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We discuss ellipsometric experiments seeking evidence of broken time-reversal symmetry in the high-
temperature copper oxide superconductors. We use both a generalized symmetry analysis, and a magne-
toelectric model suggested by Dzyaloshinskii, to argue that the hypothesis that best fits the various ex-
perimental results is the P'T-invariance hypothesis —which assumes broken '7 symmetry in each plane,
and antiferromagnetic (alternating) order of the broken symmetry in the c direction. We suggest two ex-
perimental tests of the PV:invariant model; one of these is sufficient to rule out any other broken-
symmetry state and so has the potential to be extremely useful.

I. INTRODUCTION

There exists a wide variety of theories of the normal
state of the doped (metallic) phase of the high-
temperature superconductors (HTSC). A subset of these
theories' predicts that time-reversal ('T) symmetry is
spontaneously broken in the HTSC. (This broken sym-
metry is distinct from that seen in the undoped phase,
which has long-ranged antiferromagnetic order of the
copper spins. ) A common feature of these theories is the
existence of spontaneous (charge or spin) currents in the
planes, which circulate either right or left handed. Hence
a simple, generic model for the broken Y symmetry in
the doped phase involves an order parameter for each
plane that takes one of two discrete values (+ or —).

A number of experiments have been performed in
search of the putative broken Y' symmetry of the doped
phase of the HTSC. In this paper we focus on those ex-
periments seeking signs of broken T symmetry in the
response of HTSC samples to polarized light. An exper-
iment with such aim, reported by Lyons et al. , found
circular dichroism (CD) in reflection from samples of
YBazCu307 „(1:2:3)and Bi2Sr2CaCuzOs (2:2:1:2). This
experiment suggested broken 'T symmetry in these ma-
terials, but could not rule out CD arising from other
effects such as lattice distortion. Subsequently, Spielman
et al. conducted tests sensitive only to the nonreciprocal
component of circular birefringence (CB) in transmission
for 1:2:3 (Ref. 5) and for 2:2:1:2(Ref. 6). A positive sig-
nal from such a test is conclusive evidence for broken T
symmetry; the result was, however, null for this experi-
ment. In contrast, Weber et al. reported CD in
reflection (and subsequently in transmission) from 1:2:3,
and CB in transmission through 2:2:1:2. These experi-
ments again strongly suggest broken Y' symmetry but are
not conclusive. For instance, the transmission (CB) ex-
periments involved measuring the rotation of light (ini-
tially polarized along a principal axis of the material to
avoid effects from linear birefringence) after passing only
one way through the sample, and thus could not distin-
guish reciprocal from nonreciprocal effects.

More recently, Lyons et al. have reported a

modification of their experiments that gives a signal sen-
sitive only to ~R++ ~

—~R ~
. [Here R++ is the am-

plitude for reflected +-circularly-polarized (CP) light,
given that unit amplitude of +-CP light is incident; and
similarly for R .] As shown by Halperin, ' a nonzero
value for this quantity is unambiguous evidence of broken
V' symmetry. Lyons et al. found a nonzero value for
IR++ I IR I in many (but not all) samples of 1:2:3;
they also report a null result for the same test on a single
sample of La2 „Sr„Cu04 (2:1:4). While the sample
dependence of these results is puzzling, the positive re-
sults obtained indicate unambiguously that Y symmetry
is broken, both above and below T„at least in 1:2:3.
This apparently conclusive result is however, challenged
by recent results from reAection experiments by Spielman
et al. who found a null result for the quantity
arg(R++ /R ) for both 1:2:3and 2:2:1:2samp es.

We thus find that the question of broken 'T symmetry
in the HTSC remains unresolved by the available experi-
mental results. There are however some theoretica1 re-
sults that may help to resolve the question. Analyses of
coupled planar systems (with '7 symmetry broken in each
plane) by us" and by Rojo and Leggett' concluded that,
under very general circumstances, antiferromagnetic or-
der ( + —+ —+ ) of the symmetry breaking in
the planes is preferred energetically. Simultaneous but
independent work by Dzyaloshinskii' showed that anti-
ferromagnetic (AFM) order of the planes, for 1:2:3 and
for 2:2:1:2, would give R++XR but T++ =r
thus (apparently) allowing the null results of Spielman
et al. in transmission to be reconciled with the positive
results of Lyons et a/. in reflection. Dzyaloshinskii also
pointed out that 2:1:4 (with AFM order of the planes)
falls in a different symmetry class, and should give a nu11

result in reflection as well as transmission. This predic-
tion was subsequently tested and confirmed by the Lyons
experiment on 2:1:4mentioned above.

