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%'e show that the near degeneracy of the low-lying vector {T&„)and axial-vector {T&g ) levels in an iso-
lated C60 can provide a simple pairing mechanism in C6o, C60, and the K„C60 crystal. This gives rise to
the possibility of a "boson" band in K„C6O, in addition to the usual fermion bands. The implications for
superconductivity are discussed.

I. INTRODUCTION

The discovery of C60 and the superconductivity of its
alloy compounds' provide a rich field for new theoreti-
cal and experimental investigations. In this paper we
show that the near degeneracy of the low-lying vector
( T&„) and axial-vector ( T,g ) levels of an isolated C6o ion
may pl ov1de a simple pail 1ng mechanism 1n C6o C6p
and the K„C60 crystal.

We begin with a review of the single-electron energy
levels of a C6o molecule in the next section. Above the 60
closed shell lie two triplets possessing the same
icosahedral symmetry label T, but of opposite parity.
We derive their wave functions in the tight-binding limit
of the molecular-orbit approximation and exhibit these
functions in a simple and useful form, which prompts us
to refer to them as "vector" and "axial vector. " Our
analysis is then extended to C60 . By taking into account
the strong Coulomb energy between electrons, we find
that the spectrum of C6O contains two low-lying states
invariant under the proper icosahedral symmetry trans-
formations, but again of opposite parity and hence natu-
rally called "scalar" and "pseudoscalar, " with an energy
degeneracy within 1% of their excitation energy (in our
approximate calculation), even closer than the vector
axial-vector doublets in C6o. The details of this remark-
able feature are analyzed in Sec. III.

Since parity doublets, two states of opposite parity
with nearly the same energy, are not a common oc-
currence in physics, we sketch below the mechanism that
gives rise to them in C6o. (For a microscopic system,
such as mesons and baryons, composite particles of oppo-
site parities usually have quite different internal struc-
tures, which make them unlikely to be degenerate. In
most macroscopic systems, as in the case of left- or
right-handed sugar molecules, it is conceptually simple to
construct coherent mixtures of opposite parities that are
nearly degenerate; the difticulty lies in the practical reali-
zation of such coherent mixtures. )

Set the C6o molecule on a unit sphere. The radial posi-
tion vector g of each C atom on the sphere corresponds
to an element g of the proper icosahedral group. Thus

the 60-dimensional Hilbert space of the tight-binding lim-
it supports the regular representation of this group. For
a typical "hopping" Hamiltonian of icosahedral symme-
try, the lowest single-particle state is that having a con-
stant wave function, reminiscent of the s wave (i.e., the
orbital angular momentum quantum number 1=0) on a
sphere. In the icosahedral group, this singlet representa-
tion is labeled A or, more fully, Ag (the subscript

g =gerade, meaning even parity).
The next-lowest state has a threefold degeneracy (ex-

cluding spin), which may be described as follows. For
each C atom, it turns out that there is a certain unit vec-
tor eo(g), very close to g, within an angle of about 1'; as
will be shown in Sec. III, the wave function at site g can
be chosen to be proportional to eo(g) n, where n is some
fixed vector. Clearly, one obtains in this way three in-
dependent wave functions of the same energy, corre-
sponding to the three independent choices of n. If we ap-
proximate eo(g )—=g (as we shall do hereafter in this sec-
tion), then these three states correspond to the p-wave
triplet (/=1) on the sphere. Under the icosahedral
group, this triplet representation is labeled T, or, more
fully, T,„(u=ungerade, meaning odd parity, since g
changes sign for oppositely placed C atoms).

It is natural to call the singlet and triplet states de-
scribed above "scalar" and "vector, " referring to the way
they transform when the laboratory coordinate system is
rotated or inverted. Thus the designation "vector" refers
to the vector n, which selects a T, state. Since multiplici-

ty and parity play a prominent role in our analysis, we
shall write 1+ (scalar) for Ag, 3 (vector) for T,„, etc. ,

with 1
+ denoting a singlet of even parity, 3 a triplet of

odd parity, etc. (All these multiplicities are doubled by
spin. )

In the regular representation, each irreducible repre-
sentation of dimension d appears d times; thus, the triplet
T, must appear 3 times. Our interest will be in the other
two triplets T„whose energy lies far above that of the
"p-wave" state described above. Their wave functions
can be expressed simply as follows.

Because of the detailed structure of the molecule, each
C atom defines not only a radial vector g, but a local
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e+(g)=gXe (g) . (1.2)

Under an inversion, g changes sign; consequently, e (g)
and e+(g) are of opposite parities. Let e (g) be of odd
parity; then, e+(g) is of even parity. By taking the wave
function proportional to e (g).n (where, as before, n is
some fixed vector), one obtains a triplet 3 or T&„, the
lowest-unoccupied molecular-orbit (LUMO) state in neu-
tral C60. By taking e+(g ) n, one obtains a 3 + or T,s, the
second LUMO state in neutral C60. It is natural to call
these triplets "vector" and "axial vector, " respectively.
Together, (1.1}determines the set of three triplets T, con-
tained in the regular representation.

To transform a C atom to one of its nearest neighbors
by an element of the icosahedral group, one must rotate
through a large angle (180' for one of the nearest neigh-
bors), about an axis rather close to g. Hence g varies
slowly between neighbors, but, as we shall see, e (g ) and
e+(g) vary rapidly and, because of (1.2), by about the
same amount. This is why the e n and e+ n triplets
have energy far above that of the g n triplet, but close to
each other. (Although the high-lying 3 and 3 + states
have the same formal structure under the icosahedral
group as the low-lying 3, if one attempts to fill in a
smooth wave function between the C atoms, one will
need mostly spherical harmonics of 1=5 and 6 for e
and e+, respectively, instead of 1= 1 as for g.)

Since e n and e+ n are the two low-lying levels above
the 60 closed shell, in C60 the extra electron may be in ei-
ther of these triplets. The nearness of these two levels of
opposite parity, combined with their compatibility (both
T, ) under the icosahedral group, render C60 highly polar-
izable, as will be calculated in Sec. III.

In C60, the Coulomb energy between the two extra
electrons plays a dominant role. Without this term the
lowest-energy state would be of the form T,„T,„or
3 X3 . But we find that two other states have consid-
erably lower Coulomb energy. One is obtained by com-
bining T&„and T, to make a two-particle state 1

T&„T& + T,~ T&„with wave function

[e (g) e+(g')+e+(g) e (g')](1l' —gt') .

(1.3)

The other is made by mixing the 1+ combination of
T~ T~ with that of T]& T~&-.

T&„T&„+T& T& with wave function

[e (g) e (g') —e+(g) e+(g')](tl' —lt'),
(1.4)

where g, 1, or 1 and g', f', or l' are the position and
spin variables of the two electrons. Because both wave

coordinate system, with its three orthonormal basis vec-
tors denoted by

g, e (g), and e+(g),
where

functions vanish when the two electrons coalesce
(g =g '), their mutual Coulomb energy is greatly reduced;
this leads to the spin-0 parity doublets in C60, labeled 1

and 1+.
The wave functions (1.3) and (1 4} represent singlets in

both position and spin; no external vector n appears. It is
natural to call these paired states "pseudoscalar" and
"scalar." It is evident that if the energy difference hc be-
tween 3 ( T&„) and 3 +( T,s ) is small, then it will con-
tribute only to order (b,s) to the splitting between scalar
and pseudoscalar paired states. This is why the paired
states in C6o form a much tighter parity doublet than the
component one-particle states in C60.

The closeness of these parity doublets makes it natural
to isolate their response to strong interactions, separate
from other distant levels. This provides a convenient
means to derive analytical expressions for many of the
important parts of strong-interaction effects. Thus we
can calculate the polarization energy of C60 in a strong
electric field E, showing that it changes from the weak-
field expression —

—,'aE to one that depends linearly on
E. Another example is to derive the final energy in C60,
within the parity-doublet approximation, to all powers of
the interaction Hamiltonian. (As one of the applications,
these closed expressions can be used to test the validity of
some calculations made in the literature, which are
based on a second-order perturbation in the interaction
energy, as will be discussed below and also in Sec. IV.)

In Sec. V we turn our attention to the K3C60 crystal
and first calculate the Madelung energy. The result
shows that all K atoms are ionized, as is commonly ac-
cepted.

Above the 60 closed shell, a typical band calculation
reveals a low-lying cluster of three overlapping narrow
bands, which is the Bloch wave extension of the three
components of the vector wave function e (g) of an iso-
lated C60 ion. These overlapping fermion bands are half
filled in the case of K3C6o. On the other hand, the pseu-
doscalar pairing wave function (1.3) in C60 suggests a
different Bloch wave extension, one that represents the
hopping of such a highly correlated two-particle state in
the crystal. The orthogonality of these correlated two-
particle Bloch wave functions to any product of two one-
particle wave functions in the fermion bands follows from
the original orthogonality condition in a single C60 mole-
cule:

60

g e (g), e+(g), =0,
g=l

where i and j denote the vector components. We call the
Bloch extension of (1.3) the "boson band" (or the pseu-
doscalar band).

The two electrons in the fermion bands have an energy
advantage over the boson on account of the excitation en-
ergy hc and the lowering in kinetic energy; however,
there is a disadvantage to the fermion bands of having a
higher Coulomb energy. The important question con-
cerning the role of bosons versus fermions depends on the
delicate balance between these two opposing factors.
This is examined in Sec. VI. We start with the Coulomb
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energy ( —11 eV per lattice cell) between three electrons
in the fermion bands and compare that with the
configuration of placing two electrons in the boson band
and the remaining one in the fermion bands. We then
take into account the kinetic-energy and van der Waals
energy differences; the latter is important because of the
large polarizability of the C60 negative ion. The final en-

ergy balance between these two configurations is estimat-
ed to be only 0.22 eV, slightly in favor of the fermion
bands. However, considering the highly approximate na-
ture of our calculations and that the final answer is only
about 2% of the initial energy that we begin with, it is
not possible to make any definitive statement. Neverthe-
less, a variety of interesting theoretical possibilities
emerges. It seems likely that there exists a narrow boson
band, which may lie very close to or overlapping with,
the three fermion bands.

The possibility of a close-by low-lying boson band, in
addition to the usual fermion bands, has important conse-
quences for superconductivity. The bosons may undergo
Bose-Einstein condensation. The zero-momentum nature
of the Bose condensate necessarily generates charge fluc-
tuations in the coordinate space; thereby, it increases the
Coulomb energy. In Sec. VII we show that this
Coulomb-energy increase is compensated for, at near dis-
tances, by the monopole-dipole interaction between
neighboring C60 molecules because of their large polariza-
bility. At large distances there is, in addition, the Debye
screening of the Coulomb potential generated by these
charge fluctuations.

In Sec. VIII, through a simplified but explicit field-

theoretic model, we are able to examine the effect of the
Bloch extension of the correlated scalar wave function
(1.4), the parity-doublet partner of the pseudoscalar (1.3).
Except in the somewhat unlikely case that the boson
band is lower in energy than 2 times the bottom energy of
the ferrnion bands, the scalar only provides a resonance
to the electrons in the fermion bands. Such a resonance
can produce an energy gap, as in the BCS theory of su-

perconductivity. While both members of the bosonic
parity doublet can be important to superconductivity,
their roles are different, as will be discussed in Sec. IX.
The experimentally observed pressure variation of the
critical temperature is shown to be consistent with the
model.

