. We also calculate the intrinsic
room-temperature mean free path to be l=7 A/A, «, at
the Ioffe-Regel limit (the lower limit of validity for
Bloch-Boltzmann theory). The theory will be valid at
lower temperatures.

To extract the pressure dependence of p(T), we recal-
culate the self-consistent LDA band structure at a lattice
constant 0.2 A larger than equilibrium. The bands are
quite sensitive to small changes in lattice constant: In this
case, the relevant band width is decreased by 21%. The
dependence of v on lattice constant is not simply deter-
mined, so we assume to first order that 1/r -A,«
—A, -N(et; ). Using the measured compressibility of
K3C60 we calculate the pressure derivative of the rela-

tive change in resistivity to be 8 lnp/BP = —0.041
kbar

Several measurements of the resistivity have been re-
ported Ma. ruyama et al. have found p(T, ) =8 mQ cm
and a slope of —15 pQcm/K. Rotter et al. have re-
ported a much smaller value of p(T, )=0.4 mQcm, in-

ferred from reflectivity measurements, which is a less
direct result but is also less prone to granularity effects.
Recent single-crystal measurements by Xiang et al. find

p( T, ) =2.5 mQ cm and p(280 K) = 5 mQ cm. This vari-
ation in measured values indicates that the intrinsic bulk
resistivity has probably not yet been achieved, but the
best resistivities are beginning to approach our calculated
value (if A,,„-1 ).

The Hall coefficient is given by a ratio of transport
coefficients, R„,=E /j „B,=o „,/a, where cr = 1/p is
the conductivity, and the Hall conductivity is given ex-
plicitly by

f dik v„(k)[v(k) X V„vy(k)], —
8m. A' BE'g

(4)

The overall sign is a weighted average of the curvature of
the Fermi surface; for a free-electron gas, the result
R = —1/ne is recovered. Since the result for a hole
sphere has the opposite sign, the sign of the Hall
coefficient is frequently interpreted as giving the carrier
type. We caution that the K3C60 Fermi surface is quite
complex, with regions of both positive and negative cur-
vature, so that the interpretation of R„„, in terms of a
carrier type and density becomes somewhat meaningless.
For isotropic scattering (i.e., the high-T regime}, R„, is

temperature independent. At temperatures for which
only low-Q phonons are available to scatter electrons
across the Fermi surface, anisotropy in the Fermi surface
may be manifested as a strong temperature dependence;
we do not treat this effect here.

In Fig. 2 we show, for pedagogical purposes, the ener-

gy dependence of R yz within a rigid-band assumption for
band fillings from 0 to 6 electrons (note that actual A„C60
materials are not rigid-band systems). Near the bottom
and top of the band, R, is accurately given by the free-
electron and free-hole expression, respectively. The Hall
coefficient at the K3C60 Fermi level is positive ("hole-
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FIG. 2. Energy dependence of the calculated Hall coeScient
R (solid curve). The Fermi level, and the predicted value for
R, is at the energy zero; values for other energies assume a
rigid-band behavior. The lower and upper dashed curves are
the free-electron and hole Hall coeScients, respectively. The
dotted curve refers to the expanded lattice (see text). The di-

mensionless quantity (e/cell-volume)R = 1/N is plotted, where

N is the (signed) effective number of carriers per cell.

(5)

We allow for an energy dependence in r, so that (for T
not too small) we have

A'/r(T, e)=2nk«(e)k&T .

We have treated this energy dependence at two levels of
approximation: (1) A(e}=constant, and (2} A(e)~N(e),
while including the full energy dependence of the band

like" ) and has the value R =+0.70X10 m /C. Be-
cause of the nearby sign change, which results from large
cancellation of curvatures, the precise value may be sensi-
tive to small details of the bands, thus disorder may
strongly affect R . The spike at 0.1 eV coincides with a
strong dip in the electronic density of states, separating
the two lower bands from the upper one; the dip is mani-
fested here as a multiband effect.

Figure 2 also shows the energy dependence of Rzyz for
the expanded lattice. The primary effect of the expansion
is to compress the bands, more or less about the midpoint
(which is very close to the Fermi level). On the scale of
the plot, R~~, at ez is unchanged, reflecting only subtle
changes in the Fermi-surface curvature. Indeed, the cal-
culated relative pressure derivative is quite small,
t} lnR „,/BP = —0.003 kbar

We are only aware of a single Hall measurement, for
K3C60 thin films. At low temperatures, a Hall
coefficient of roughly —0.3X10 m /C was obtained.
The observed strong temperature dependence makes
comparison to our T-independent value problematic, and
in any event, sample granularity makes the thin-film data
very difficult to relate to bulk values.

The lowest-order variational solution for the thermo-
power is

e
de N(e)v„(e)r(e)(e eF)—2 a

8~3o T sz B6g
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properties. The resulting S(T}are shown in Fig. 3. At
moderate temperatures, the first approximation leads to a
free-hole-like thermopower (linear in T with positive
slope). The second approximation gives quite different
results, showing electronlike behavior up to -200 K and
a slow transition to positive slope thereafter. The qualita-
tively different high-T behavior arises from sensitivity to
variations in N(e} within a few kT of the Fermi level.

Figure 3 also shows thermopower curves for the ex-
panded lattice; the pressure dependence of S(T) ap-
parently depends on both A,(e) and T in a complicated
fashion. For A,(e) ~N(e), there is a rough division into
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FIG. 3. Temperature dependence of the thermopower, S( T),
using two different assumptions for the energy dependence of
the scattering rate. The dotted curves are for the expanded lat-
tice.

two temperature regimes: For T &250 K, the pressure
derivative of S(T) is very small or zero, while for T)250
K, it rises to a roughly T-independent value of BS/BP - l
pV (K kbar)

Measurements of the thermopower show negative
linear behavior up to 300 K, with room-temperature
values in the range 10—20 pV/K. The absence of sub-
stantial deviation from linearity may be an indication
that N(e) has less structure than we calculate, either due
to merohedral disorder or to crystal defects.

At this stage, no definitive conclusions can be drawn
regarding the validity of the Fermi-liquid-based Bloch-
Boltzmann picture for K3C60. Resistivity measurements
on improved samples give results in qualitative agreement
with Bloch-Boltzmann theory, but uncertainties about
the coupling strength and sample quality preclude
definite conclusions. Thermopower measurements are
consistent with calculated values, but again it is prema-
ture to draw specific conclusions. Further transport data
on well-characterized single crystals are needed. We
have provided a compendium of physical parameters
against which to compare future experimental results.
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