Recently' we have performed a general symmetry
analysis of transmission and reflection experiments for
normal incidence. We find that this analysis allows
reconciliation of all the above experimental results but
one, by assuming broken 'T symmetry in each plane, with
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the planes ordered antiferromagnetically (Fig. 1). The
outstanding result which is not predicted by this model is
the null result of Spielman et al. for arg(R++ /R ).
The rotation in transmission seen by Weber et al. was
shown to be allowed by this model, even though the re-
sult of the Spielman et al. ' transmission experiment is
predicted to be null. Since, as pointed out by Dzyaloshin-
skii' (and as seen in Fig. 1), AFM order of the planes (for
1:2:3and 2:2:1:2)breaks three dim-ensional spatial inver-
sion (P) symmetry as well as time-reversal (T) symmetry,
but is invariant under the product P'T, we call this model
the P'T-invariant model for the HTSC.

A symmetry analysis similar to ours has been per-
formed by Shelankov and Pikus. ' We find complete
agreement where the two analyses overlap. The work of
Shelankov and Pikus differs from Ref. 14 and the present
work in that it considers the effects of time reversal on
partially as well as fully-polarized light, but it does not
consider the implications for experiment of the P'T-
invariant state.

In this paper we offer a detailed discussion of the
analysis of Ref. 14. In particular, we treat the question of
time reversal as applied to light-scattering experiments in
some detail, showing a connection between the "principle
of reciprocity"' ' and the "Onsager" relations for
linear-response coefficients. ' We also present a concrete
realization of the P'T-invariant model: We solve for the
rejected and transmitted waves for light normally in-
cident on a magnetoelectric slab or orthorhombic or
tetragonal symmetry. Nonzero magnetoelectric
coefficients' ' are a consequence of and a realization of
P'T symmetry, i.e., they are indicative of separately bro-
ken P and 'T symmetries but are under combined P'T
symmetry. Our solution for the magnetoelectric slab
thus provides another route to the conclusions obtained
from the pure symmetry analysis.

Finally, we discuss two experimental tests of P'T sym-

metry that are suggested by our analysis. Each requires
for its realization a sample for which a single domain is
accessible from both surfaces. This is however the only
obstacle to performing these tests; and, based on reported
characteristics of single-crystal samples of
Bi2SrzCaCu208, it seems that this obstacle is not insur-
mountable. Hence, we hope that this analysis might help
in resolving the question of the existence and nature of
broken time-reversal symmetry in the HTSC.

II. SYMMETRY ANALYSIS

We consider monochromatic, fully-polarized light at
normal incidence on a perfect sample. A perhaps obvious
but crucial ingredient of our analysis is a distinction be-
tween the two surfaces of the sample, which we label
"left" (l) and "right" (r), respectively, (see Fig. 2). Hence
our reQection and transmission coefficients take super-
scripts denoting the surface of incidence; for example, for
unit amplitude +-CP light incident on the left, R ++ and
T'++ give the amplitude of +-CP light refiected on the
left, and transmitted to the right, respectively.

For consideration of propagation in either direction we
find it convenient to use a space-fixed (rather than k-
fixed, where k gives the propagation direction) coordinate
system. We resolve any polarization state in terms of the
two orthogonal + and —circular polarizations. The
latter are space-fixed as well, that is, they are invariant
under the change of sign k~ —k.