All the calculations made in this paper neglect the
effect of levels outside the parity doublet, as an approxi-
mation. Alternatively, Chakravarty, Gelfand, and Kivel-
son calculate an energy balance favorable to pairing by
including all levels, but only perturbatively. As we shall
show in Sec. IVC, this calculation is not quantitatively
reliable because the failure of perturbation theory for the
parity doublet alone causes an error comparable to the
calculated pairing energy. Nevertheless the pairing
mechanism of Ref. 8 does exist in principle.

Our thesis is that the 3 +( T, ) level plays a special role
because of its coupling and near degeneracy with the
3 (T,„) at the Fermi level. Therefore the C«& energy
should be calculated by starting with the mixed states of
(1.3) and (1.4) and treating all levels outside the parity
doublet perturbatively. This last step, which we do not

carry out here, would probably add a significant term to
the pairing energy.

In either case we think that the parity doublets provide
an essential insight into the nature of the paired wave
function in C60, as well as the physics associated with po-
larizability of the C60 negative ion.

In this paper superconductivity is discussed on the
basis of a simplified model Hamiltonian given by (8.8) in
Sec. VIII, in which there is an effective "attractive and
local" four-fermion field interaction term (8.7). Its pres-
ence is due to the lowering of the strong Coulomb energy
in the correlated paired states (1.3) and (1.4) in C60,
which, in turn, can be justified within the parity-doublet
approximation. On the other hand, parity doublets are
rather special to C60, a natural question is to ask how im-

portant are their roles to superconductivity in general.
We believe that, for superconductors with very small
coherence length, the essential common feature probably
lies in the approximate applicability of an effective "at-
tractive and local" interaction term, such as the ones in
(8.7). For material other than C6o, its underlying reason
may have nothing to do with parity doublets. The parity
doublets of C60 simply provide a convenient tool for us to
penetrate the maze of strong interactions.

II. MOLECULAR ORBITS OF C60

A. Icosahedral group

In order to have the necessary tools for our subsequent
analysis, we give a brief discussion of the molecular orbits
of C6p. As will be shown below, these can be expressed in
terms of the regular representation of the proper

icosahedral group 0=
I g I, (2.1)

=3 5+ '
Ro v'5

=1.15 . (2.2)

(The same notation g denotes both the group element as

well as the position of the carbon nucleus. ) Any function

f(g) of these 60 positions g can be expressed in terms of

where g denotes its 60 group elements. Corresponding to
the identity element e, we may take any point e on a unit
sphere with center 0. The application of the finite rota-
tion that associates with g transforms e to g. For e not
lying on any of the symmetry axes, the resulting 60 g are
all different. (A convenient notation is to use the same e
and g to denote the corresponding unit radial vectors of
the sphere, as well as their end points on the sphere. ) For
definiteness, let the unit sphere be the circumsphere of a
regular icosahedron of vertices N, A, , . . . , A5, S. As in

Fig. 1, choose the point e (corresponding to the identity
element e in 9) on the edge A &N, with eN = ,

' A
&
N and-

Oe~~e. Each unit radial vector g intersects a point g on
one of the edges of the icosahedron. The location of each
point g, thus generated, gives the position of a carbon nu-

cleus in the C6o molecule, provided the unit scale of the
O

radius is R —=4.03 A, so that the circumspherical radius
of the C60 molecule is its actual value Ro —=3.5 A, with
the ratio

—1/2
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N

seven I =3 Yi (8,P ) to be identically zero on these 12
icosahedral vertices, leaving a triplet 3. For an explicit
construction, we observe that the geodesic arc between
two nearest-neighboring vertices of an icosahedron is
cos '(I/&5); therefore,

Y3 ~&(8,$) ~(5cos 8—1)sin8e*'~ (2.5)

is zero on all these 12 vertices. Likewise, on these sites,

A2 Ys+s(8, $) Ys ~2(8,$), (2.6)

S
FIG. 1. Set on a unit sphere the 12 vertices of an icosahed-

ron: N, S, A;, and A (i = 1,2, . . . , 5), with NS and A; A the
diameters of the sphere whose center is 0. Each of the 60 dots
e,f„f„f„g,. . . denote the positions of C atoms in C6O. The
three nearest neighbors of e are f, , fz, and f3. The distance
ef2=ef3 is slightly different from ef, . In the molecular-orbit
calculation, e.g., (2.25) and (3.1), these three nearest neighbors
are treated on an equal basis, as an approximation.

from which we can readily form two linear combinations
of these l =3 spherical harmonics that are also zero. In
(2.6) both sides have the azimuthal variation because of
the fivefold symmetry along the north-pole-south-pole
diameter; hence, (2.6) holds in the northern hemisphere,
since, excluding the pole, all the other five icosahedral
vertices are at the same latitude. Its validity in the south-
ern hemisphere then follows from inversion symmetry.
In this way we see that under the icosahedral rotations
the seven Y3 (8,$) functions decompose into a quartet 4
and another triplet 3, different from 3.

Returning to the C6o structure on the unit sphere, we
denote by lg ) a vector (ket vector in Dirac's notation)
with 60 components. Each element g corresponds to a
definite finite rotation of the icosahedral group, which
can be specified by its three Eulerian angles co= (a,P, y ).
Let ld, M, A) be the ket vector whose components are
those of the regular representation (in terms of the irre-
ducible representations d with d=1, 3, 3, 4, and 5). The
transformation matrix relating lg) to ld, M, A) is

' 1/2

&gld, M, A) = (2.7)

the irreducible representations of the icosahedral group
9, which consist of a singlet 1, two triplets 3 and 3, a
quartet 4, and a quintet 5. This gives

60 12+32+ 32+42+ 52 (2.3)

12=1+3+5+3 (2.4)

values. Hence we expect four linear combinations of the

In the literature ' these representations are often re-
ferred to as A, T„T2, G, and H, respectively. Our nota-
tions follow those used in particle physics, with the
dimensionality of the irreducible representation shown
explicitly.

The irreducible representations 1, 3, and 5 can be
readily identified with the usual 1=0 (s wave), 1=1 (p
wave), and 1=2 (d wave) of the spherical harmonics
Y& (8,$), where m = —I, —I+1, . . . , I and 8 and P are
the polar and azimuthal angles, respectively. To derive
the remaining two irreducible representations 3 and 4 we
designate one of the icosahedral vertices as the north pole
N (8=0), as in Fig. 1. Express any function F of 8,$
defined on the 12 vertices of the icosahedron in terms of
the 16 spherical harmonics: l =0, 1, 2, and 3 of
YI (8,$). (Note that 16=1+3+5+7.) On the other
hand, the function F has only

where &gl is the bra vector dual to lg ), N=60 is the
dimensionality of the regular representation, and d is the
dimension of the representation d. For d=1, 3, and 5,
the matrices TM„(a,g, y ) are simply the standard trans-
formation matrices in a rigid body, i.e.,

&My(&, P, y ) =Dip�(rr,13, y ), (2.&)

y &d, M, Alg &&gld', M', A'&=s~d ~~M ~AA (2.9)

and

&g ld, M, A) & d, M, Alg') =5gg',
d, M, A

(2.10)

where 5,b is the Kronecker symbol.
The inversion operator 2 commutes with 9' and

changes

with J=O, 1, and 2 (i.e., d=2J+1). The matrices
DM„(a,13,7') relate the spherical harmonics YJI in the
laboratory frame to the corresponding YJ A in the body
frame. In (2.7), M and A can vary independently over d
values and, for d=1, 3, and 5, from —J to J. Thus, in
accordance with (2.3), each irreducible representation
(characterized by d and M) appears d times in the regular
representation, depending on the value of A. Regarding
(2.7) as a 60 X 60 matrix, we have the unitarity conditions
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g g. (2.11)

Thus each of these irreducible representations TMj, that
appear in (2.7) is also an eigenstate of 2 with an eigenval-
ue P =+1 or —1. The singlet representation 1 is clearly
of even parity. As will be shown later in Sec. III, of the
three 3 representations (i.e. , the three TMA =DMA that
correspond to the three A), two are of P = —1 and one of
P=+1; the same holds for the three 3 representations.
Two of the 4 representations are of P = —1 and the other
two of P=+1. Of the five 5 representations, two are
P = —1 and three P =+ 1.

B. Carbon-60

It is useful to separate the six electron wave functions
in each C atom into three groups: (i) the two Is inner-
core electrons, (ii) the three 2s-2p valence electrons that
link the neighboring carbon atoms in C60, and (iii) the
remaining electron, whose normalized orbital wave func-
tion

y(r —gRO) (2.12)

is composed largely of a 2p orbit centered around the po-
sition vector gRp of the C nucleus with an azimuthal
quantum number m =0 along the radial vector g of the
unit sphere. In the last category, there are 60 such elec-
trons in C6p, 61 in C6p, etc. These electrons are the ones
of importance in our analysis. Let U(r —gRo) be the po-

tential generated by one carbon ion C+ at gRp on one of
these electrons, at r. The total one-particle Hamiltonian
is (in units fi= 1 and mass =—,')

&=—V + g v(r —gRO) . (2.13)

f I7t(r gR—O)I2d3r =1 . (2.15)

In the molecular-orbit approximation, " we assume the
wave function P(r) for C6o to be of the form

g(r) = g C(g)y(r —gRO) . (2.16)

The coefficients C(g) are determined by minimizing the
expectation value E of %:

f g*(rgfg(r)d r
E'= (2. 17)

I Iq(r) I'd'r
C HC

f Ig(r)I d'r

where 1(' is the complex conjugate of p, C is a 60&&1

column matrix of components C(g), C is its Hermitian
conjugate, and H is a 60X60 matrix whose matrix ele-
ments are

Choose y(r —gRO) to satisfy

t
—V + v (r —gR o ) ]y(r —gR o ) =E&g( r —gR 0 ) (2.14)

and

&g'IHIg &
=

—,
' g + g

' fy'(r g'R—o)U(r —
g "Ro)y(r —

g R)odr . (2.18)

C HC =Fp+E&C AC

where C(g) is normalized so that

(2.19)

For a short-range potential v(r —gRo), the additional
tight-binding approximation to the molecular-orbit wave
function reduces to

I

in addition, for g real and (g, g') nearest neighbors, we

may write

e, =fy(r g'Ro—)v(r —gRc)y(r —gRO)d r . (2.23)

In C6p each site, say, e, has three nearest-neighboring

sites, labeled

C C=1, f, , f2, and f3, (2.24)

eo is the diagonal matrix element of H (all diagonal ele-

ments of H are identical),

E, =&g'IHIg &

when (g,g')=nearest neighbors, (2.20)

and

as in Fig. l. (The distance ef2=ef3 is slightly different

from ef „but we shall treat these three nearest neighbors

on an equal basis, as an approximation. ) In terms of the
regular representation Id, M, A &, we have

& d, M, AI& Id', M', A'&

1 for (g,g') =nearest neighbors,= '0 otherwise
(2.21)

= g g &d, M, Alg&&gl& Ig'&&g'Id', M', A'& .

is the reduced interaction Harniltonian. Note that both
cp and c., are considered to be small, since each involves
the overlapping products of either y(r —gRO) or
U(r —gRO) of different neighboring sites. To the same ac-
curacy of smallness, we can approximate the denomina-
tor in (2.17) by C C = 1; therefore,

Because of (2.21) and (2.24), the sum over g' extends only
to g'=gf„with a =1,2, 3. Let co and co& be the Euler
angles associated with g and f and co &

those with the

product gf; we have

7 MA(~sy ) g 7M~(~g )7 ~p(~y )

c =cp+Ep+E]C hC (2.22) Hence, by using (2.7) and (2.9), we obtain
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(d, M, Alh ld', M', &')
3

=~44&MM g TAA(f. }
a=1

(2.25)

to simplify our notation, we write T~N(~I)=T~N(f).
Thus the energy levels of C60 are determined by the ei-
genvalues A, of g, T„A.(f, ). In all cases it turns out that
we need only to diagonalize 2X2 matrices, which can
readily be done analytically. The eigenvalues A, of h are
given in Table I (see especially its caption and the discus-
sion given in the next section). These values are con-
sistent with those already appearing in the literature. ' '

From the resonance energy of benzene, ' we infer that

c&- —1.5 eV (2.26)

e =s(3 ) =0.7566ie&i; (2.27)

the second excited levels 3 + form another triplet, but of
positive parity with an excitation energy

is negative. (There is a fair amount of uncertainty in s,
which may vary from —1.5 to about —2. 5 eV.) From
Table I we see that the lowest-energy level is 1+, then3, . . . , up to 5, which completes the closed shell of
60 electrons. (The superscript 2 denotes the parity. )

Above the 60 closed shell, the first excited states form a
triplet of negative parity, 3,with an excitation energy

the overall shape of v(r —gRo} is less affected. Even
though the values of Eo and s, in (2.19) do not really stay
constant, but vary slowly depending on the molecular or-
bits that are already filled, nevertheless the ordering of
the states and the relative spacing between nearby levels
follow the eigenvalues of the reduced Hamiltonian h,
given by (2.25). The E, value in (2.26) refers to those
states near the 60 closed shell, but only as an estimate.

