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We search for broken symmetry in the ground state of the spin-
2

Heisenberg antiferromagnet on a ka-

gome lattice. Specifically, we calculate magnetic, spin-Peierls, spin-nematic, and chiral correlation func-
tions in the ground states of clusters of 9, 12, 15, and 18 sites. All four correlation functions fall rapidly
with distance. An analysis of their system-size dependence suggests that the ground state of this model
is probably a spin liquid with the full symmetry of the Hamiltonian.

A particularly interesting consequence of zero-point
fluctuations in quantum antiferromagnets is the possibili-
ty of non-Neel ground states, in which the average mag-
netic moment vanishes at every site. ' These states are
favored by small spin S, low dimensionality, and frustra-
tion. While they are ubiquitous in one-dimensional
Heisenberg systems (given short-range interactions), their
existence is much more restricted in two dimensions. In
this paper we study spin correlations in one of the sim-
plest two-dimensional models likely to support a non-
Neel ground state: the antiferromagnetic Heisenberg
model on a kagome lattice.

This model has been suggested as a representation of
two physical systems: He adsorbed on graphite (with
S = 1/2), and the layered magnetic insulator,
SrCrs Ga4+„0» (with S=3/2). Experiments on the
latter, in particular, have stimulated a considerable
theoretical effort. Although the contributions of inter-
layer coupling and disorder to the observed magnetic
properties of SrCr8 Ga4+ O&9 have yet to be estab-
lished, a consensus is emerging on the behavior of the ka-
gome antiferromagnet for large S. The classical ground
state is highly degenerate, but small fiuctuations (quan-
tum or thermal) induce "order from disorder", selecting
configurations in which all spins are coplanar (spin-
nematic order). Within this set of configurations there is
probably also further selection, leading to three-
sublattice, +3X +3 magnetic order in the zero-
temperature limit. By contrast, for small S, rather little
is known, although there is good evidence from nurneri-
cal diagonalization and series expansion that large am-
plitude quantum fluctuations destroy ground-state Neel
order if S = 1/2.

There are many alternatives for the resulting non-Neel
state. These include: a spin liquid which retains the full
symmetry of the Hamiltonian spin-nematic ' and chiral
spin states, ' with order parameters built from several
spin operators; and spin-Peierls states, " with a broken
spatial symmetry. The existence of each of these has
been demonstrated in suitably designed spin models, ' ' "

while competition between the Neel state and the mag-
netically disordered states has been examined in large-N
generalizations of spin systems. '

A much studied testing ground for these ideas has been
the S =1/2 Heisenberg model on a square lattice, with
frustration introduced via second neighbor interactions
(the J,-J2 model). One expects (from 1/S expansion' )

and indeed finds (from diagonalization of small clusters
and from series expansions' ) Neel order at both small
and large values of J2/J„ the ratio of the two exchange
constants. In an intermediate regime, close to the classi-
cal degeneracy point (J2/J, = 1/2), there is a magnetical-
ly disordered phase with short-range, and probably also
long-range columnar dimer order, ' as predicted by
large-N theories. '

On the kagome lattice, one can promote a disordered
phase simply by reducing the spin, without tuning in-
teractions. Different large-N theories make conflicting
predictions about which non-Ne. el phase should then be
expected. Marston and Zeng, ' using SU(N) fermions,
suggest either spin-Peierls or chiral spin states, while
Sachdev, ' using Sp(N) bosons, finds a spin liquid with
unbroken symmetry. Previous diagonalization ' and
series expansion studies of the S = 1/2 kagome model do
not help in distinguishing between these possibilities,
since only the magnetic correlation function ' and low-
lying excitation energies ' have been examined.

In the following, we present results for kagome lattice
ground-state correlation functions, calculated on a se-
quence of cluster sizes. The model is defined by the Ham-
iltonian

where the sum is over all nearest neighbor pairs of sites
i,j, and cr, are the Pauli spin matrices. We study clusters
of 9, 12, 15, and 18 sites with periodic boundary condi-
tions, choosing the same shapes as were used by Zeng and
Elser, for ease of comparison with their results. For
each cluster, we calculate all ground-state wave func-
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and 2), is

C (a, b)=& —,'(S,S +S S, ) &
—(S.&(S, & .