Our most general experiment then has four inputs—
incident amplitudes for + CP and —CP on the left
(l+, I ) and right (r+ and r )—and similarly four out-
puts. The input and output vectors are then given by

l+ l+

and o=
I

I-I In linear response we have o=Si, where the scattering
matrix S is, in our basis,

r.r
lR++

T++l

R'+
T'-+

++

R++
T +

R'+

R+
Tl

R'

T'+-

R+
T'
R'

(2)

(+,-) (+,-)
FIG. 1. The P'T-invariant model for the HTSC. We assume

time-reversal (T) symmetry is spontaneously broken in each me-
tallic plane; the sign of the broken symmetry can be either + or
—.The pictured configurations involve two planes per unit cell
[appropriate for YBazCu307 „(1:2:3)and Bi2SrzCaCu20s
(2:2:1:2)],with strictly alternating signs of the broken T symme-
try. The stack on the left is converted to the one on the right by
either V or three-dimensional inversion P. Since the two stacks
are distinguishable, the model breaks 'T and P symmetries; but
it is invariant under the combined P'7.

(+ -) (+,-)

FIG. 2. Schematic of our idealized, general light-scattering
experiment. Monochromatic, fully-polarized light, resolved in
the circular basis (+ CP or —CP) is normally incident from
the left (I) or right (r). Reflected and transmitted light is
resolved in the same basis. S is the full scattering matrix giving
the outputs as a linear function of the inputs.
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S characterizes the sample: Invariance of the latter un-
der a given symmetry operation 0 implies the invariance
of S under the same. Hence we examine, in our basis, the
effects of several symmetry operations on the matrix S.

A. Space inversion P

Space inversion (r~ —r) exchanges left and right sur-
faces of the sample and changes the sign of the wave vec-
tor k of the light, while leaving the CP unchanged (P
changes the handedness but not the absolute circular ro-
tation). Thus,

l+ ' ' r+

+r

l

r/ T—car ( —car ) (8')

We can express these in our circular basis using
X„„=C X„,C ' where

1 —l

1 i
C=

Changing to the circular basis, and reassembling every-
thing in our matrix S, we get

etc.) from our 4X4 scattering matrix S. Letting r and r'
coincide on one side of the sample, we then get

l, r
—car —car

For r and r' on opposite sides we get the transformation
law for the transmission matrices:

and so
R' R+ T+

0 1 0 0
1 0
0 0
0 0

~x 02X20 0

02X2
1 0

(4)

where o „ is the usual 2 X 2 Pauli matrix ( i 0). The
scattering matrix for the inverted sample is then

S=S(—rP) =

or more simply
j.

where

R' +

R"
Tl

T" + R" +

.T'+-
1R++

R+
1T++

T'++ R ++

(9)

(10)

PSP

R++

++
R' +

T++1

R++1

T'-+

R+
T+
R"

T+

R+1

Tl

—2X2 —20 1

J=
—2 —2X2

T" + R' + T" R' C. Rotations about the propagation direction

B. Time reversal Y

In considering the effects of time reversal Y on a
scattering system one may invoke the known symmetry
properties of linear-response coefficients in Cartesian
coordinates; alternatively, one may invoke the principle
of reciprocity, which has been stated in various forms
over the last century. ' ' Here we choose the former ap-
proach. For an application of the principle of reciprocity
to the components of the scattering matrix S see Ref. 15
and the Appendix.

In linear response, and in Cartesian (a,P) coordinates,
the electric field at r' arising from an input field at r is

E (r')=gy &(r, r')E&(r) .

We choose k~~z from now on, so that (a,P) range over
(x,y). y is then a 2 X 2 matrix that transforms under time
reversal as

g—:y(r', r, —@) =y (r, r', rp ) .

Here N represents any quantities odd under T, such as
an external magnetic field, or, in our case of interest, a
time-odd order parameter of the sample.

We now temporarily abstract the 2 X 2 reflection and
transmission matrices for right and left inputs (R",R',

so that the rotation matrix in our 4 X 4 notation is

R(8)=
2 02 X 2

ie

2X2 2

(12)

D. Re8ections

Again the xy plane is perpendicular to k. Define $ to
be the operator for refiection about the y axis (x ~ —x).
Then

—1 0
—car 0Y

and

0 1

—circ 1 0

In our 4 X 4 circular basis

The effect of a rotation by an angle 8 about k on any
polarization state, expressed in our (two-dimensional) cir-
cular basis, is

e' 0
—ie
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02x2 12

12 0 2x2

and similarly X(y ~—y) = +J.