It is of interest to attempt an (approximate)
identification between the levels in Table I and the spheri-
cal harmonics Yt . We identify the lowest-energy level
1+ with l =0, the second-lowest-energy level 3 with
I =1, and the third-lowest-energy level 5+ with 1=2.
Continuing in the order of increasing energy (i.e., de-
creasing A,}, we identify the next two levels 3 and 4
with I =3 [in accordance with the explanation given in
the paragraph containing (2.4)—(2.6)] and then the levels
4+ and 5+ with 1=4. This simple monotonic relation
between I and A, breaks down near the 60 closed shell for
I =5 and 6. The highest-occupied molecular-orbital
(HOMO) level 5 and the LUMO level 3 both corre-
spond only to parts of I =5, but the LUMO+1 level 3 +

corresponds to part of 1=6 (with the remaining part of
l =5 given by the LUMO+3 level 3 ). In addition, the
LUMO 3 and LUMO+1 3+ levels are nearly degen-
erate, as will be explained in the next section.

e+ =E(3 ) = I~| I
(2.28)

III. PARITY DOUBLETS

This is then followed by a quintet 5 + with an excitation
energy

e(5 +
) =1.9208ls, I, (2.29)

etc. Altogether, there are 120 states, including the spin.
Because carbon has positive electronic aftinity with the
energy of C less than that of C +e by about 1.25 eV,
the C60 ion exists in isolation.

As we gradually fill electrons into these molecular or-
bits, the mean potential "felt" by the successive electrons
will be steadily reduced. Apart from this mean average,

TABLE I. Eigenvalues k of the reduced interaction Hamil-
tonian h, given by (2.21) and (2.25). Each representation d
(with the parity P =+) has 2d levels, including the spin degen-

eracy. These A, are derived analytically. In closed form,
A, = —,'[(3+&5}/2+v (19—&5}/2] and —,'( —3+v'5} for d=3,
A. = —'[(3—&5)/2++(19+&5)/2] and 2( —&3—&5} for

d =3, A. = 1, —2, and —,(
—1+&17) for d =4, and A. = 1,

z(1+&13),and 2( —1+&5) for d=5.

A. Vector and axial vector near degeneracy

We first examine the diagonalization of the 3 X 3 ma-
trix

3 3

X TAA(&. }= X D~A «.» (3.1)

From (2.27) and (2.28), we see that the first two low-

lying excitations of C60, 3 and 3, are nearly degen-
erate. Each is a triplet, consisting of 2X3 degenerate
states, including spin. Together, 3 and 3 form six
pairs of parity doublets. As we shall show, this remark-
able feature persists throughout C60,C60, . . . , C60,
even after we take into account the Coulomb energy be-
tween these n electrons (at least for n not too large). As
mentioned in the Introduction, the existence of parity
doublets makes it possible for us to derive analytic ex-
pressions for the essential parts of various strong-
interaction effects; this can be achieved by restricting the
Hilbert space to one consisting only of the nearby parity
doublets. The contributions due to the remaining far-
away levels can then be taken into account either numeri-
cally or perturbatively.

Representation Representation a=1 a=1

1 +

3
5+
3
4
4+,5+
5

3.0000
2.7566
2.3028
1 ~ 8202
1.5615
1.0000
0.6180

3
3+
5 +

3
5
4+
4
3 +

—0.1386
—0.3820
—1.3028
—1.4380
—1.6180
—2.0000
—2.5616
—2.6180

which, as given by (2.25), forms the reduced Hamiltonian
h for d=3 [hence 2=1 in accordance with (2.8)]; its
eigenvectors determine these parity doublets. In Fig. 1

take ON to be the z axis (in the "laboratory frame"). Let
the edge A, N of the icosahedron be on the (x,z) plane.
The point e is on A &N with eiiOe as before. The unit ra-
dial vectors f„ f2, and f~ are associated with the three
nearest neighbors f, of e, with f, iiOf, . Let m be the



14 156 R. FRIEDBERG, T. D. LEE, AND H. C. REN

midpoint of A1N. A rotation of a ~ radian along Om

takes e to f, . Since
and

eo(g) ~eo(g, ) = —eo(g) (3.10a)

10:—/m ON =—cos
2

the corresponding matrix D AA. {f, ) is

—cos20 0 sin 20

(3.2) e (g) e (gt)= —e (g);
both are vectors. On the other hand,

e+(g)~e+(gi)=eo(gt)Xe (gt)=+e+(g)

(3.10b)

0 0
2 cos(2m. /5 ) 0

0 2

(3.4)

The eigenvalues of (3.3)+(3.4) are
' 1/2

1 3+&5 19—&5
0

=2.7566,

1 3+&5
2 2

' 1/2
19—&5 = —0.1386, (3.5)

and

2'
A, + =2 cos

5
=1—1=—

(
—3+&5)=—0.3820 .

2

The corresponding eigenvectors are

e, =

1
2 v'5
0
2

5

2
1 4

2 — +
v'5 5

—1/2

(3.6)

for a =0, —,and

e+=
0
1 =eDXe
0

(3.7)

We note that e0 is very close to the radial vector e, within

0 —1 0
sin20 0 cos28

The points f2 and f
&

can be reached from e through the
z-axis rotations of 2m/5 and —2m/5. Thus the sum
D „'A. (f~ )+D AA (f& ) gives the matrix

2 cos(2m /5)
0

which is an axial vector. The levels with the eigenvalue
A.D lie deep within the 60 closed shell of C60. The orbital
wave functions of the first excited levels 3 are the three
components of e (g); those of the second excited levels
3 + are the components of e+(g). As can be seen from
(3.5), the eigenvalues A, and k+ are quite close to each
other.

If we neglect the —1' angle, given by (3.8), the wave
function eo(g) —=g. In contrast, the wave function e+(g)
fluctuates a great deal as g varies. For example, accord-
ing to (3.2) and (3.3), the wave function e (f, ) is almost
antiparallel to e (e), even though f& and e are nearest
neighbors. Since e+(g)=eo(g) Xe (g), the same applies
to the 3 + wave function. In (2.22), e, C hC serves as the
hopping matrix; hence, it is expected that the eigenvalue
E, A,o associated with the smooth wave function eo(g)
should be the lowest. Because the magnitudes of varia-
tions in e+(g) and e (g) from site to site are similar,
their eigenvalues c1A.+ and c, ,k become nearly degen-
erate.

Geometrically, this near degeneracy may also be un-
derstood as follows: From (3.2) the angle
8= —,'cos '(1/&5) is about 31.7'. In the "planar approx-
imation"

cos8= 0.8507 =—1, (3.12)

we may regard Om ~~ON, which is the z axis. Hence the m

rotation along Om commutes with the +2m/5 z axis rota-
tion, and the sum (3.3)+(3.4) becomes a diagonal matrix
with its eigenvalue 3 appearing once (corresponding to

A o) and its other eigenvalue 2 cos(2m /5 )—1 = —0.3820
appearing twice (corresponding to A, and A, +); the latter
gives the parity doublet.

For small 8 the oF-diagonal elements in (3.3) are linear
in 8; however, for the eigenvalues, the correction to the
doublet approximation is only quadratic. Neglecting
O(8 ), we have

an angle-1'; (3.8)
2[1—cos(2~/5)] 2

2 —cos(2m. /5 )

likewise, e is almost parallel to NA1. These three
orthonormal unit vectors form the "body-frame" basis
vectors at e.

From (3.6) and (3.7), by a rigid-body rotation D~A (g ),
we can obtain the corresponding basis vectors at g:

277=2 cos
5

2[1—cos(2m. /5) ] 2

2 —cos(2'/5 )

(3.13)

eo(g), e (g), and e+(g), (3.9) 2&=2 cos+
5

(3.14)

each a triplet 3. Together, they are the three triplets in
the regular representation (2.7). Under the inversion,
e~ —e; in Fig. 1, the icosahedral vertices N ~S,

A ', , and consequently NA, SA ', = —NA, . The
same inversion brings golgi = —g, from which we find

With the quadratic corrections included [for
0= —,

' cos '{1/+5) ], Ao ——2.7496 and A, = —0. 1316,
which are quite close to their exact values given by (3.5).
The A, + is already the exact value.
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For the diagonalization of h for other irreducible rep-
resentations, we can follow the same steps by using their
explicit wave functions (given in Sec. II). This leads to
Table I.

B. Polarizability

e2R2
RV (3.23)

The polarizability of a conducting sphere of radius Ro

bility of C60 is a; for i =z, the polarizability is zero.
Averaging over these three 3 orbital states, we have

The orbital part of the ground-state wave function in

C60 (of the electron outside the 60 closed shell) is

1s

a, =4mR 0, (3.24)

e (g), ,
20

(3.15} from which we obtain the ratio

where i =x, y, and z denotes the vector component and
the factor I/P20 is the normalization constant &d /N in
(2.7), with d =3 and iV=60. Likewise, that of its parity
doublet is

(3.16)

The near degeneracy of 3 and 3 + makes C60 highly po-
larizable. To calculate the polarizability, it is important
to isolate the effect of transitions between these two trip-
lets.

In a constant electric field Ellz axis, the interaction (for
E)0) is

(3.25)
a, 3 4~R0

For Ro =—3.5 A and e, = —1.5 eV (therefore b,e-0.37
eV), the ratio a,„/a, is -3.6, which is very large. Of
course, the estimate (2.26) for e, is rather crude. (But
even for c,——3 eV, i.e., Ac-0. 74 eV, the corresponding
ratio a,„/u, is still quite large, —1.8.) We note that, in
the C6O crystal, the average density p is -=1/16R03; the
Clausius-Mossotti limit —,'pa0=1 corresponds to a polari-
zability a0=48R o which is rather close to the a,„ofC60
if hc is -0.37 eV.

—eEz .

