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We determine the binding energy and the wave function of a single Cooper pair in a system composed
of hybridized strongly and weakly correlated electrons, using an approach proposed previously [cf.,
Phys. Rev. B 38, 208 (1988)]. The difference between the pairing and local Kondo singlet state and the
Cooper pair is emphasized. The three-component characteristic of the appropriate wave function is ex-
plicitly introduced; each of the components decays on the scale of few interatomic distances.

I. INTRODUCTION

In current theoretical discussions of pairing concerning
correlated electrons, exchange interactions play a prom-
inent role. In the simplest approach one considers a one-
band (t-J) model? in which the pairing involves® so-
called kinetic exchange interaction among 3d electrons.*
The applicability of a single-band approach to high-
temperature superconductivity has been questioned;’ hy-
bridization between strongly and weakly correlated elec-
tron states is believed to be necessary to explain the Fer-
mi liquid properties of the 4f electrons in heavy fermion
systems.® We have developed”® an approach to hybri-
dized systems completely analogous to that used previ-
ously,! to derive kinetic exchange interactions among
strongly correlated electrons in the metallic state. In this
approach one decomposes hybridization processes into
low-energy and high-energy parts (see Fig. 1), incorpo-
rates the former into the unperturbed part H, of the total
Hamiltonian, and treats the latter within the canonical
perturbation expansion scheme. In this manner, the
effective Hamiltonian contains both a residual hybridiza-
tion (with doubly occupied atomic configurations for
correlated electrons projected out) and exchange interac-
tions in powers of V' /(U +¢€,), where V is the magnitude
of hybridization, U is the intra-atomic Coulomb interac-
tion energy for correlated electrons, and € is the position
of atomic level for correlated electrons measured with
respect to the middle of the band of weakly correlated
(conduction) electrons. To second order [ ~V2/(U +e€ f)]
one obtains among other terms the Kondo-type interac-
tion, while to the fourth order ~V4/(U+ef )} the su-
perexchange interactions appear both for correlated and
carrier states.® It must be stressed that our approach ap-
plies when [V|<<U-+e;, [V[Zlesl, ie, when the
periodic version of the Schrieffer-Wolff transformation’
fails. While it is not entirely obvious whether the condi-
tion | V| <<|e,| holds for high-T, systems, we believe it is
valuable to explore the model which properly separates
the mixing processes into real processes they hybridize,
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the single-particle states, and the virtual processes which
are responsible for singlet pairing. The latter processes
correlate to the motion of pairs and contain exchange in-
teractions. The limit |V|~|e/| is certainly relevant to
the physics of heavy-fermion and fluctuating-valence sys-
tems; in this respect we include finite-U processes in the
second order.

A somewhat similar pairing mechanism has been pro-
posed by Newns and co-workers!® using the slave boson
formulation. However, these authors utilize the mean-
field approximation for the Bose field, d,»+ representing the
doubly occupied atomic sites. Strictly speaking, such an
approximation requires a nonzero number of doubly oc-
cupied sites, which is difficult to fulfill in the limit of
U >>|V|, W, where W is the bare bandwidth. A reformu-
lation!! of our canonical perturbation expansion ap-
proach within the slave boson approach of Zou and An-
derson'? leads to the same results as before’ in the limit
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FIG. 1. Schematic representation of the mixing (hybridiza-
tion) processes and their division into low- and high-energy
parts. The former involves only empty and singly occupied
atomic level configurations, while the latter takes place via dou-
ble occupancies in either initial or final states.
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(dld;)—0. It must be stressed that, within the mean-
field approach, the characters of the superconducting gap
obtained by us and by Newns are of the same type.

In this paper we present a rigorous analysis of a single
pair and analyze its binding under the condition that the
band is empty. This problem does not reflect the actual
situation of high-T, or heavy-fermion systems, with one
particle per pair of orbitals. However, the simplicity of
the case studied here allows us to examine the detailed
nature of hybrid pairing and its influence on the pairing
induced within subsystems of correlated and uncorrelated
electrons. In particular, we show how the three-
component wave function emerges and what is the
difference between a mobile bound pair and a local Kon-
do singlet. As a concrete application we calculate the
binding energy in a two-dimensional system and show
that the pair binding energy matches the temperature
scale (kzT,) of critical temperatures encountered in
high-temperature superconductors. We also compare our
results with the corresponding analysis in a single
narrow-band situation.