(13)
For the tetragonal case we simply set all the oF-diagonal
[(+—}and ( —+)] eleinents to zero in Eq. (17).

F. Application to optical rotation

The above results may now be applied to known exper-
iments on optical rotation in the HTSC. In each case we
wish to test the compatibility of the PT invariant model
with experiment, in terms of the constraints derived pure-
ly from symmetry.

Early experiments by Lyons et al. detected a signal
proportional to

E. Combined symmetries

If a sample is invariant under combined P7; then

IR++
T++I

R

T +

++

R++
T +
R" +

R+
T+
R

T+

R+

R"

=PJS JP=

R"
TI

R" +

T +
I

T"

R

T +

R'+

R+
T+

R++

T"+-

R+I

T++

T++ R ++I I

(14)

S =S. (15)

The other symmetry relevant to orthorhombic or
tetragonal crystals is rotational symmetry. Orthorhom-
bic rotational symmetry gives no constraint on S [since
R(n. )= —~1]; however, tetragonal (fourfold) rotational
symmetry requires the off-diagonal blocks of S to be zero:

S++ 0 2x2S= (16)
02x2 S——

Finally, we summarize the relations obtained for per-
fect crystals of two magnetic point groups: ' m'm'm',
which is in our notation [P'T+ $ 'T+P(~)] (orthorhom-
bic); and 4/m'm'm', or [P'7+ $ T+g(vr/2)] (tetrago-
nal). For m 'm 'm ' we get

T++ =T++ =T' =T =Td,

R++ =R"

R"+ + R

=R + =R + =R+ =Ro
(17)

T+ T + )

T+ T + e

In our model, the sample is composed of many planes,
each of which breaks V' symmetry. For orthorhombic or
tetragonal crystals (appropriate to the HTSC) the sample

is invariant under $ in the absence of the broken '7 sym-
metry. Given the latter, however, each plane (and thus
the entire sample) is invariant under combined $ 'T
(which is called "PT" in the anyon literature ). Since,
however, J=J, X'T invariance gives simply

I')+( IR

As shown by Halperin, ' and confirmed by our Eqs. (2)
and (9), a nonzero value of (~R++ ~

—~R
~

) is evi-
dence for broken Y symmetry of the sample; however SL,
contains other terms that complicate the interpretation of
the results. Hence, later experiments by the same group
used a modified optical apparatus giving a signal propor-
tional to (~R++ ~

—~R
~

)—:SL2. The positive results
from these experiments appear to give unambiguous evi-
dence of broken 'T symmetry in the HTSC. We note
from Eq. (14} that PV' symmetry also allows SLz@0, as
does [from Eq. (17)] an orthorhombic 1:2:3 crystal with
AFM order of the planes.

Lyons et al. have also measured (~R++ ~

—~R
~

)

for a single sample of 2:1:4. As noted by Dzyaloshin-
skii, ' this material, with one plane per unit cell, does not
break 7 or P (neglecting surface effects) if the planes or-
der antiferromagnetically. It is thus interesting that a
null result was found for SL2 for this material. Unfor-
tunately, to date only a single sample has been examined.
This result, if replicated, coupled with the positive results
for 1:2:3,would be strong evidence in favor of the P'7-
invariance hypothesis.

Experiments by Spielman et al. , ' using the Sagnac
interferometer at Stanford University measured
arg(T'++/T" )=Ss,. From our Eqs. (2) and (9) this
quantity is zero if '7 symmetry is unbroken in the sample.
PV symmetry by itself does not compel Ski=0 (even
though, as pointed out by Dzyaloshinskii, ' P'T symme-
try is sufficient to give T'++ = T' ). However, the addi-
tional symmetries (m'm'm') embodied in Eq. (17) suffice
to ensure that S»=0. Hence, at the present level of
analysis (neglecting questions of defects, polycrystallinity,
etc.}, the transmission results of Spielman et al. are con-
sistent with the PY-invariance hypothesis.