To 0(e ) the second-order matrix element is

2 2

H,', = —' g &3,i'lz13+, j&&3+,jlz13,i &,
E

(3.17)

(3.18)

C. Strong electric field

For a single C60 ion in a strong electric field Ellz axis,
although 13*,z& remains an eigenfunction, the other
states 13 *,x & and 13 *,y & are highly perturbed. Within
the reduced Hilbert space defined by these states, one can
readily diagonalize the Hamiltonian and find its eigenval-
ues to be

where, on account of (2.27) and (2.28),

b,e:—s+ —e =0.24341e, I
(3.19)

—,'(s++e )6—,'[(e+ —e ) +e R0E j' (3.26)

is the energy difference between 3 + and 3 . Froin (3.15)
and (3.16), it follows that

( 3 +,jlz13,i &
=

—,', g e+(g),z(g }e (g ), ,

which is proportional to sj„[=+ 1 (or —1) for jzi =even
(or odd) permutation of xyz and zero otherwise]. On ac-
count of (3.8), if we neglect the 1' difference between
eo(g)=e (g) Xe+(g) and g, we find

(3+,jlz 13,i & =-,'Roe,„, (3.20)

H =H = ——'aE2
XX gJP

(3.21a)

where Ro is the radius of the C60 ion. The matrix H,',. is
diagonal, with

When eROE(&hc. , the lower sign gives c —
—,'aE for

the ground-state energy of C60. When eRDE&)hc, the
ground-state energy becomes —,'(e++e }——,'eROE, which

corresponds to a limiting polarization —,eRo, independent
of E.

IV. C6Q ION

A. Wave functions

For a single C60 ion, we consider a system of two elec-
trons outside the 60 closed shell. The total spin 0. can be
0 or 1. In terms of 3 and 3 +, the total angular momen-
tum l can be 0, 1, or 2; the corresponding orbital wave
function for the particles at g and g' can be written as

and (g,g'll, m;p, p'& =
—,', g C(l, m ),,'e (g),.e,(g'),

l, l

(4.1)

H„=O,
where

(3.21b)

e Roa=—
2

(3.22)

with e /4m =—1/137. Thus, for i =x and y, the polariza-
6... ,.(1}=g C(l, m ),*,'C(l, m ) ' . (4.2)

where the parity indices p and p' can be + or —,m is the
z component of the total angular momentum, C(l, m ),, ,

are coefficients, and as in (3.15) and (3.16), i,i ' denote the
components of e+(g}. It is useful to introduce
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For a normalized wave function (4.1), we have

b...';(I )5; 5,", =21+ 1 .

It can be readily verified that, for 1=0, 1, and 2,

TABLE II. Sums So and S, , are defined by (4.21) and

(4.19). The exact values ofS, , are calculated by using the
~&~2 ~i~Z

e~(g) given by (3.6) and (3.7). Their continuum approximation
values are given by (4.41).

and

b, ,' „'(0)= —,
' 5;; 5.. .

b, ;; „'(1)=,'(5;—,5; 5;—1. 5,; ),

The total parity of the wave function is

P=pp'

b, ;; „(2)=—,'(5;,5; '+5;, 5); )
—

—,'5;;5,'.

(4.3)

(4.4)

(4.5)

(4.6)

So
S
S++,++
S
S-+,-+
S-+,+-
2 (S +S++ ++ )

—S
S + ++S

Exact

59.561

19.197
19.328
5.4147

21.946
—8.1567

13.848
13.789

Continuum approximation

—'(60+ 59)=59.50

22
22
10
22

—10

12
12

Next, we include the dependence on the total spin cr and
write the total wave function as the product

&g g'll m p p'&X. (4.7)
sytnmetrized function given by (4.8), and

where y =2 'i (l'1' —J, 1') for 0 =0 and y =1'1' for
cr =0., =1, etc.

For P =+ (i.e., p =p'=+ or —), introduce

+'l+, (m}=2 ' ((g,g'il, m;+, + )

1 1

, sym and sg, asym (4.13)

B. Energy levels

refer to the 1=0, o =0, P=+ symmetrized and antisyrn-
rnetrized functions.

and

+ (g,g'il, m; —,—&)y. (4.8)
The Coulomb energy between two electrons located at

g and g' can be written as

+'l+ „z (m)=2 ((g,g'il, m;+, + )

—(g,g'il, m; —,—&)y (4.9)

The subscripts "syrn" and "asyrn" refer to the symmetry
property under the changes p~ —p and p'~ —p'. Be-
cause of Fermi statistics, 1+cd must be even. Altogether
there are 30=2X(1+3 +5) such states. For P= —(i.e.,
p Ap'), introduce

Uo for g'=g,
I'(g, g') = e' 1

for g'Ag,
4m.RO ig

' —gi

(4.14)

where Uo is the Coulomb energy when the two electrons
are in the same atomic orbit (2.12) and, as before,
Ro —=3.5 A is the radius of the C60 molecule. We estimate

+'l, (m)=2 ' ((g,g'il, m' —+ ) Uo —10—20 eV . (4.15)

+ (g, g'~l, m;+, —) )y (4.10)

and

+'l „(m)—=2 ' ((g,g'il, m; —,+ )

—(g,g'il, m;+, —) )y . (4.11)

Here cr can be 0 or 1, for any 1 Ibut with 1+a. even in
(4.10) and odd in (4.11}]. Altogether, there are
36=4X(1+3+5)of these states. It is convenient, on the
left sides of (4.8)—(4. 11), to drop m and to replace l by

& l, m', p~2I Vll, m;pip2 &

(pIp21 I'(1)lpip2) . (4.16}

By using (4.1)—(4.5) and the orthonortnality relation

(If we use a hydrogenlike wave function with an effective
nuclear charge Z,a

= 3.25, then Uo =—17.3 eV.) The
Coulomb interaction commutes with the angular momen-
tum and the parity operators. Therefore I, m, and
P =p,p2=p'gz are good quantum numbers. The matrix
elements of Vcan be written as

s, p, and d, (4.12)
—,', pe (g);e (g); =5~~5;;, (4.17}

for 1=0, 1, and 2, as in the standard spectroscopic nota-
tion. Thus, for example, p+, denotes the 1=1, o. =1

I

we find, for 1 =0,

2

(ptpz~ V(0)ip, pz)= U05 5, , + S
20 ~ 1~2 4m.R ~1~2'~ 1~2

(4.18)
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whereS, , =(R/Ro) g [e—
g( '[e (e) e (g)][e, (e).e, (g)j,

gee

R /Ro is given by (2.2), and the sum extends over all gee. Likewise, for 1 = 1,

(4.19)

1 e
(4.20)

where

S =(R/R ) g ie —gi '=59.56
gee

and, for l =2,

(4.21}

3 1 1 1

e 1 1 1+ —So5,5,+—S, , ——S4' 2 &1~1 I'2J'2 2 ~1~2'& 1~2 3 I'lI'2. I' 1&2
(4.22)

S, , can be calculated by using e+(g) given by (3.6) and (3.7); the results are listed in Table II.
&1~2 '& 1~2

For l =0, o.=0, and I' =+, we have two states

(p,p')=( —,—) and (+,+) . (4.23)

Their energies, in the absence of the Coulomb interaction, are 2c, and 2c,+. Including the Coulomb energy and re-
stricting the Hilbert space to one defined by the two states in (4.23), we can diagonalize the 2X2 Hamiltonian matrix.
Its eigenvalues are

1
2

E~ =E~+e + 2Uo+ (S +S++ ++ )

1
2

Uo+ S
4m.R

2 2 '1/2
1 e+ e s++ (S Sy+ ++)20 4mR

(4.24)

If we neglect the difference c. —c.+, then in accordance
with (4.13) the corresponding wave functions are 's+,„

pper sign and 's+ „„ for the lower sign. (I at
on, for notational convenience, these eigenstates will be
simply designated as 's+,„m and 's+»„.)

For l =0, cr =0, but I' = —,there is only one 2e wave
function:

's,„=2 '~ ((g,g'~0, 0; —,+ )

and

e (g).e+(g')+e+(g) e (g')=0 (4.28a)

TABLE III. Energy levels of C60 . The numbers listed corre-
spond to he =0.37 eV and U0 =20 eV.

violation of Hund's rule. This is because, when g =g', we
have

Its energy is

+&g,g lo, o;+, —&)y, . (4.25)

Wave function Multiplicity
Exact energy

(eV)
Continuum

approximation

1 e
Eo =E++6 +

20 4m.R
(S-+ —++S—+ +- } . (4.26)

In accordance with (2.2) and (2.26), setting R =4.03 A,
e, = —1.5 eV (i.e., c. =1.135 eV and a+=1.5 eV), and
Uo =20 eV, we find E =5.0698 eV and Eo =5.0974 eV,
giving a parity doublet, much closer than c and c,+.

These parity-doublet states

1s+,asym and s, sym (4.27}

are the lowest-energy levels of C . Both have o. =0, in

1
S+,asym

1S—,sym
3
P+, asym
31—,sym
3Ad —,asym
1d+, sym
3
P+, sym

1d —,sym
1
P —,sym

d+, asym
3S—asym
1S+,sym

1

1

9
9

15
5
9
5
3
5
3
1

5.071
5.096
5.420
5.509
5.636
5.661
7.044
7.398
7.476
7.476
8.009
9.076

4.777
4.777
5.134
5.134
5.348
5.548
6.919
7.733
7.919
7.733
8.347

10.347
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e (g) e (g') —e+(g) e+(g')=0; (4.28b)

by having the two electrons thus correlated, it is possible
for these wave functions, though symmetric in g and g',
to avoid the very large Coulomb repulsion at close dis-
tances.

The same method can be readily extended to the excit-
ed levels of C6p ~ The results are listed in Table III.

C. Comments on the perturbation series in Uo

Recently, Chakravarty, Gelfand, and Kivelson pro-
posed an interesting pairing mechanism based on the per-
turbation formula in Up. Our model can provide some
insight into the reliability of such a method. In their ap-
proach, all off-site (gag') Coulomb interactions are
neglected; hence, S, , =0. The ground-state energy

P )P2~P )P2

(4.24) for C6O becomes

Uo
E =6++6 +

20
'2

Uo
+(E —E )

20

1/2

(4.29)

U0 +
20

2 1/2

+(s+ —c )
0

(4.30)

which is always negative. On the other hand, to 0( Uo ),
the perturbation expansion is

The corresponding energy difference between C60+C60
and C6p +C6p in our model is

2E) —E2 =2c, —E

Uo 1 1 Uo

8OO O. 25
& 0.005

accounting for at least —,
' of the coeScient 0.0154 in

(4.33). This does raise the question of whether or not
such a second-order perturbation formula can be mean-
ingfully applied to large Up.

D. Continuum approximation

From Table II we see that the near equality

S =-S++

holds to within 0.7% and

(4.34)

which is ~ 1%. Neglecting that, (4.35) leads to
E —=Eo. ) The near identities (4.34) and (4.35) can be un-

derstood by applying the following continuum approxi-
mation.

We approximate e (g) and e+(g) of (3.6) and (3.7) sim-

ply by the first two column matrices (i.e., 6= 1 and 2) of
D~A(a, p, y) with a,p, y as the Euler angles associated
with g. In terms of the unit basis vectors x, y, and z in
the laboratory frame, we write

—,'(S +S++ ++ }—S +

=—S ~ ++S + + (4.35)

to within 0.5%. These two near equalities and the near
degeneracy of e, + and e (in C6O} give rise to the parity
doublets in C6c. (Note that with (4.34) the relevant
small parameter in (4.24} is the ratio

T

1 e

20 0 4 g )++

2E —E =-—
1 2

it becomes positive for

Uo Uo+
20 2(c+ —E ) 20

(4.31)
e (g) =x(cosp cosa cosy —sina siny )

+y(cosp sina cosy+cosa siny )

—z sinp cosy (4.36a)

Up

20
& 2(e+ —E ) (4.32)

and is misleading. If, as in (2.26), E
&

——l. 5 eV,
c+ —c -0.37 eV, then the second-order perturbation
gives unreliable results for Uo & 15 eV.