Similarly, the spin-nematic correlation function, CN(a, b),
written in terms of the vector bond operator,
n~ —0 )XCT2, 1S

Cv(o, b)=([—,'(n, nb+nb. n, )] &

(n, np&(nbnp& .
a, P=x,y, z

Finally, the chiral correlation, Cr(a, P), between triangles

a,P involves the operator y =tr& (o2Xo3), where 1, 2,
and 3 are the sites at the vertices of the triangle a taken
in clockwise order. It is

C (a,P)=( —,'(y~&+y~, ) & .

In these definitions, ( & denotes an expectation value

in the ground state, or trace over ground states if I ~
6 & ]

is degenerate.
The forms of these correlation functions, evaluated on

an 18-site cluster, are illustrated in Fig. 1. Magnetic
correlations [Fig. 1(a)], as reported by Zeng and Elser,
are very small beyond second neighbor separation, which
is consistent with magnetic disorder predicted from series
analysis. Spin-Peierls correlations [Fig. 1(b)] have rather
longer range. Their structure does not correspond to the
type of long-range order suggested by Marston and
Zeng' for the infinite lattice. Instead, correlations ap-
pear to reflect the geometry of the finite cluster: the
clearest pattern is an alternation of sign on the sequence
of four bonds parallel to the short side of the cluster. ' A
plausible conclusion is that the infinite system is either
spin-Peierls disordered or only weakly ordered. Nematic
correlations [Fig. 1(c)] also suggest a disordered phase.
At the maximum separation allowed by this cluster size
they are small and vary in sign. At nearest neighbor dis-

tance, they are large and negative, in complete contrast to
the positive local nematic correlations expected for large
S, which illustrates how different the S=1/2 ground
state is from the semiclassical one. Chiral correlations
[Fig. 1(d)] are particularly small: they give no grounds
for expecting chiral order in the infinite system. The
values of these correlation functions are listed in Table I,
at separation vectors parallel to the long side of the clus-
ter.

While the nature of correlations on an 18-site cluster
points towards a disordered ground state, it is clearly use-
ful also to estimate order parameters by analyzing finite-
size effects. A difhculty arises from the fact that correla-

tion functions vary in sign without a clear pattern. Ideal-

ly, one might examine all possible ordering wave vectors;
in practice, this is precluded by the small number of wave

vectors allowed in our systems, and by the fact that many
are allowed only in one cluster size. Instead, we study

the dependence on cluster size N of C, the average over
all separations of the square of the correlation function.
If correlation functions approach their asymptotic value

exponentially with increasing separation, C will vary as
m +constant N ' for large N, where m is the corre-
sponding order parameter. This extrapolation is illustrat-

ed in Fig. 2. Since values of C turn out to be dominated

by the rather large values of each correlation function at
zero separation, we have, in addition, examined the effect
of omitting these terms from the definition of the aver-

ages. These results are also displayed in Fig. 2.
In order to gauge the significance of the values of C,

extrapolated to N = ao, it is useful to make comparisons
with the values that C would take in various simple, or-
dered states. We have considered four such states. The
first is a three-sublattice Neel state without quantum fluc-
tuations. In this state, C~ =0.5. The second is a simple
spin-Peierls state, in which a fraction f of nearest neigh-
bor bonds are exact singlets, without other spin correla-
tions. For any dimer covering of the kagome lattice,
f =1/4; in this case, Cs-—4.75. One might expect the
three-sublattice Neel state to be a good example of a
nematically ordered state. In fact, although it has perfect
nematic order at S = ~, it has only very weak nematic
order, C~= 1/36, at S =1/2. An alternative comparison
is with the ferromagnetically aligned state, in which
C~= —16/3 (negative because spins are colinear rather
than coplanar) and Cz—-28.4. Finally, a simple example
of a chiral state is one in which every alternate triangle of
spins is in the same eigenstate of the chiral operator, qIn this state, C&=9. The extrapolated values of C
shown in Fig. 2 are clearly much smaller than the values
in these reference states.

In conclusion, both the spatial variation of correlation
functions on the largest cluster studied, and an analysis of
the size-dependence of order parameters, suggest that the
kagome Heisenberg antiferromagnet has a ground state
that is either disordered or only very weakly ordered.
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