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Hopfield models and spin-density waves in metallic spin glasses
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Some parallels are found between the spin-interaction Hamiltonian produced by incipient spin-density
waves and the multicomponent Mattis models which give Hopfield associative memories. The approxi-
mate criterion found by Feigelman and Ioffe for the crossover from spin glass to “spoiled helical” order
is seen to follow easily from this analogy. The analogy allows a rather trivial extension of the
Feigelman-Ioffe criterion to cases, such as Cu,_,Mn,, in which there are multiple but not infinitely mul-
tiple spin-density wavelike components together with short-range magnetic order.

The order parameter or parameters of spin-glass (SG)
phases of real materials remain highly elusive.’> The
closest thing to a snapshot of such an order parameter is
provided by neutron-scattering results on Cu;_, Mn, and
Ag,_,Mn,, which show short-range (about 4 nm) spin-
density-wave (SDW) order.>* Werner,* following a very
early proposal by Overhauser,’ has interpreted these re-
sults to mean that “‘the prototype spin glass is not a spin
glass,” but rather just an SDW antiferromagnet broken
into many small domains along 12 possible SDW q vec-
tors. Mydosh® has argued for the importance of local fer-
romagnetic correlations, promoted by atomic-short-range
order (ASRO), in breaking up the postulated simple anti-
ferromagnetism and producing macroscopic behavior
quite distinct from simple SDW’s. On the other hand,
finite-size effect measurements® and mesoscopic fluctua-
tion measurements’ show that the thermodynamic and
dynamic correlation lengths are much longer than the
range of the SDW-like order, so that it is not appropriate
to simply view these spin glasses as SDW’s decorated
with local moments. Therefore, it is worth considering
what sort of order should form in these prototypical SG
materials, given what the neutron-scattering results sug-
gest about the Hamiltonian.

Feigelman and Toffe® ~!° have systematically investigat-
ed the behavior of spin Hamiltonians based on SDW-like
terms in the magnetic susceptibility, y(q). They found a
phase diagram including both SG phases and ones with
what they dub “spoiled helical” order, which resembles
the Overhauser phase except with some important extra
degrees of freedom due to the finite range of the interac-
tion.

In this paper we exploit the similarity of Hamiltonians
with SDW-like sinusoidal coupling of randomly placed
spins to variants of the Mattis model'! in order to make a
highly simplified schematic theory. We use the Mattis
analogy to show that the nature of the frozen phase in
these relatively realistic spin-glass models can be under-
stood in terms of the behavior of Hopfield associative
memories. Within this highly simplified picture, it be-
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comes easy to predict approximately the effects of having
multiple, but still discrete, SDW q’s and of having other
competing short-range magnetic order. Both of these
effects are important in Cu;_,Mn,, but hard to treat in
the full Feigelman-Ioffe approach. In passing, we try to
provide an accessible cartoon version of the Feigelman-
Ioffe approach and try to remind the reader of the dis-
tinction between Mattis models and antiferromagnets.

We may start by considering a dilute solution of mag-
netic atoms in a host that has a sharp peak in x(q) for
only one direction of q. (Y,_,Gd, and related materials
provide approximate examples.»!?) The (infinite range)
interaction between spins via the inducted polarization of
the conduction electrons is then of the very simple form

H;;=—1JS;-S; cos[q-(r; —r;)]
=—JS;-S;{ cos(q-r;)cos(q-r;)
+ sin(q-r;)sin(q-r;)} . (1)

Let us examine one of the two terms [e.g.,
cos(q-r;)cos(q-r;)] in the right-hand side of Eq. (1).
Since the probability density function for cos(x) peaks at
*1, we may approximate this term in H by —Jeig;S; S,
where the €; are randomly assigned the values +1. If
there were only one such term in the Hamiltonian, we
would be dealing with a problem that has already been
solved, since this is simply the Mattis model. It is a mod-
el for ferromagnetic order of the fictitious spins S;=¢;S,.
Taking into account the actual distribution of absolute
values of cos(x) would give a finite density of single-spin
excitations at low energies but otherwise make no essen-
tial difference.

At this point, it is helpful to remember that even the
simple one-parameter Mattis model should not be
thought of as either antiferromagnetic or as ferromagnet-
ic, since the transformation required to obtain either such
model is equally random. To belabor this familiar point a
bit in the context of SDW-like interactions, if the ran-
domly placed spins happened to come out uniformly
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spaced one half of an interaction wavelength apart in
some region, their frozen state would look perfectly anti-
ferromagnetic. If, however, they happened to be spaced
one wavelength apart, the frozen state would look per-
fectly ferromagnetic. The identification®* of the random-
ly placed spins, coupled sinusoidally, with an antifer-
romagnet is thus inappropriate. There is no need to in-
voke the presence of some nonrandom local ferromagnet-
ic coupling® (unlikely to be important in more dilute spin
glasses) to explain the nonantiferromagnetic behavior of
dilute materials with SDW-like coupling, since even the
most idealized case would be Mattis-like, not antiferro-
magnetic. (We refer here to the behavior of the randomly
placed local moments. The conduction electrons can
show true SDW antiferromagnetism,g"10 but the
conduction-electron contribution to the magnetic suscep-
tibility is small relative to that of the local moments in
realistic cases.)