Chakravarty, Gelfand, and Kivelson give for 2E, —E2,
in place of (4.31),

e+(g) = —x(cosp cosa siny+sina cosy )

—y(cospsina siny —cosa cosy )

+z sinp siny,

with the integral

(4.36b)

Up U2
+0.0154

20 t

f sinPdP f da f "dy =8m

(4 33) replacing the sum over either

(4.37)

where t is =—2 —3 eV (and for the case when their parame-
ter x is set to zero). Their calculation includes the effect
of all levels, but only up to Uo, whereas our formula
(4.30) is valid to all orders of Uo, but is derived on the
basis of the parity-doublet approximation. Thus a direct
comparison is difficult. However, since the ratio t /( —e

&
)

is ) 1, one sees that from (4.31} the parity doublet con-
tributes in the second-order perturbation

g 1=60 (4.38a)

or

g 1=59 .
gee

(4.38b)

This ambiguity makes us approximate the exact
So=59.56 by
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So= —(60+59)f sinPdPdady 2sin—1 1

2 87T 2

and

S ++= —S ++ =10, (4.41b)

=59.50,
in which we take e=z,

g =e (g) X e+(g)

=x sinp cosa+ y sinp sina+ z cosp,

(4.39)

(4.40}

S =S++ ++ =S + + =22 (4.41a}

and therefore
~
e —

g ~

=2 sin(p/2). (In addition, we
neglect the small difference between the C6o radius Rp
and the circumspherical radius R of the icosahedron in
Fig. 1.)

For simplicity, we use the measure (4.37) to replace the
sum gs1=60 in the following. Setting e (e)=x and
e+(e) =y, we derive the following continuum approxima-
tions for S

»&z»»z

which account for (4.34) and (4.35). Comparisons with
the exact values are given in Table II. As mentioned in
Sec. III A, e+(g) can vary a great deal from g to neigh-
boring g'. In the continuum approximation, the y depen-
dence in (4.36) reflects this fluctuation. [The exactS, , satisfy (4.34) and (4.35) much more closely than

P jP2 P (Pp

one might expect from the rough accuracy of the contin-
uum approximation; this is because (4.34) and (4.35) are
also true in the "planar approximation, " in which each
g=e (g) Xe+(g ) is taken to be equal to e. These two ap-
proximations complement each other for short- and
long-range interactions. ]

In the following we apply only the continuum approxi-
mation, but together with the approximate equality
c+=F; this leads to the energy for the singlet, 1=0,
P=+ level,

1 e 1
+asm ( ———— ++++} ——++20 4~R 2

(4.42)

and that for the singlet, 1=0,P = —level,

1 e

where

(4.43)

ty doublets with energy

3Uo 63 e

100 50 47TR

then followed by s asym of energy

2E+ 8 e

5 47TR

(4.50)

(4.51)

E=—,'(e++e ) . (4.44)

These two energies are the same on account of (4.41).
The next levels are p+ „„m and p, „m with the same

energy

and by 's+,„m of energy

Up 8

10 5 477R
(4.52)

27 e
10 477R

followed by d asym of energy

19 e

25 477R

(4.45)

(4.46)

Table III compares these approximate values with the ex-
act energies.

For R =4 A, e /4mR is —=3.6 eV. We expect Uo to be
not larger than 20 eV; in that case, these energies are
dominated by the off-site Coulomb interaction (gag') in
(4.14).

and then by 'd+»m of energy

o 19 eU 2

100 25 47TR

by p+ s m of energy

26 e
5 47TR

and by p —asym of energy

U 2o 6 e
20 5 47TR

(4.47)

(4.48)

(4.49}

After these, 'd+ „„and 'd, „ form another set of pari-

V. MADELUNG ENERGY

In the preceding sections, we examined the physical
properties of C6p and C6o in isolation. However, our
main interest is to study the K„C6p crystal. In this sec-
tion we turn to the question whether all K atoms are pos-
itively ionized.

Take K3C6o. The C6p molecules form a face-centered-
cubic lattice. ' Its Wigner-Seitz (or Voronoi) cell is a
rhombic dodecahedron, one that has 12 identical faces,
each a parallelogram with four equal edges (altogether 24
edges). The center of the dodecahedron is C60, and each
of its 14 vertices is occupied by one K atom. Six of the K
vertices are at a distance
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1l =7-1 A (5.1)

3e
E~(K3C60)= ( —1+2m.),M 3 60 (5.2)

1 +, 1 —
(
—)

' 'coshmm

cosh mm' sinh mm
1 2 1 2

from C60; these may be called "octahedral vertices, " since
by themselves they form a regular octahedron. The
remaining eight K vertices are all at (&3/4)1=-6. 15 A
from C60. Each of the six octahedral vertices is shared by
six C60 molecules and each of the remaining eight by four
C60 molecules, making a total of three K atoms for each
C60 molecule.

The Madelung energy EM of K3+C60 per each C60 mol-
ecule can readily be calculated (see the Appendix). The
result is

lower) Madelung energy. This may be the reason why
neither K&C60 nor K2C60 has yet shown a clear crystal
structure.

Another interesting question is to examine the change
in Madelung energy due to charge fluctuations. Decom-
pose the face-centered-cubic lattice of C60 into alternate
even and odd layers of two-dimensional d Xd square lat-
tices, with d= 1/v'2. Let the z axis be perpendicular to
these layers. The lattice sites on the even layers are locat-
ed at (x,y ) =(n id, n2d ) and those on the odd layers at
((n, + —,')d, (n2+ —,')d), with n, and n2 integers. Along
the z axis, the separation between two neighboring even
and odd layers is l/2. Consider a charge fluctuation in
which every C60 molecule on the even layers carries a
fluctuation charge +q and on the odd layers —q. Then,
in addition to the average Madelung energy calculated
before, there is a fluctuation Madelung energy FM per
C60:

2

Etir(K&C60) = —22. 12 -=—22. 41 eV .
4~l

For an isolated K atom, the ionization energy is

(5.4)

(5.3)

where m =(m, +m2)', m'=[(m, +—,') +(mi
+ —,') ]', the sums g and g' are both over all

1 2 1 2

integral values of m, and m2, except m, =m2=0 is ex-
cluded in g'; numerically,

1 2

2

F q
4m. &21

4m + —+cv'2

where

c=
m m slnh m.m

1 2

e
—mm

m sinhmm

—@2+m
( 1) 1 2+'

m sinh&2n. m

(5.9)

E(K++e)—E(K )=4.34 eV

and, for a C atom,

(5.5) =0.3730 .

Numerically,

(5.10)

E(C ) E(C +e)—=——1.25 eV . (5.6)

Since the sum (5.4)+3[(5.5)+(5.6)] is —13.14 eV, we ex-
pect all the K atoms in K,C60 to be ionized. [Besides
(5.4)—(5.6), there are other energies, such as the mutual
Coulomb energy between the three e, their kinetic energy,
etc. , as will be considered in the next section; however,
the very large Madelung energy remains the dominant
factor. ]

An upper bound on the Madelung energy of K&C6p or
K2C60 can be derived by placing the K+ ions on all the
octahedral vertices for K&C60, but only on the nonoc-
tahedral vertices for K2C60. We find that, Per C60 mole-
cule, the upper bound for K~+C60 is

FM —=—1.127 (0 .
4ml

(5.11)

VI. FERMIONS VS BOSONS

Setting I—= 14.2 A and q=e, we find FM—= —1.14 eV.
Thus the Madelung energy favors charge fluctuations'
between neighboring C60 layers, similar to Cu02 layers in
Y 1:2:3and Tl 2:2:2:3.

Of course, such charge fluctuations will raise the
Coulomb energy within each Wigner-Seitz cell; in addi-
tion, because these are highly correlated fluctuations,
there would be an increase in kinetic energy. These in-
creases are partly offset by the negative Madelung energy.

E~(K,C«&) ~ —3.54 eV, (5.7)
A. Pairing mechanism

which is lower than the sum (5.5)+(5.6) by only —0.46
eV, indicating perhaps that the K atoms are also ionized.
The corresponding upper bound for the Madelung energy
of K2 C6p is

E~(K2C«) ~ —11.79 eV, (5.8)

which is much lower than 2 times (5.5)+(5.6), giving the
conclusion that all K atoms are ionized.

Unlike K3C6p the K sites in K,C6p and K2C60 can easi-
ly be perturbed. By varying these K sites, one can reach
many other configurations with comparably low (or

ik.R—ge 'g(r —R, ) . (6.1)

The sum goes over all lattice-site positions R, of C60, A'

is the total number of lattice sites, and 1(j(r—R, ) is the

Above the 60 closed shell, a typical band calculation'
for K„C6p reveals a low-lying cluster of three overlapping
narrow bands, which is the Bloch wave extension of the
three 3 orbital levels of an isolated C6p. In the tight-
binding limit, the corresponding one-particle Bloch wave
function of wave number vector k can be written as
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molecular-orbit wave function (2.16):

f(r —R, )= g C,.(k)(g~3, i )y(r g—RO R—,}, (6.2}
g, l

where (g~3,i ) =e (g);IV'20 is given by (3.15) and
y(r —gRO —R, ) is the same function in (2.12}. The vec-
tor k breaks the threefold degeneracy of 3 (in an isolat-
ed C6o molecule); the coefficients C, (k), with i =x,y, z,
are determined by minimizing the energy.

Above this cluster of three narrow bands (in the order
of energy excitations), there is a second cluster of three

I

overlapping narrow bands, corresponding to the Bloch
wave extension of the three 3 + levels. These two clusters
are separated by an energy gap —=hs=c+ —c . Label
the first cluster the "3 band" and the second the "3+
band. " In such a band calculation, for K„C6p with n ~ 6,
the ground-state electrons (not counting the core ones)
are all in the 3 band.

Instead of the one-particle Bloch wave function (6.1),
there is a different possibility. We may consider the
Bloch extension of a correlated two-particle function at
positions r and r ':

a

' g (g, g'~ 's,„)y(r—IRO —R, )y(r ' —g 'Ro —R, ), (6.3}

where (g,g'~'s, „)is the right-hand side of (4.25). In
terms of e+(g ) given by (3.6) and (3.7), we have

&g,g'I's,
y &

20 6
[e (g) e+(g')+e+(g} e (g')]go (6.4a)

and

K=-0.4 eV . (6.7)

The sum Ac, +2E -=1.17 eV is in favor of the two e in the
3 band over the boson band. As we sha11 see, the
difference in their Coulomb energies gives a preference in
the other direction.

each electron due to the hopping degrees of freedom of
the electrons. From the band calculation, ' for one e,

go= —( 1 1'—1 l')1

v'2 (6.4b) B. Coulomb energy between uncorrelated 3 electrons

Because

g e (g);e+(g), =0, (6.5)

4c=c+ —c =-0.37 eV, (6.6)

given by (2.26)—(2.28), for e&=- —1.5 eV. The energy
difference E between I and the bottom of the 3 band
gives an estimate of the lowering of the kinetic energy of

this correlated two-particle wave function (6.3) is orthogo-
nal to any product of two one-particle wave functions in
the 3 band. In the following we call the band con-
structed out of (6.3) the "boson band" and the correlated
two-electron wave function 's,„a"boson, "which is a
pseudoscalar. The small hopping transition amplitude of
bosons makes the boson band much narrower than the3, or 3 +, band. (The boson band studied in this section
is the "pseudoscalar band. " Note that had we used the
scalar 's+ „„,we would not have the orthogonality rela-
tion with the 3 band; whether such a "scalar band" can
exist or not will be discussed in Sec. VIII.)