II. THE MODEL

We start from the effective Hamiltonian obtained ear-
lier”® to the first nontrivial order in ¥ /U, which may be
written as

H ztmn man

mno

+ 3 (Vimal, (1

im

+ef2N,a(1 _o)

—N;,)c,, o tH.c.]

—BT ' B, , 2.1)

where the real-space hybrid pairing operators B,I,, are
defined as
B,-LE _ai?l(l_NiT)crIlT) .

(ay (1= Ny )eq, 2.2)

1
V2
The first three terms in (2.1) comprise the Anderson lat-
tice Hamiltonian in the real-space representation in a
standard manner®”® and in the limit U— . The last
term represents the real-space singlet pairing part which
contains for m =n the negative energy shift due to virtual
mixing processes c«>a with the formation of a double oc-
cupancy on site i/ in the intermediate state. This term
also contains the hopping of the singlet pair from the
(i, n) pair of sites to the (i, m) pair site configuration.
By noting the identify

B! B, =— Ss——zNu 2.3)

l a)nma ’

we see that pair binding is caused by the Kondo interac-
tion, where the spin S; and s,, represent the two subsys-
tems. In the limit when the number of electrons on each
site is conserved, i.e., when n; +N;=1, the Hamiltonian
(2.1) reduces to the Kondo model, with the exchange in-
tegral J24=2|V,, | /( U+e;).
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III. SOLUTION FOR A SINGLE PAIR

We solve (2.1) for a single pair by introducing a three-
component wave function as follows:

|¢>=%Z“‘mB;"|o> , (3.1a)
|\1/>—— ZanC o), (3.1b)
|X>=—1162yijpi}|o> , (3.10)

where N is the number of sites, a;,,, B,,, and Y, are the
coefficients to be determined, |0) is the empty lattice
state, and

1 t
Crtm —ﬁ 2 acrtlocn —0o (3.23)

2 oal,(1—N,_,)a]_,(1—N,,) .  (3.2b)

The operators Bt, C T, and D' acting on the vacuum
state create a pair of electrons in the spin singlet state, ei-
ther in a hybrid or in the carrier or the atomic states, re-
spectively. The three-component nature of the wave
function arises because even if we start from an a-c (hy-
brid) configuration, the hybridization will mix this state
with a-a and c-c configurations of the pair, and vice versa.
Also, if we have not projected the double occupancies
from the operator D we would have to impose the con-
ditions y;=0. In order to prove explicitly that the triad
(3.1a)-(3.1c) forms a complete set of states spanning the
solution we calculate H|:-- ). Such calculation pro-
vides the following set of coupled equations:

ﬁ|¢>=% 2 a;, [2 tmnBitn +(€f—J51d)Bit.

T T
+ 3 vich,+ ZD,j ]|o) ,  (3.3a)
Hl‘l/)——EBm,, [zt,,,cpn S V,,B! ]lo) (3.3b)
mn 1
ﬁlx>=—2ﬁ 7y [e,D,.j.+ s V,:,,B],,, ]lo) . (3.3¢)
ij

So the system of the three Schrddinger equations is
indeed closed. In the above equations we have assumed
that ¢,,,70 only for m#n (the m =n term is absorbed in
€;). This system of equations will be solved variationally
by defining the total wave function of the pair
|[FY=|¢)+|¢)+|x), and then minimizing the total en-
ergy

(FIH|F)

(F|F)

with respect to a;;, B;;, and v;;. The normalization con-
dition leads to

2 ‘ain'2+ 2 |an|2+ Z,|7ij|2 =1.
in m,n ij

E= (3.4)

(3.5)

In order to calculate the total energy and utilize explicitly
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the translational invariance for the problem we carry out
a Fourier transformation to reciprocal space. This means
that each of the wave-function components is
transformed in the same manner as, for example,

amZ#gakexp[ik-(Ri—Rm)] . (3.6)

Also, the band energy and the interaction parameters are
transformed via, e.g.,

&= > tmexp[—ik(R,—R,)]. (3.7
m(n)
In the k representation the expectation value

(F|H|F)=E{ay,B Y] now becomes

E{ayBiYi!
= 2 {26k|ﬁk|2+(€k+€f)lak|2+2€f|7k|2
k

+a:Bka + 2a:'ka: +akB; Vl: +ak'}/: Vk

1
'—_}\7 Ea:ak'.]k_k'} . (38)
K

The Schrodinger equation for the components is obtained
by minimizing E{ - - - } under the condition that the total
wave function be normalized, i.e., that

z(lak|2+|3k|2+|')’k|2 =1.
k

(3.5a)