A more important difference than the inclusion of
some weakly coupled spins between Eq. (1) and the
Mattis model occurs when we include both the cos and
sin terms. While the expectation of their product is zero,
these terms are not independent, since they cannot both
simultaneously have large absolute value. If we make the
approximation that for any spin either sin(q-r;) or
cos(q-r;) is zero while the other is =1, we obtain a simple
picture of two parallel Mattis systems, again having no
special thermodynamics. If we make the opposite approx-
imation, treating the two terms as independent, we have a
Hamiltonian which is the sum of two independent Mattis
models, whose properties we shall discuss below.'3

In either case, the approximation breaks the true sta-
tistical translational invariance of the Hamiltonian. We
thus lose information on fluctuations of the phase of the
sinusoidal order, which is crucial to understanding the
correlation length in the ordered phase for finite-range
forces,’ but not essential to getting some feel for some
qualitative features of the low-temperature phase. It is
this finite correlation length which can give a spoiled hel-
ical phase rather than a simple Overhauser phase.
Feigelman and loffe already noted that the finite-range
version of this single-q Hamiltonian produces a regime of
Mattis-like behavior, although with a range of metastable
states provided by the lack of rigidity of the phase of the
magnetization.’ (As Feigelman has reminded us, for pure-
ly X-Y or Heisenberg spins, the combination of rotational
and translation invariance allows the phase of the helix to
decouple from the relative spin order, giving only one
Mattis component, not two.)

In either approximation, we find that ratio of the num-
ber of independent Mattis components of the Hamiltoni-
an seen by each spin to the number of spins within range
of that Mattis component is just twice the inverse of the
number of spins (or equal for pure X-Y or Heisenberg
spins). The approximate value of this ratio will be impor-
tant as we draw the analogy to associative memories.

If we grant that the behavior of a single-q dilute ran-
dom system could resemble that of a ferromagnet (or an-
tiferromagnet) with a random Mattis transformation,
consistent with experiment,12 we have a clue as to the be-
havior of a multi-q system. Each q vector produces its
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own coupling between the spins. The correlations be-
tween these couplings are small for spins more than a few
lattice spacings apart. Thus we should consider the be-
havior of spins whose Hamiltonian is the sum of a num-
ber of independent Mattis Hamiltonians.

Such multicomponent Mattis Hamiltonians are noth-
ing new.>*"1> For a finite number M of component
Hamiltonians, they are known as the Hopfield associative
memory model. Such models have a transition to a SG
state when M becomes too large compared with the num-
ber of interacting spins, N,.!*!° In the limit as M goes to
infinity one gets exactly the Sherrington-Kirkpatrick SG
Hamiltonian, whose fascinating properties have been
much studied.'® Perhaps the neutron-scattering results
on Cu;_,Mn, are not so far from SG theory as one
might first guess.

When M /N_=a<0.05 the lowest-energy states are
close to being ground states of individual Mattis com-
ponents of the Hamiltonian. (That’s why associative
memories work.)> %15 For larger a a SG ground state is
found, along with the Mattis-like states. Above a=0.1
the system behaves, in mean-field theory, essentially like
a Sherrington-Kirkpatrick SG.> 1413

Thus the analogy to associative memories suggests a
simplified test for what type of behavior will be exhibited
by randomly placed spins interacting sinusoidally. If «,
the total number of Mattis-like components of the Hamil-
tonian per number of spins, is greater than about 0.05,
complicated SG order is to be expected even locally.
That would not by itself tell us the nature of the global
phase, but it might undermine some of the arguments
supporting a simple scaling picture of short-range Ising
spin glasses and lead to the interesting hierarchical super-
paramagnet proposed by Feigelman and Ioffe.!” For
a<0.15, some local Mattis-like (helical) order could
remain. If, on the other hand a <0.05, we would expect
that locally the order would become sinusoidal, and that
the Feigelman-Ioffe spoiled helical phase would be found.

We may check whether our simplified approach of
treating the multiple-q interaction as the sum of Mattis
terms agrees with the Feigelman-Ioffe treatment for a
simple case. When Y(q) is isotropic, but sharply peaked
within a range « of g, one has, in real space, an interac-
tion of the form J[ sin(gr)/qrle ~*".* While this interac-
tion is reminiscent of the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction,'® it is more tractable
mathematically. For CuMn and 4AgMn the extended tail
is also realistic, in that multilayer experiments'® show
longer-range coupling than expected from RKKY in-
teractions.