Two electrons in the 3 band have an energy advan-
tage over the boson on account of the excitation energy
Ac =c+ —c and the lowering in kinetic energy; howev-
er, there is a disadvantage to the 3 band by having a
higher Coulomb energy. The important question con-
cerning the roles of bosons versus fermions depends on
the delicate balance between these opposing factors.

At the symmetry point I (i.e., k=0} in the band calcu-
lation, the three 3 bands become degenerate and the
same holds for the three 3 + bands; the energy separation
between the 3 and 3+ bands at I, obtained by Xu,
Huang, and Ching, ' is quite near the value

In the following we will give only model calculations
which (we hope) may exhibit qualitatively the essential
features of the physical situation. We separate the
Coulomb-energy problem into two general categories: (i)
the energy within one Wigner-Seitz cell (but excluding
that between K„+ and C&o ) and (ii) the rest (including the
Madelung energy, already calculated in Sec. V). In this
section we shall only examine (i). For the electrons in the
3 band, we make the approximation that their
Coulomb energy in case (i) corresponds to that between
uncorrelated 3 electrons in the same C6p molecule.

We recall that in a single C6p molecule, including the
spin, there are altogether 2X3 states in 3 . For two e,
both in 3, there are six states if the total spin cr =0 and
nine states if 0.=1. Assume these two electrons to be un-
correlated; i.e., they can be in any of these 15=6+9
states with an equal probability. By using (4. 18)—(4.22}
and setting pl =p2 =p', =p2 = —,we find that the aver-

age Coulomb energy (4.14) between such a pair of elec-
trons is

1 e
(6.8}

s(ne )c,„,= ,'n(n —1)s~„,— (6.9)

Next, we consider a system of one "boson" and m un-
correlated 3 electrons, all confined to the same C6p mol-
ecule; i.e., the system has n =2+m electrons with iwo
electrons in 's,„and the other m uncorrelated 3

For n such uncorrelated electrons (but in a completely
antisymmetrized wave function), the corresponding aver-
age Coulomb energy is, for n ~ 6,
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electrons. [We first write down such a product wave
function and then sum over all its permutations P and
multiply each term by ( —) .] The resulting average
Coulomb energy is

where, on account of (4.26),

1 e
( Eb }Coul 20 47TR

(S-+ -++S-++-) (6.11)

E(b+me)c „i=E(b)co„i+2m''„,

+ —,'m(m —1)E „, , (6.10)
I

denotes the Coulomb energy between the 2e in the boson,
s „,is given by (6.8), and

Uo+ 2SO ——(S +S +++S + ++S + + ) (6.12)

is —,
' times the Coulomb energy between one of the m uncorrelated e and the boson. From Table II and because of (4.34)

and (4.35), we see that the difference

1 e
pair pair 00 4 R

(S S ++ S + + S + ~ )

is nearly zero; the equality

I
~pair ~pair

holds to within 0.1%. Therefore, for n =2+ m,

E("e }coui E(b + inc }coui=E(2e )coui e("}coui

(6.13)

(6.14)

1 e
Uo+ [2SO S 5(S + ++S + + )] (6.15}

deco i—=E(2e}co i s(b)co i

Uo

100
+1.11 eV, (6.16)

0

independent of m. Take the C60 radius Ro=—3.5 A; this
difference is

with the subscripts m, d, and q denoting monopole, di-

pole, and quadrupole. The monopole-monopole term
V is already included in the previous Madelung energy
calculation; the monopole-dipole term V d and the
monopole-quadrupole term V are zero in first-order
perturbation because of the cubic symmetry of the lattice.
The dipole-dipole interaction is

which, for Uo —10—20 eV, is larger than

he+2K -=1.17 eV, (6.17}
2

Vdd= QR, b [R,br, r&
—3(R,b r, )(R,b rb)],

Sm, b

given by (6.6) and (6.7). Thus, as expected, the Coulomb
energy within a Wigner-Seitz cell favors the boson band
over the 3 band.

C. van der Waals energy

p, =R, +r, .

Expand the Coulomb energy

(6.18)

Vc ~=Coul 8 a, b Pab

into a power series in r, (where p,&
=

~ p, —
pb ~

and the
sum extends over all a and b independently, with aWb):

Vco ] V + V d + V
q
+ Vdd + (6.19)

The large polarizability of the C6O negative ion
enhances the van der Waals energy.

Consider first K&+C60, and assume that each Wigner-
Seitz cell (say the ath cell) contains one valence electron
at p„whose distance from the lattice-site position R, is

Iq, 1.e.)

(6.20}

where R,b =R, —Rb. The second-order perturbation of
Vdd gives the van der Waals energy E„. (The correspond-
ing second-order effects of V d and V are unimportant
because the off-diagonal matrix elements of the monopole
connect 3 —only to excited states of the same quantum
number; these have to lie beyond the molecular orbit
spectrum of a single C60 molecule. )

Since we are interested in the energy of the 3 band
relative to the boson band, the van der Waals energy be-
tween the core electrons' of one C6o molecule and the
core electrons of another C6O molecule is not relevant;
that between one 3 and the core electrons of a C6O mol-

ecule turns out to be rather small and can therefore be
neglected. Because of the near degeneracy of the parity
doublets, we consider only the transitions from two initial
3 electrons (each on a different C60 molecule) to two 3 +

electrons and then back to the initial state, as shown in

Fig. 2. All other diagrams are neglected. By using (3.20)
and averaging all such initial states, we derive the van der
Waals energy per C60 molecule in K&+C6O..
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ea
)& )i eb and

E„(be ) =——0.045 eV . (6.26b)

)i
ea

)i
eb

Combining these values with (6.16) and (6.17), we find

that for K3C6O the overall energy balance is

5e«„,+E„(3e ) E—„(be ) —he —2J
Uo —0.42 eV, (6.27)
100

which is —0.22 eV if Uo is taken to be —=20 eV, slightly
in favor of the 3 band. Considering the very approxi-
mate nature of our estimates and that the balance (6.27) is

only about 2% of the initial energy (6.9),

FIG. 2. Diagrams for the van der Waals energy between two
electrons e, and e&, each on a different C«molecule.

2 4
1 e2 Ro

E,(e)= ——
6 S,

2 4m.
(6.21)

where (e) on the left-hand side indicates that C60 has one
extra e, d —=2&2R is the distance between the nearest-
neighboring Cso molecules, b,8=e+ —e is given by (6.6),
and

5=—g'2, 1 = 1.2045,
3 (m 2+ & 2+ I2)3

(6.22)

in which the sum g' is over all integrals I, n, and 1 with
m+n+l =even, excluding m =n =1=0.

Next, we consider K2+C60 and limit our analysis to
two cases: (i) Every Wigner-Seitz cell contains two un-
correlated 3 electrons, and (ii) every Wigner-Seitz cell
contains one "boson" (i.e., two electrons in the 's
state). We find the van der Waals energy per C60 mole-
cule is, for case (i),

E,(2e) =4E, (e) . (6.23)

E„(3e ) =9E,(e)

and, in case (ii),

E,(be }=E„(e}.

(6.24)

(6.25)

Setting b,c=-0.37 eV, d —=2&2R =—10 A, we obtain, from
(6.21), (6.22), (6.24), and (6.25),

E„(3e ) =——0.40 eV (6.26a)

For case (ii) the van der Waals energy is zero. This is be-
cause the operator r, in the dipole-dipole interaction
(6.20) has to bring the 's,„wave function (6.4) of the
boson (in the ath Wigner-Seitz cell} into either
e (g)Xe (g') or e+(g)Xe+(g'); on account of Fermi
statistics, both ~ould require a total spin o.=1, which is
uncoupled.

For K3+C60 we also consider only two cases: (i) Every
Wigner-Seitz cell contains three uncorrelated 3 elec-
trons and (ii) every cell contains one boson and one un-
correlated 3 electron. In case (i) the van der Waals en-
ergy per C6O molecule is

D. Screening

The reduction of Coulomb energy due to polarization
charges is a form of electric screening. Phenomenologi-
cally, at short distances r, the overall effect is similar to
the replacement of the Coulomb potential by an ad hoc
Debye- (or Yukawa-) type potential

—pr/R2

e
4mr

(6.28)

with p as the screening parameter. [At long distances,
(6.28} applies only when there are charge fiuctuations. j
Equation (6.16) then becomes

1.11 eV for p=0,
Uo 0.80 eV for p=1,
100 0.46 eV for @=2,5e = +'

0 for p=~ .

(6.29)

Since the Coulomb energy favors bosons, the effect of
screening has to be the opposite. The reduction (6.26)
due to the van der Waals energy is equivalent to having

p =—1, i.e., a screening length —=3.5 A.

VII. CHARGE FLUCTUATIONS

The Bloch wave number vector k carried by the fer-
mionic and bosonic wave functions of (6.1) and (6.3)
necessarily generates charge fluctuations in coordinate
space. As we shall see, to a good approximation, the
Coulomb energy within the same Wigner-Seitz cell pro-
duced by these charge fluctuations is compensated by the
(negative) induced polarization energy between neighbor-
ing C6o ions, on account of their large polarizability.
This enables us in Sec. VIII to examine the interplay be-
tween the fermion and boson bands and in Sec. IX to ap-
ply the concept of Bose-Einstein condensation to the

e(3e)«„~=- —,
' Uo+10. 7 eV,

which we start with, this final value cannot be relied
upon. However, it does suggest the closeness of these
two bands. As we shall see, the possibility that the boson
band may well lie within the 3 band and (quite likely)
near its bottom portion can lead to several interesting
consequences.
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fermion-boson system. Throughout this section, R
denotes the lattice-site position [i.e., R =R, in

(6.1)—(6.3)].
We first review the types of charge fluctuations in our

problem.

A. Ideal Bose condensate on a lattice

Let bR be the bosonic annihilation operator defined on
the lattice site R; its Hermitian conjugate b R is the corre-
sponding creation operator, with the commutator

nR(b)—=bRbR .

From (7.1) and (7.9), we have

n„(b)'l&=n„(b)l& .

A good measure of the density fluctuation at R is

bn:—& lnR(b) I &
—

& lnR(b)l & =n(1 —n ),
where

n—:& lnR(b}l &
=—N

(7.10)

(7.11}

(7.12)

(bR bR)=&RR

Define

b„=— —ge '"' b~R

(7.1)

(7.2)

rr (1+zb t
) I0 &; (7.13)

The maximum of hn is —,'.
If U(R, R ') =0 when RAR ', then the condensate is

proportional to the coefficient of z in

1 y elk. Rb (7.3)

with the sum gi, extending over all k within the Brillouin
zone.

Consider a system of N free bosons; its condensate is

(7.4)

where JV is the total number of lattice sites and k is
within the Brillouin zone; therefore, its particle distributions at different sites are again un-

correlated.

C. Fermions on a lattice

Let aR, be the sth species fermionic annihilation
operator on the lattice site R. It satisfies the standard an-
ticommutation relation with its Hermitian conjugate
aR, s:

N —n'n

where IO& is the vacuum state and bo=bt, when k=0.
From (7.3) and (7.4), we see that the probability of finding
n bosons on any site R is

IaR', ' aR, l ~RR'~-

The corresponding occupation number operator is

nR, (f)—=aR, aR, .

(7.14)

(7.15)

( )
NI 1

n!(N —n )! JV
(7.5) Because aR, =0, we have, as in (7.12), for any state vec-

tor
I &,

furthermore, the particle distributions on different sites
are uncorrelated Taking th. e limit Ã~ ~, but keeping
the average

~n,'—= & lnR, ,(f }'I &
—

& lnR, ,(f)I &'

=n, (1 n, ), —

where

(7.16)

fixed, we have the Poisson distribution

n"
P(n)~ e

n!