Thus by using the method of Lagrange multipliers one
writes the wave equation in the form

SE
Sag

—ya,=0, (3.9)

and similarly for 8, and y,. Such procedures yield the
following set of equations:

ak(6k+€f)_% 2 ak'Jk_kr+ZBka+2'ka: =}»ak ’
k'

(3.10a)
g V: + 2Bk€k = )\'Bk , (3.10b)
ayVit2€,7e=Avy (3.10c)

where the eigenvalue A is simply the Lagrange multiplier
for the problem. Equations (3.10b) and (3.10c) provide
the relations

Vi

Bk“ak—)\'_zek , (3.11a)
Vi

}/k—ak'k—:‘z—e‘; . (3.11b)

Substituting these expressions into (3.10a), we obtain the
equation for a; in explicit form:

20V 1?2 2|v?
A._2Ek A.—sz

ay 6k+€f_)\’+

——Ilqzak"]k*k'zo . (312)
K
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Now we examine in detail the case J2?=J$,,, i.e., when
only the intra-atomic part of the hybridization is taken
into account (¥, =V¥). Under these conditions the bound
states are determined by the condition

J
212 21?2
A—2¢ A—2e,

ak= —AIN'Eaki . (3.13)
K

Summing both sides over 1/N ¥, and dividing them by a
common factor, we obtain the condition for the ground
state in the form

1
2 2
n 2V 2V
A—2¢ A2,

1 1
—=— 3.14
NI a1o

€xte€s

This is our central result. Before going into detailed
numerical analysis we discuss two interesting particular
situations.

A. Case A: J =0 but V0 (mixed-valence limit)

In this case the hybridized states of electron pairs are
specified by the poles of Eq. (3.14), i.e.,

A=A =6 te (6 —€p ) +4V]2 (3.15)

It is easy to show that these eigenvalues are twice the
values of the eigenenergies for independent particles in a
hybridized band. Therefore, if there is no Kondo cou-
pling, the pair dissociates into independent itinerant con-
stituents. At first sight this result is unexpected; for even
in the limit JP?=0 [i.e., for U= o in Eq. (2.1)] one is left
with a projected hybridization part which hinders the
motion of a second particle when the first is already
present in the system. However, this effect is of the order
1/N for itinerant states and therefore entirely negligible
in the thermodynamic limit.

B. Case B: V=0 (the Kondo limit)

In this case, Eq. (3.14) is easily solvable in a model case
after transformation to the explicit integral form, i.e.,

1 W /2 de

—= —_—, (3.16)
J f—W/zp(G) A—e€,—e€

where p(€) is the density of states in the band (per site per
spin). For a constant density of states p(€)=1/W, one
obtains the eigenvalue

A=e,—W/2—Wexp(—W/J). (3.17)

This result has a simple interpretation: The first two
terms represent the noninteracting pair of electrons, one
of which is placed at the bottom of the conduction band
(i.e., at — W /2), while the other is placed at the atomic
level (at €;). The third term represents the energy of the
Kondo coupling and may be rewritten in the form

1
Jp(Epg)

Ep~—2Eexp , (3.18)
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where E; is the Fermi energy. Note that
W /J=W(U+¢€;)/2V? is usually much smaller than uni-
ty, so the binding energy |Ep| <<Ep. Equation (3.18)
thus represents a binding energy into a local Kondo sing-
let in a diluted system of electrons.

C. Case C: J#0, V0 (general case)

In the general case, the integral version of Eq. (3.14)
reads

T=t—2¢p) [

W/2 de(A—2e)
— W/2p

3 , (3.19)
ae“+betc

with
a=2(A—2¢;),
b=2(A—2e,)(e,—A)+4V?,
c==2V2A+(A—2¢/)[MA—€,)—2V?] .