The isotropic SDW-like Hamiltonian then couples
spins within a volume x 3. Within this volume x(q,) and
x(q,) produce essentially identical contributions to the
Hamiltonian for |q;—q,| <, but produce nearly un-
correlated contributions for |q;—q,|>«. Then the
effective number of independent q vectors is about g*/x?,
and the effective number of independent Mattis contribu-
tions is about twice as large. So long as this number is
greater than about ¢ /K3, where ¢ is the number density of
spins per volume, SG-like behavior will appear within
each coherence volume.
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Thus, by consideration of the similarity of the single-q
Hamiltonian to two Mattis components and by consider-
ing the known behavior of multicomponent Mattis mod-
els, i.e., Hopfield associative memories, we arrive at a
crude criterion for spin-glass-like behavior of spins with
finite-range isotropic SDW-like coupling, namely,

qZK/c >1,

where we have not tried to keep dimensionless prefactors.
It is very reassuring that the more formal and thorough
treatment of Feigelman and Ioffe, completely indepen-
dent of the associative memory analogy, gives essentially
the same criterion, although with a specified numerical
coefficient: g2k /4mc > 1.

The obvious question for Cu;_,Mn, and Ag,_,Mn, is
where, in the spectrum of behavior from isotropic to sin-
gle q and from high ¢ to low ¢, these materials belong.
Neutron scatterings indicates that the magnetic order is
not isotropic, but has SDW-like structure peaks at 12
different symmetry-related q’s. We have seen that each q
corresponds to two Mattis components. Thus we are
concerned with the case M =24, and not with the case
described above in which M depends on «. The relevant
criterion to find spin-glass behavior within a single in-
teraction volume becomes roughly

24>0.05cV, ,

where V,~1/k is the volume range of the SDW-like
terms in the Hamiltonian.

The empirical neutron-scattering coherence volume in
Cu,_, Mn, contains about 4000 atoms, in the concentra-
tion range studied, 0.05 <x <0.25.%* It is unclear from
the neutron-scattering results that this coherence volume
of the ordered phase represents the range of the Hamil-
tonian, determined by the width in the peak in x(q).
However, above T the inelastic neutron scattering at the
relevant q’s shows even shorter coherence lengths.?

More important, very recent data on interlayer cou-
pling across various metals show that the apparent in-
teraction range across Cu or Ag is about 4 nm.'” This is
a true measure of the form of the Hamiltonian, not of the
properties of the ordered state. Furthermore, it is very
weakly dependent on impurities. Thus it is safe to as-
sume cV,~4000x for Cu,_,Mn, even at lower x than
examined by neutron scattering. The set of SDW q vec-
tors, which show very little change (other than changing
length along with the Fermi wave vector) for
0.05 <x <0.25, continues to be about constant.

Then so long as 24 > 4000x -0.05, we would expect that
SG behavior, not some approximation of a simple Mattis
state, would be found, since the density of Mattis terms is
higher than the spin density can support in an associative
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memory. This condition holds for x <0.1. The agree-
ment of this estimate with the Feigelman-Ioffe result for
the same materials is fortuitous, since we have explicitly
taken into account the strong anisotropy of y(q), which
favors the Mattis-like spoiled helical phase, but used
much less precise arguments about the appropriate di-
mensionless prefactors.

At higher x, the same analysis would predict that the
Feigelman-Ioffe spoiled helical phase would occur. How-
ever, at higher x the role of local spin correlations (which
happen to be mostly ferromagnetic) becomes important.’
Over the range 0.05 <x <0.25, the SDW-like coherence
length is only about five or six times this short-range-
order coherence length.> Thus within an SDW coherence
volume there are only about 125-216 independent units
of locally coherent spins, which is below the minimum
(480) required to give a Mattis-like ground state with
M =24, but right around the minimum to give some
stable Mattis-like states. It is not surprising then to find
some sinusoidal short-range order in this concentration
regime, but with no evidence of the helical states’ playing
an important role in the thermodynamics.

Thus we find that the actual Hamiltonian produced by
the multi-q interaction suggested by the neutron scatter-
ing in Cu;_,Mn, would not be one whose solutions
would resemble those of a simple Mattis model (much
less an ordinary homogeneous SDW antiferromagnet),
but rather would be in the regime which has been tradi-
tionally considered to be a SG, at least for low x. As My-
dosh suggested,’ the short-range correlations in
Cu,_,Mn,, produced by the RKKY interaction and
perhaps enhanced by ASRO, can play an important role.
However, that role is not to produce ferromagnetic cou-
pling needed to compete with an otherwise antiferromag-
netic coupling (which is not, in fact, present), but to
reduce the number of effectively independent spins in a
multicomponent Mattis model, helping to prevent the
system from settling into a Mattis-like state at high
values of x.

The SDW-like coupling in Cu and Ag alloys®>*!® may
also help explain the apparently hierarchical dynamics
found in these materials in mesoscopic fluctuations exper-
iments’ and nonlinear perturbation experiments.?’ Since
such coupling produces a Hamiltonian with more, not
less, resemblance to the Sherrington-Kirkpatrick Hamil-
tonian than would be found for RKKY and other cou-
plings, it is possible that nonhierarchical behavior could
be found in other SG’s.
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