Its standard deviation squared is

(7 6)

n, =&In„, l& .

Define, as in (7.2),

—~.RaR.&'JV R
(7.17)

hn:—n —n =n .

8. Bosons with an infinite (same site) repulsion

(7.7)
For applications to K C6p, neglecting the energy disper-
sion in the 3 band, we assign s=1,2, . . . , 6 to denote
the sixfold degeneracy (including spin) of the 3 band.
Assume the state vector to be that of a free degenerate
Fermi sea:

Let U(R —R ') be the interaction energy between two
bosons at lattice sites R and R '. Assume

k s=l
(7.18)

U(R —R')= ~ when R=R', (7.g)

but otherwise arbitrary. Consequently, any state vector
of the Hamiltonian must satisfy

(7.9)

6

nR= nR,
s=1

We have, for K C6p with m ~ 6,

(7.19)

where 1ii, extends over the occupied portion of the Bril-
louin zone. Let
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n:—& /n„f) =rn,

n, =n /6, and, in accordance with (7.16),

(7.20) electric field produced by eon on one C6p molecule polar-
izes all of its 12 nearest neighbors at distance d through
V d, giving a negative polarization energy

'2
bn'—:& [n'„f ) —

& fn„[ )'=n 1 ——" (7.21) eon5E= —6a 4' (7.27)

2
~R,R' =——0.028,
hn

indicating only weak correlations.

D. Coulomb energy

(7.23}

To show why such charge fluctuations do not cause
serious energy imbalances, we consider the case of K3C6p
without bosons. Let n =n+hn be the charge within a
Wigner-Seitz cell (excluding K+), where n =3 and, ac-
cording to (7.21), the average of b, n squared is —,'. The
corresponding electrostatic energy within the cell is

& —,'n(n —1) )s~„, , (7.24)

with e, „,given by (6.8) and & ) denoting the average.
This causes an increase of Coulomb energy due to charge
fluctuation,

[& —,'n(n —1) ) —
—,'n(n —1)]a~„,

3Up
+2.68 eV, (7.25)

which, as we shall see, is compensated by (i) Debye
screening at large distances and (ii) the monopole-dipole
term V d in (6.19} at shorter distances (i.e., between
neighboring C60 molecules).

In a Fermi sea of electrons, the Coulomb potential due
to any charge fluctuation is screened at large distances
when r &&A,~, ~here A,~ is the Debye length given by

The electronic fluctuations at different C6p sites are
correlated, with the correlation function (for a spherical
Fermi sea with Fermi momentum kF and at RAR ')

given by

3dkF4
ktt R'= & Inttntt I & n =

~ 2j f(km' }2' r

where r is the volume of a unit cell, r = ~R —R '~, and

j &
(z) = (sinz —z cosz ) /z is the first-order spherical

Bessel function. For K3C6p, kz-———,
' A ', and when R and

R ' are nearest neighbors,

where a is the polarizability of C6p . As discussed before,
from (3.23)—(3.25), with hs=E+ —e -0.37 eV, the po-
larizability of a (singly ionized} C60 is already near the
Clausius-Mossotti limit ap =48R p where, as before,

O

Ro—=3.5 A is the C6o molecule radius. (If the 3e in C~

could be polarized independently, its polarizability would
greatly exceed the limit ao.} Thus, as an estimate, we

simply take a=ap for C6p . This gives 5E=——2.21 eV,
with a magnitude comparable to (7.25). Without screen-
ing, the efFect of including all distant C6p molecules is to
multiply (7.27) by

S=-'y(rn'+~'+~') '—=2 1115 (7.28)

where the sum is over all integral m; with
m&+m2+m3=even, excluding m& =m2=m3=0; in
that case, the total polarization energy S 5E would over-
compensate (7.25). Of course, with the Debye screening
this does not happen, but (7.25) can be reduced to nearly
zero.

VIII. BOSON BAND

In this section we return to the two-particle correlated
wave function (6.3) and examine, via the following
simplified (but explicit) model, whether such a pair state
can be generalized into a boson band in K„C6p.

A. Model Hamiltonian

S =l ~(7 (8.1)

denoting both the spin o = f or $ and the vector com-
ponent i =1,2, 3. Likewise, ak, and akt, are the corre-
sponding operators of the 3 + band. In coordinate space,
on the lattice site R, we have

ik.R1
aR,. —pe a„,

k
(8.2a)

As in (7.17), let a&, and a&, be the annihilation and
creation operators of the electrons in the 3 band, with
the index

A,g) =rn kFe /H, (7 26) and

with Pi=1. For K3C6p and assuming m, =mass of a free
electron, we find A,D to be quite small, —=0.9 A. But for
the applicability of the screened Debye potential
r 'e, the distance r has to be ) SA,D.

Without charge fluctuations, because of cubic symme-
try the monopole-dipole interaction V d between neigh-
boring C6p molecules vanishes in first-order perturbation,
and as mentioned before in Sec. VIC, its second-order
effect is unimportant. However, the situation becomes
very different when there are charge fluctuations. The

ik.R1
Rs ~~ g ks

k
(8.2b)

~0= g [a&a& a& +(s&+$e)a~,a~, ]
k, s

(8.3)

with c,& given by a band calculation. We assume the same
c.z for both bands, showing the parity-doublet structure;

where, as well as in the following, the k sum extends only
over the Brillouin zone. In this model the energy of these
two bands is described by the Hamiltonian
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F(E)
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(8.4)

where i0) is the vacuum state,

there is a s» of ld degeneracy indicated
5 d o hs. The separation c. enp

en e, the bottoms o
b (6 6) d (6 7)h 5e-hE+E 0.7,g

The pairing states s gym

are represented by

QRi0) and QR ~0),

X (~R, it~R, it ~R, it R it (8.&)

t t g ~t g it
)X 6

(~R, if~R, 't ~R, 't R, 't (8.6)

in o erator for a (bare) scalar field. Be-
3 1 o, 4gsistin of only e ec r

elements ot f the commutator R, ak, ar
for 't ao fOR

To simulate the low-energy preference o
states at R, we introduce

H, = —G g itiRPR G' g iI)R—PR
R R

(8.7)

h ositive and approximate y q1 e ual, in
1 Th 1

'
h the parity-doub et na uaccordance wit e

model Hamiltonian is

H=HO+Hi .

B. Pseudoscalar band

(8.8)

~ ~

the modification to the pairing wave
d3+b dfunction

'
n (6.3) due to the 3 and

r" state of total momentumDefine a "pseudoscalar" state o

or for a (bare)a be regarde asd the creation operatomay
defined on the lattice, andpseudoscalar field e ne

is defined by (8.14); it approaches —1FIG. 3. Function F(E) is define y

valu &=E~ s) with Hvalues of 0 ps = ps,F(E)=0 give the eigenvalu
and ~ps) given by (8.8) and ( .

=0 c. =c.k=c k=ck . The denominator in the

1summand tn ( .8.14) becomes 2ek+5E—
1 ranging from 5c toonl discrete va ues, ra
h 3+b'nd A''h2W+5c, with W=the w'width of t e

in Fig. , e
' . 3 th lowest eigenvalue Eis

Eb (5C (8.15)

ir of successiver between every pairg p gy

rres ondence between t e
values of 2ek+ 5e and the JV roots o

F(E) becomesIn the limit JV~ ~,
6

7

(27r) B EK/2+k+ eK/2 k

= —1+ +5c—E

K=ki+k2

by

)i0)XfK(k)(uk, , teak, , i+~k, , ~~k, , i
k, i

(8.9)

(8.10)

(8.16)

ithin thet B restricts the integral to with'p
4order to retainBrillouin zone. In ord

require, at E =5z and K=O,

and

k= —,'(k, —k2), (8.1 1)

G d kF„(5 )=e—1+
)3 B 2e

(8.17)

Gf '"'=,, +,„+5, E~-
1 2

where

(8.12)

ne. Theh k, k wit in
' n' the Brillouin zon .

Schrodinger equation H
t ps = ps

le seudoscalar bound state i b) ofen-
d d ( d hthe model; its K epen

n ) b determined byn band structure canfore also the boson
K there is a cut on

d b t 5 d
0. At any given

i fi i lly2W+5c.. In the complex E plane, or n

/I = g fK(k) .
k

(8.13)

e E is determined by the roroots of theHence the eigenvalue is e
secular equation X XX

G =o.
+ek +58—E (8.14) n dia rams for the two-particle state,FIG. 4. Sum of Feynman diagrams or e

bound or scattering.
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above the cut, the state vector (8.10}is one with an outgo-
ing scattering wave. In terms of the standard Feynman
diagrams, the above exact solution is equivalent to the
sum over an infinite series of bubble diagrams shown in
Fig. 4.

It is of interest to examine the coordinate representa-

Ips ) —y —i K.R@t IO)
1

„~Xr
where

(8.18)

tion of the pseudoscalar state by expressing (8.10) in the
form

It ~ If
R ~~ ~fK(k)e (aR+((/2)r it R—()/2)r i( + R+()/2)r, i)aR —()/2)r, ig }

r k
(8.19)

One may regard (()tR of (8.5) as the "bare" boson creation
operator and 4z as the "dressed" one. The scale of the r
extension, after the first summation gi, in (8.19), for

si, =k /2m is

Isc) = y [g„(k)a„',,a„',,
k, i

—hK(k)aI, , tai, ;g ]IO), (8.25)

a —= [2m (5s —Eb ) ] (8.20) where, as in (8.11), k= T((k( —k2). The Schrodinger equa-
tion

Thus the operator 4z and its Hermitian conjugate 4R
are well localized in the coordinate space. These opera-
tors can be used to construct a boson band for the crystal
[as exemplified by the operators ba, bi( and bi„b), in

(7.1)-(7.13)].
When there is a partially filled 3 band of top Fermi

energy cF, an approximate solution of the pseudoscalar
boson band can be obtained by summing over the same
infinite series of bubble diagrams in Fig. 4, but replacing
the Feynman propagator in vacuum by that in a Fermi
sea. The result is simply to impose on the integral

J zd k in (8.16) and (8.17) a further constraint:

HIsc) =E'Isc)

gives

Gl A'

1 2

and

6' A'

s), +s), +25s —E' JV

with

(8.26)

(8.27)

(8.28)

Ek) CF (8.21)

Eb)0. (8.22)

Thus, in addition to the lower bound of 6 determined by
(8.17), there is also an upper bound given by

In Sec. VI we estimated that the energy balance (6.27)
may be slightly negative, in favor of two electrons in the
3 band (over the pseudoscalar boson). This implies, in
this model,

A'=
—,
' g [gK(k)+hK(k)) .

k
(8.29)

1

C.k +ok +25m —E'

Hence the eigenvalue E' is determined by the roots of

F'(E') = —1+
6' 1

2 i, Ei, +E) E

F„(0)=—1+,f (0.G d k
(2n. )2»&k +5s

(8.23}
For K=O, (8.30) becomes

(8.30)

In the model we have the selection rule for the pseu-
doscalar boson b: F' E' = —1+ 1 1

2A' ~ 2s„—E' 2(s„+5E)—E'

b~3 +3 (8.24) (8.31)

where each 3 stands for an electron in the 3 band. In
the realistic case, a weak transition exists between
3 +3+ and 3 +3 . Hence there is a violation of
(8.24). The bosons are metastable if the top energy Ez of
the Fermi sea is (—,'Eb, but stable otherwise. Further-
more, c.z does not rise above —,'Eb, until the boson band is
filled.