This equation has been solved in two cases: (i) for a mod-
el density of states p(e)=1/W, and (ii) in a two-
dimensional case taking p(e) for a square lattice (with a
logarithmic singularity in the center of the band). Next,
we have subtracted from A the lowest value of energy
(3.15) for noninteracting particles which is €,;+€y,
—[(€f—€min )>+4¥?2]'/2 is the lowest energy in the bare
band. The difference is then the binding energy, which is
displayed in Figs. 2 and 3 for the two cases, respectively.
We note several features of these results. First, the bind-
ing energy for the selected model density of states is
about two orders of magnitude higher than that for the
square-lattice case. This is partly due to the larger value
of the density of states at the band bottom. This also in-
dicates that the binding energy depends strongly on the
detailed shape of the band. Second, if one sets of 2t =1
eV (i.e., the quantity often taken as the value for 2¢,

where 7, is the hopping integral between neighboring p,
states in the CuO, plane of high-T. systems), as well as
U=~8 eV and |V|~1.5 eV and €;~ —4 eV, one obtains
binding energies in the range 10—-100 K, a strikingly real-
istic number in view of the fact that we consider a single
pair only (not the complementary limit of two holes in
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FIG. 2. Binding energy for a hybrid pair for the case with
constant density of states (DOS) in the bare band.
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FIG. 3. Same as in Fig. 2 for the case of a two-dimensional
square lattice.

the background of half-filled d states). Also, a large bind-
ing increase is observed in the regime 2V2/(U+efZ1
eV), under which the effective Hamiltonian (2.1) cannot
be applied. This is the reason for displaying in Fig. 3
only the binding energy for ¥ /2t <2. Note also that the
binding energy becomes negligible in the fluctuating
valence regime, where |e;| <|V].

D. Case D: molecular states

Strictly speaking, we should also consider the
difference between the translationally invariant bound
state, whose energy is displayed in Figs. 2 and 3, and a
molecular hybrid state. For this purpose we quote our
earlier results!® for the case of two electrons. For two
states, one with starting energy E,, the other with E,,
one can write the complete Hamiltonian for this two-
state hybridized system as

H=E,3n,+E,SN,+V3(alec,+cla,)
g g g

+Un,n_,
+U,N,N_,+HK—1J) 3 N,n, —2JSs

oo’

+7 3 (n,+NNalje_,+el a_,)
g

+J(atalc e +elelayay) . (3.20)

Here K is the magnitude of the interorbital Coulomb in-
teraction energy, J is the direct exchange integral, and ¥V
is the hybridization energy induced by Coulomb interac-
tion. This most general Hamiltonian for the two-state
two-electron system can be easily diagonalized and the
lowest hybrid singlet state | — ) is of the form

|=)=[4D(D—U+K)1" V{4V +P)a}c] —alc])

—(D—-U+K)alal+cleDhilo), @321

with the corresponding eigenenergy
Ey=E,+E,+J+K+XU+K—-D), (3.22)
where U=(U,+U,)/2 and D={(U—K)?
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+16(V+¥)*}1/2. In the limit of large U the eigenenergy
takes the form

E~E,+E,+T+Kk - ¥V*+V)"
U—K

To compare this energy with our previous case we have
to set E,=¢;, E,=0, J=K=V=0: we then obtain
E_=~e;—4V*/U, where (— —4V?/U) is the binding ener-
gy. This energy exceeds by far the binding energy
displayed in Fig. 3 and corresponds to the energy of a lo-
cal hybrid singlet. It is this singlet binding energy which
Zhang and Rice? regard as large; they therefore treat the
whole pairing problem within the singlet subspace. Sub-
sequently, they ascribe pairing to d-d coupling which is of
fourth order in ¥V /U. Our singlet is of a collective nature
already at the level of one pair. Our pair state is also
more stable because the reference energy for the itinerant
state is much lower than that of molecular states because
of the band energy (— W /2) and hybridized nature of
states. However, one must emphasize again that we con-
sider here the motion of a single pair of electrons that is
not hindered by the presence of other electrons.

IV. PAIR WAVE FUNCTION

Equations (3.11a), (3.11b), and (3.12) provide the
coefficients (up to a normalizing factor) of the total wave
function. We define the pair wave function in the posi-
tion representation as
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W(ry,1,)={1,,0,|F) =V, (r,,1,)+ ¥, (r,1,)

+W,,(r,15),

where for example

Ea1m<r1‘<r2| a[TlC;T)())

+
\I’ rl,rz ,Tcml—

= Zaimﬁ[tbﬂ(r,—R,- )@, ,(r;—R,,)

_(bal(rZ_Ri )q)cT(rl——Rm )] ,
(4.2)

and ®, and ®, are the single-particle (Wannier) func-
tions representing the a and c states, respectively. In oth-
er words, the wave function for the bound pair has been
expanded in the basis of noninteracting pair states; the in-
teraction is contained in the coefficients a;,,. For this
reason one can separate the expression in [ --- ] into
space and spin parts. For the case of interest involving
spin singlet bound state the space part is symmetric, i.e.,