More recently, Spielman et al. have modified their ap-
paratus to allow for interferometric reflection measure-
ments. Their signal is then arg(R++ /R ) =Ssz. Since
the PV'-invariant model, as well as any model giving bro-
ken '7 symmetry alone, predicts R'++AR' (i =r, l),
the null result of this experiment disagrees with the PY-
invariance hypothesis in the weak sense that an effect
which is allowed is not seen. This result is also in nearly
direct contradiction with the finding of Lyons et al.
mentioned above.

Weber et al. reported optical rotation in both
reflection and transmission experiments. For the former,
it is not clear from their analysis how to translate their
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measured signal into our notation. We can say that their
signal (g„—gz in their notation) is composed of a term
proportional to Re(R++ —R ) and a term proportion-
al to Im(R++ —R ) (these sensitive to broken T), and
a part involving R+ and R +. Weber et al. em-

phasize the former terms as being responsible for their
observed signal, based on the dependence of the sign of
g„—gs on applied magnetic fields in field-cooling experi-
ments. As we have noted already, R++WR is al-

lowed by the P'T-invariant model.
For the transmission experiments the input polariza-

tion was aligned with a principal axis of the (2:2:1:2}crys-
tal; this procedure was possible, since the twin size ex-
ceeded the laser spot size for these samples. The rotation
angle of the transmitted light was then measured. To
make contact with our notation we let x be the principal
axis and assume incidence on the left; the azimuth of the
output is then

1 ++ +-——arg
T ++T

—SW2 . (18)

This quantity is allowed to be nonzero by P'T symmetry
alone. Adding the orthorhombic and $ 'T symmetries
gives

Td+ T+
w2

—
2
"g

T +Tl (19}

= [( I T++ I

—
I
T I }/(

I T++ I+ I
T

I }] .

The PT model gives ccD=0 but c,„&0.
We thus find that the PT-invariant model, i.e., broken

Y symmetry in the planes, ordered antiferromagnetically,
is consistent with all but one of the above results on opti-
cal rotation in the HTSC. The result which is not pre-
dicted by our symmetry analysis is the null result of
Speilman et al. for S&z=arg(R++/R ). This result,
being null, is not forbidden by the P'T-invariance hy-
pothesis; but it does not support it. Below (Sec. IV) we
will discuss in more detail the possible resolution of these
results. First, in the next section, we present a phenome-

while increasing the symmetry to tetragonal gives

Sii 2= —
—,'arg( Td /Td ) =0.

The PT-invariant model is thus consistent with the re-
sults of the Weber transmission experiment only if we as-
sume that the samples used were not rotationally invari-
ant about the c axis, i.e., not tetragonal. This assumption
is, however, reasonable; although 2:2:1:2 is nominally
tetragonal' there is, in fact, ample evidence for
significant structural ' and optical ' anisotropy in the
ab plane.

Later experiments by Weber et al. measured "average
ellipticity" c.,„=S~3 in transmission through 1:2:3 films,
for linearly polarized input. Here average ellipticity
means the average for two orthogonal input polariza-
tions, the idea being to cancel the ellipticity arising from
linear birefringence. The measured quantity s,„(thus
defined) is in fact not equivalent to

ECD sI T+ =T +

nological realization of the PT-invariant model in terms
of a slab with nonzero rnagnetoelectric coefficients.

III. MAGNETOELECTRIC MODEL

A. Symmetry properties

As shown by Dzyaloshinskii, ' ' a consequence of PY
symmetry is the appearance of nonzero magnetoelectric
coefficients in the constitutive relations for the material,
which take the form

EH
D e a E
g HE

Following a notation similar to that of Berreman, we
can write the above more concisely as

(20)

C=MG . (21)

It is useful to decompose the (4 X4) linear-response tensor
M as

—2X2

0-2X2 P

EH
a—2X20

+ HE
—2X2

:—0+a; (22)

that is, the off-diagonal blocks are confined to a. With
this notation in place we can briefly discuss the symmetry
properties of the tensor a.