C. Scalar band

Similar to (8.10), we can construct a scalar state of to-
tal momentum K=k, +k2:

Similar to (8.15), the lowest eigenvalue is

Eb &0; (8.32)

between every successive pair of 2sk and 2(Ek+5s} in an
ascending order of energy, one has an eigenvalue E'.
Hence there is a one-to-one correspondence between the
2JV'discrete values of 2s„and 2(ek+5s) and the 2JV roots
of F'(E') =0. In accordance with the fermionic band cal-
culation' which shows no overlap between the 3 and
3+ bands, we assume

(8.33)
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where, as before, 8'is the 3 —band width. Consequently,
there is always one (and only one) root E'=Eb', with

26c, &Eb & 28 (8.34)

F'„(0)=—1+,f d'k +
16m a 2ek 2(ez+5e)

(8.35)

and

F'„(25m}=—1+ f d k +
6'

g 1 1

a 2(e),—5e) 2e),

(8.36)

for K=0; on account of (8.33},

In the limit JV~OO, F'(E') becomes F'„(E'). There
are several possibilities, depending on the values of
F'„(E') at E'=0 and 25':

F' (0) &F'„(25',) . (8.37)

Eb ~0 (8.38)

in the limit of an infinite lattice; the bound state also
disappears.

As in (8.19), we can construct a "dressed" scalar boson
creation operator

(i) F'„(0)&F'„(25')&0. In this case both (8.32) and
(8.34) survive in the limit JV~ ~. There is a scalar
bound state with Eb & 0; in addition, there is a second ex-
cited "stable" state of energy Eb' between 28' and 25c..
The inequality Eb' & 2W prevents its decay into two 3
electrons, and the other inequality Eb' & 25c. makes its de-
cay into two 3 + electrons impossible.

(ii) F'„(0)& 0, but F'„(25 e) & 0. There remains a
bound state with Eb &0 in this case, but there is no
second stable state.

(iii) F'„(0)& 0. Therefore (8.32) becomes

a=—~ ~ ~[gz(k)e aR+))&2), ;taa ~, zz), ;t —hK(k)e aa+))z~), ;taa ~, &2), , ) ] .
r k

(8.39)

In cases (i) and (ii), Eb &0, and similar to (8.20), the scale
of the r extension in 4R, after the first summation, is

In this section we discuss brieAy the different roles of
these two long-range order parameters.

a'—= ( 2mEb )— (8.40)
A. Scalar dominance

The scalar boson band is a valid concept.
In case (iii), in accordance with (8.38), Eb =0 as

JV~ 00. Hence a'~ ~ and the operator 4R becomes un-

bounded (in the coordinate space). We cannot meaning-
fully apply the concept of a scalar boson band.

IX. SUPERCONDUCTIVITY

In the model given in the previous section, there can be
two different long-range order parameters, as we shall
see. From Pa and PR, defined by the Hermitian conju-
gates of (8.5) and (8.6), we can construct the following
momentum-space operators:

(9.1a)

For states with B„WO, but B,=0, the quasiparticle
spectrum for the 3 band has the typical BCS form, as
can be derived by following the standard method,

[~2+ ) ~G~B ~2]1/2 (9.4)

where

(9.5)

[(co),+5e ) +—
6 ~

O'B„~ ]' (9.6)

with p=Fermi energy. The corresponding spectrum for
the 3+ band is

and B. Pseudoscalar dominance

(9.1b)

where, as before, R goes over all the JV lattice sites and k
is restricted to the Brillouin zone. Any state vector hav-

ing a nonzero expectation value for P), or P), at k=O (in

the limit A~ ~ ) belongs to the superphase. Let

For states with B,WO, but B„=O,the boson band can
become a physical reality. The system exhibits several
characteristic features of the boson-fermion model, "even
though the transition between two 3 electrons to the
pseudoscalar state 's,„ is a weak one. The most in-

teresting possibility is when the excitation energy 2v of
the pseudoscalar boson equals 2 times the Fermi energy
of the 3 band:

(9.2)
2v —2p (9.7}

and

(9.3)

In this case the bosons become stable; the long-range or-
der 8~,%0 can then be regarded as the result of a Bose-
Einstein condensation.
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C. Variation of T, vs lattice size

In the case of pseudoscalar dominance with Bose-
Einstein condensation, we can relate the long-range order
parameter B, to the number Xp of bosons with zero
momentum in the condensate:

(9.8)

in which the last term 4(e /4m. ) (Ro/d hs)S is simply—E„(3e)+E,(be) with Ro, d, b,s, and S given by (6.21)
and (6.22); hence, for E(3e )—+E„(be ) =0.355 eV, (9.9)
becomes

Up2v= — +0.42 eV,
100

(9.10)

which is the negative of (6.27). As the distance d between
neighboring C6p molecules increases, the electrostatic
screening weakens, which enhances the Coulomb energy,
in favor of the boson; accordingly, the boson excitation
energy 2v decreases. From (9.9) we have

T

From (6.24) —(6.27), the excitation energy of the boson
in K3C6p can be written as

2 4
Up e' Rp 1+0.065 eV+4

6 S, (9.9)
100 4m- d6 hc.
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APPENDIX: MADELUNG ENERGY OF K3C60

The crystal structure of K3C6p can be understood in
terms of two simple cubic lattices A and B. The sites of
the lattice A (referred to as A sites) are given by

R„=(n,x, +n2y+n3z)a, (Al)

and those of the lattice B (referred to as 8 sites) are given
by

Rz = [(n
&
+ ,' )x+ (—n&+ ,' )y+(n 3+——,' )z]a, (A2)

i.e., about —', of the charge is carried by the fermions and
—,'by the bosons.

It has been pointed out that BCS theory is consistent
with the experimental observation of T, increasing with
d; the above discussion shows that the same is true when
bosons dominate.

The general case when both B, and B„are nonzero
will be discussed in a separate paper.

8 lnv

8 lnd

Uo
2v+ —0.065 eV 6,

which, for Up —=20 eV and 2v—=0.22 eV, gives

8 lnv

8 lnd

(9.11)

(9.12)

0
where a=-7. 1 A and n&, n2, n3, n&, nz, n3 are integers.
The C6p ions occupy half of the A sites, say, with
n, +n2+n3=even; the octahedral K+ ions occupy the
other half of the A sites, and the other (called
tetrahedral) K+ ions occupy all the 8 sites.

The Madelung energy per unit cell is

n =nf+2n (9.13)

Assuming (9.7) and for an ideal boson-fermion system, we
have

and

~ T3/2nb e

3/2 3/2nf ~p

(9.14a)

(9.14b)

The total charge density n (in units of e per volume) is
carried partly by the bosons of density nb and partly by
the fermions of density nf (in the 3 band), with

EM =
—,'e( —3 Vc + V + + V + + VK+ ) ~ (A3)

where Vc is the electrostatic potential at a C6p ion,

V + is the electrostatic potential at an octahedral K+,
and V' +, V"+ are the electrostatic potentials at two
tetrahedral sites in a unit cell. The potential produced by
an ion on its own site is excluded in the de6nitions of V in
(A3), since the Madelung energy includes only the mutual
Coulomb interactions, and the factor —, in (A3) is intro-
duced so that each pair of ions is counted once.

The potential at a C6p ion reads

where T, is the critical temperature. By using
8 inn /8 lnd = —3 and (9.13) and (9.14), we find

V
C6O

fl II tl 2R„
1 2 3

2 ~lnnb 1 1 Q lnv
8 lnd 3 8 lnd nb 2 8 lnd

(9.15)
4ma „„„ 2R„

1 2 3

The experimental result yields

8 lnT,
3 lnd

(9.16)

e
—pR„

e
(A4)

which, when combined with (9.12) and (9.13), gives

2nb

n 9
(9.17)

where R„—=(n, +n2+n3)'
R„' —= [(n&+ —,') +(nz+ —,') +(n3+ —,') ]'~

and g'„„„excludes the term with n
&

=n2 =n 3 =0. The
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first sum of (A4) accounts for the potential produced by
all other C60 ions, the second sum for that produced by
octahedral K+ ions, and the third for that produced by
tetrahedral K+ ions. The regularization parameter p
renders each sum convergent separately and will be set to
zero after combining all the sums. Similarly, we can
write the potentials at K+ sites

3e, 1 —( —
)

' ' ' —v~„
4~a „„„2R„

1 2 3

where

( 2+ 2 )1/2

Q(n3)= Jd P, +5 (P —n),
( 2+n2)3i2

e
—p, [p +(n +1/2) ]

2+( + i )2)3i2

(Al 1)

(A12)

4~a „„„2R„
1 2 3

—pR„
e

(A5)

( 2+ 2 )1/2"3

(A13)

~x ~ + V~+ =
4~a

n n n
1 2 3

—pR„ 3e
~Rn

with n=(n„n2}, n'=(n&+ ,', n2+ —,'), —and the sum g,
extending over all integrals n1 and n2. Using Poisson
formulas

e
~Rn

e + 5 (p —n) = g e' (A14)

Substituting (A4) —(A6) into (A3), we obtain
r

g( —
)

' '&2(p —n) = g e' (A15)

2

27TQ
Pl ] n2 f13

—pR„ —pR„
e

I
nfl n Rn

1 2 3

and

y 82( r) —y ( )
1 Zei2mm n' (A16)

2

+ I "2 "3

nnn
I 2 3

—pR„
(A7)

with m=(m„m2), m'—= (m, + —,', m2+ —,'), and the sum

gm extending over all integrals m, and m2. Equations
(Al 1)—(A13) become

The series in (A7) can be evaluated by means of the tech-
nique in Ref. 15. On account of the cubic symmetry, we
have

Q(n )3=g (n0)+3g gm(n3), (A17)

1 n3
f(n, n2n3)=3 g', f(n, n2n3),

nnn
1 2 3

R„
1 2 3

1
n 1 n2n 3

n] n2n3 n

(A8)

9'(n3) =go(n3+ —,
' )+ g' (

—
)

' 'gm(n3+ —,
' ),

and

%(n3)= gg (n3),

(A18)

(A19)

Il
1

Pl2Pl 3

(n3+ —,
' )

R„'
f(n, n2n3), (A9)

2 oo 00

F~= g n 93(n )3— g (n3+ —,') 9'( n)3
Ka "3 "3n =0

with any symmetric function f(n, n2n 3 ) of nn 23n.,
hence, (A7) can be written as

where

e
—p(p +z ) +iK pe

g„( )= dp (p+z )

(A20}

( )
2~ —~~z~

Iz I

(A21)

go(z) is g„(z) and @=0 and g' excludes the term with

m, =m2=0. Except for the first term of (A17) and the

first term of (A18), p can be set to zero before summing
over n3, and g„(z) is then an elementary function:

+2 g (
—) '&(n3)

n3=1
(A10) Substituting (A17}—(A19}and (A21} into (A10), we end

up with

eE~=
4~a

m]+m2
C+6 g, 1 —( —

) cosh'. m + I

sinh arm cosh mm'
(A22}

where m =(m f +m 2
2)'i2,
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and

m'=[(m +—') +(mz+ —,') ]'

C=12 lim g n 3go(n 3)
—g (n3+ —,') go(n3+ —,')

n3=1 n3 =0
r

=24m. lim g n3 f dx
0

~
1

n3 =

pn3x

(n3+ —,') J dx
0 1

3

—p(n3+ 2
)x1

1 —cosh —,'px
=6m lim, = —3

x sinh —,'px
(A23)

Equations (5.2) and (5.3) for the Madelung energy of K3C60 are thus established.
o estimate the upper bound of the Madelung energy of K&C60 and K2C60 we simply remove all the tetrahedral K+

ions in the case of K&C and all the octahedral K ions in the case of K2C60. The rest of the estimation follows the
same steps from (A7) —(A23).
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