-1
)= V2
+®,(r,

[®,(r;—R;)® (r,—R,;)

—R,)®,(r;,—R,,)]
XDy (2) =y (Dx(2)]

Therefore, the space part of the wave function can be
determined by a Fourier transformation of a; back to
real space, i.e.,

—ik-(R;—
\I/ac(rl,rz)‘:# SaSe TR, (r,~ R (r,~ R, )+ D, (r,— R, (r,—R,,)] . 4.3)
k im
Analogously, we obtain the c-c component as
172
12 «(R;—R,)
Y, (r,1,)= v ZBkZe " P (r;—R,, )P (r;—R,). (4.4)
The situation for the a-a component is different in that y; =0. Hence, to avoid any inaccuracies we write
5 172
Woo(ry, )= N > (7 —7ii8;)P, (1, —R)P, (1, —R;) . 4.5)
ij
Next, we choose for ®,(r) the atomic 1s-like function
1 It
L =— -, (4.6)
alr) Vimap P ag

where ajp is the effective Bohr radius. Such a choice renders the wave functions {®,(r—

R;)} nonorthogonal. Howev-

er, since we assume that ap is much smaller than the interatomic distance (taken as unit of length), the error introduced
in this manner should not be substantial. Also, we choose ¢, (r) as a Wannier function for the plane-wave state. Hence,
up to a normalizing constant

P (r—r;)=8(r—R;) 4.7)

Substituting (4.6) and (4.7) for (4.3)—(5) we obtain the final expression for the components of the space wave function in
the form



|r1—R,~|
ap

1 1
(map)'’? VN

<I)ac(rl_rZ)z 2 -

i

exp

_ |r2—R,‘|

+exp

ap

172
P (r,—r,)= {l l > Bycos[k-(r;—r,)],
N k

~M

(ykcos[k'(Ri—RJ-)]—l)’ .

(4.8¢)

To perform numerical analysis we have assumed that the
system is two dimensional, with dispersion of energies in
the bare band given by

€, =2[t|[cos(k,a)+cos(k,a)],

where 2¢t=1 and a=1 has been assumed subsequently.
In Figs. 3—6 we display the components of the wave func-
tion in the x direction, taking the coordinate r, at origin.
One sees clearly that all the components decay on the
length scale of a few lattice constants. Additionally, the
a-a component exhibits markedly different behavior.
This occurs because the electrons repel strongly. There-
fore the probability of finding the two electrons close to
each other is small. In general, the value ®,,(0) is small
but nonzero in our treatment, particularly when ajp is a
sizable fraction of the lattice constant; this artifact arises
in approximating the Wannier function ®,, by an atomic
function. We did not attempt to include the overlap in-
tegrals to eliminate the unphysical feature that ®,,(0) is

L ap =0.1
5.00
W L
O 3.00f+
2 L
=
4
o
= L
< 1.00f+
D e
_| 1 1 1 1 1 1 1 1 1 1 1 1 1
097—6—5—4—3-2-|O| 2 3 4 5 6 7

LATTICE DISTANCE

FIG. 4. The a-c component (¥,.) component of the pair
wave function as a function of relative distance along the x axis
for the square lattice. The parameters are U=8, €,=—2, and

= —2 (in units of 2¢).
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S a,cos[k-(r,—R;)]
k

> ajcos[k-(r;—R;)] i, (4.8a)
k

(4.8b)

[
nonzero, since we believe that this would not change the
main features of the spatial dependence of ®,,.

The rapid decay rate of the wave function is in sharp
contrast with the large spatial extent ~10* A of the wave
function for the Cooper pair; in the latter case the exten-
sion is determined by the ratio of the Fermi energy to the
binding energy. Here the Fermi energy is zero. Howev-
er, the pair coherence length {~3—5a obtained here in
the dilute limit constitutes an upper bound for the corre-
sponding quantity for the dense system of one hole per
atom. This is so because in the limit of high concentra-
tion the pairs bind more strongly since the correlated
electrons are heavy and mutually hinder their kinetic
motion. In other words, the system is driven toward a
liquid consisting of local singlets. The difference between
the bound states considered here and the Cooper pair is
also illustrated in Fig. 7, where we have plotted the pair
binding energy as well as the best fit to the dependence
E ~a exp(—bx), with x =1/J. One can see that even in
this “best” case the binding energy can be represented
only approximately by the standard expression for the
Cooper pair binding. We therefore conclude that hybrid
pairing containing the exchange interaction of the Kondo
type leads (at least, in a dilute limit) to a new itinerant
bound state which differs from the local Kondo singlet,
or from the local singlet of Zhang and Rice? or from the
standard Cooper pair. It remains to be seen whether the
assembly of such pairs evolves into a condensed BCS type
of state discussed earlier’®!° within the mean-field-type
approximation.
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FIG. 5. Same as in Fig. 4 but for the c-c component (V).
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FIG. 6. Same as in Fig. 4 but for the a-a component (V¥,,).