Onsager reciprocity relations give a (4)
= —(a H&) T( —4) where 4& is again a 'T-symmetry-
breaking order parameter. Hence we find that the 'T

invariant part of a must be antisymmetric, or, converse-

ly, the symmetric part of a gives broken 'T symmetry.
By the same reasoning as that applied to the tensor 0,

we find that the Hermitian part of a is nondissipative,
and the antihermitian part dissipative. Hence we find
that the form of a appropriate to the P'T-invariant model
we wish to investigate is a symmetric tensor whose real
part is nondissipative and whose imaginary part gives dis-
sipation.

It is interesting to note that the magnetoelectric tensor
a has also been associated with optical activity, ' a
phenomenon that is Y invariant. We see from the above
that a description of optical activity in terms of a can
only be correct if a is antisymmetric, and hence, for non-

dissipative processes, purely imaginary. Problems arise
(e.g. R++ AR ) when this constraint is not adhered to.

We return to the P'T-invariant model, and again re-
strict our considerations to propagation along the c (IIz)
axis. This allows us to neglect the z components of all the
tensors in M, rendering it a 4 X4 matrix whose blocks are
2 X 2. For the magnetic point symmetry m 'm 'm ' (P'T +
orthorhombic} the form of a must be ' diag(aii, a22),
while for the tetragonal case we must have a» =a22.

We note that Dzyaloshinskii' obtained a symmetric a
from the many-AFM-plane model of the HTSC. Dzy-
aloshinskii found that a ~i E'

y
where e'„ is the antisym-

metric (and hence T-symmetry-breaking) part of the
two-dimensional dielectric tensor for each plane (alter-
nating in sign from one plane to the next). This quantity
is also rotationally invariant; hence we find that, for this
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We solve the problem of propagation in a magnetoelec-
tric slab in the standard way. We first find the eigen-
modes of propagation ' for an infinite medium; these
modes plus the standard boundary conditions then give
us the complete solution for reflected and transmitted
waves from the slab.

The eigenmodes are conveniently found using the 4X4
method of Berreman. We take @=diag(e&, e2)
(x = I;y =2) and p= 12. Then, keeping terms to first or-
der in a, we find

k) 2=+

k34=+
(23)

for the wave vectors of the eigenmodes, i.e., the same as
the unperturbed values to O(a ). We write the eigenvec-
tors in the form

'E

E

X
(24)

H

where E, H are the electromagnetic fields and the time
dependence is implicit. The eigenvectors are then, to
O(a'),

origin for a, u»=a22 regardless of crystal symmetry.
Thus, finally, the version of a that we wish to consider in
the following is the simplest possible:

EH HE
a =a =diag(a, a).

B. Eigenmode of propagation
+ D

G + H,
1(

+ E

+F

thickness d) wave as

FIG. 3. Wave propagation through a magnetoelectric slab
(bounded by the heavy vertical lines). Incident light (upper left)
is fully x polarized. The xy plane, in which lie the E and H vec-
tors of the light, and which is normal to the propagation direc-
tion, is rotated into the plane of the paper for the purpose of
clearly showing E and H (see coordinate axes for E and H vec-
tors at lower right); also, H is drawn shorter than E for clarity.
The reflected and transmitted waves are resolved into x and y
components as shown. The complex scalar amplitudes for each
eigenmode (internal or external) are denoted
A, B, . . . , E, . . . , H; these should not be confused with the elec-
tromagnetic field vectors E and H. The four eigenmodes inter-
nal to the slab are characterized by E HAO, due to the nonzero
magnetoelectric coefficients of the slab. This gives rise in gen-
eral to a rotation in transmission (HAO) and in reflection (BAO)
even when x is a principal axis of the dielectric tensor (as shown
here).

0 1

—a ' 34 +n 2

+n)

(25)

0 —ikze

where n, 2
=Qe, 2.

We note that these eigenvectors represent light that is
linearly polarized along the principal axes of e. The par-
ticular feature due to a nonzero magnetoelectric
coefficient a is that E.HXO; this feature will be shown to
give a rotation at the incident boundary ( ~ a) such that
the reflected wave, and the transmitted wave internal to
the material, will not lie on a principal axis even when the
incident polarization does. Even for the tetragonal case
(e, =E2) both the reflected and the internally transmitted
waves are rotated with respect to the input. From this
point of view, the surprise is then that, for the tetragonal
case, the transmitted wave emerges unrotated on the far
side —as required by our symmetry analysis.