V. A COMMENT: COMPARISON WITH A
SINGLE-BAND CASE

Since the t-J model is often regarded as containing the
principal physics of high-temperature superconductors,>*
it is interesting to compare our results with those for a
single-band case. The starting Hamiltonian in that case
is

H=3 tyal,(1-N,_,)a;,(1-N,_,)
ij,o
2ty

;
-3 —LEpiD,; .
ijk Y Y /

(5.1)

For simplicity we consider only the kK =i terms. One can
solve the single-pair problem by considering only the |y )
component (3.3c). In the two-dimensional square-lattice
case, this leads to the following implicit equation for the
eigenvalues €,:

0.70
[ e
F e
w Ee =-2.0
> 0.50f ° Ef=-2.0
Q b U=8
% E f(x)=0.957097 exp(-1.4569x)
w 0.30F
O] o
= E
o E
= E
T o.10f
_o|o:.|nn:||l....u“.l.......“l.uunnl....“n.
" 70.00 2.00 4.00 6.00 8.00 10.00

EXCHANGE INTEGRAL 1/J

FIG. 7. Comparison of the results for the pair binding energy
as a function of the Kondo coupling constant (points) with the
analytic form [f(x), solid line] for the Cooper pair (Ref. 14).
Note that x =1/J.
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FIG. 8. The binding energy of a single spin singlet pair in the
case of a two-dimensional narrow band.

cosk, tcosk, )?

1 (
1 =— , 5.
D (5.2)

where J=2t2/U and ¢ is the hopping integral involving
nearest neighbors. The pair binding energy A=XA—2zt,
where z is the number of nearest neighbors, is plotted in
Fig. 8. A bound state occurs if the negative sign is taken
in Eq. (5.2). We see that the binding state appears only
for J 2 1.31W, i.e., in the unphysical limit of the z-J mod-
el in which J << [t|. Additionally, there is no bound state
for a single pair in three dimensions. Obviously, this does
not preclude a stable bound state for an almost half-filled
band case (e.g., with two holes), the limit which is studied
extensively.'® Also, in one dimension case the effective
Hamiltonian (5.1) always lead to a bound state with ener-

gy A=—V (2zt)>+(4J)>. Therefore, the existence of
single-pair bound states in the t-J model is limited to
low-dimensional lattices (D =1 and 2).

VI. CONCLUSIONS

We have studied bound states for a single electron pair
that are induced by exchange interaction between the
particles. While the practical importance of these results
is limited, they may serve as a check on accuracy of ap-
proximate solutions adopted for studies of the many-
particle case. The contact Kondo interaction induces an
itinerant bound state in the mixed-valence situation, i.e.,
when part of the hybridization is retained in the effective
Hamiltonian. It will be interesting to compare these re-
sults with corresponding ones for two holes on an other-
wise singly occupied level situation.

Finally, the inclusion of superexchange interactions in
our model (fourth-order effect in ¥ /U) would be desir-
able to determine the relative importance of d-d vs p-d
exchange interaction in high-T, systems. Work along
these lines is in progress.



46 MICROSCOPIC MODEL OF HYBRID PAIRING: 1II. ...

Note added in proof. We recently calculated a relative
contribution of different components to the total wave
function |F). For that purpose we have determined the
area under each of the components (cf., Figs. 4-6)
squared. Next, we divided each of the areas by their sum
S=S,,+S,.+S.. The numbers that provide the rela-
tive probabilities are S,,/S =0.85, S, /S~0.15, and
S, /S=0.007. The pairing is mainly of the a-a charac-
ter. This surprising result speaks in favor of an effective
f-f pairing, even without inclusion of the superexchange
[fourth-order processes in ¥ /(U +¢€/) in the Hamiltonian
(2.1D].
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