C. The orthorhombic slab

For simplicity we let the incident wave be x-polarized
light, assumed incident from the left (Fig. 3}. In the nota-
tion of Eq. (24}, we write the incident wave, the reflected
wave, and the transmitted (at the far side of the slab, of

8 —ikze (26)

H
e ik(z —d)—H

The internal waves are written in terms of the above
eigenmodes:

The eight unknowns A —H are then found from standard
boundary conditions at the two surfaces.

ikl d ik2d
We define p& ——e ', p2 =—e ', and A =N~ /2),B:Nz I2), etc., where 2—) is the common denominator for

the eight unknowns. We also define
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Q=(n2+1)(n, +1),
R =(n2 —l)(n&+I),

S =(nz+1)(n, —1),
T=(n2 —1)(n, —1) .

(27)

The solutions for input from the right are obtained
from the above by simply changing the sign of a. Hence

Then the waves in the slab are given by

Nw =(p& p&
—)[p2RT p2Q—S],

N~ =2a[p fpz Q+p fp2R +p,pz S+p,p2T 4n—, n2],

Nc =2p*,p2(n2 —1)R —2p fpz (nz+1)Q,

ND 2a[2n1(1 n2)+p Ip2 0 +plp2S]

Nz =2p, p2(n2 —1)T—2p, pz (n2+1)S,

NF=2a[p)p2R +p)p2T 2n)—(n2+1)],

NG=4n&[p2(n2 —1) —pz (nz+ I) ],
Ntt =4a[p f n~(n, + 1)+p,n2(n, —1)

—p&n, (n z
—1) p2

—n, (n 2+ 1)],

(28)

B' A

C' D
D' C
E' F
F' E

(29)

G' H
H' G

To make contact with the notation of Sec. II, we note
that the reflection and transmission matrices, for left-
incident light and in Cartesian coordinates, are

R cgr B Bt 7

(30)
G G'

Tear

The mapping (29) gives A'= —B and B'= A, whereX:—X(1~2). With this notation, and changing to the
circular polarization basis of Sec. II, we get

—,'(A —A )—,'( A + A ) iB—
2
—'(A —A) —,'( A + A )+iB

(31)

—circ

—,'(G+G)

—,'(G —G)+iH

—'(G —G ) iH—
2

—,'(G +G )

plus terms of O(a2).
Since 8 gives the E component of the reflected wave,

and H that of the transmitted wave, we see that there is a
rotation ~ a in both reflection and transmission, for in-

put polarized along a principal axis. The solutions for y-
polarized input (denoted A ', B', . . . , H') may be ob-
tained from the above by letting

A' 8

We see, as a final check on our results, that the above ma-
trices [Eqs. (31) and (32)] satisfy the constraints for the
m'm'm' case, given in Eq. (17) above.

D. The tetragonal slab

We obtain the solution for the slab with rotational
symmetry about z by setting 1 =2 everywhere in the
above. It is readily verified that this gives the expected
results: H =0 but BAO; off-diagonal components of the
circular matrices vanish; and R++ WR for either side,
while (as in the orthorhombic case) T++ = T . Hence,
again, this case gives rotation in reflection but none in
transmission.

IV. DISCUSSION

We find that our analysis of the P'7-invariant model
for the HTSC —that is, a model in which 'T symmetry is
broken in each plane, and the planes order
antiferromagnetically —offers some promise of reconcil-
ing the many confusing experimental ellipsometric re-
sults. In fact, it appears that there are only two likely
candidate hypotheses that might be compatible with all
the experimental results. We would state these two hy-
potheses as follows: (i) The P'T-invariant model is
correct; T symmetry is spontaneously broken in the nor-
mal state of the HTSC, and the planes order antifer-
romagnetically. (ii) 'T symmetry is not spontaneously
broken in the doped phase of the HTSC.

There is also, of course, the possibility that 'T symme-
try is broken in each plane, with the planes ordered
ferromagnetically —along with other conceivable
schemes for ordering the planes. There are, however,
theoretical arguments"' against ferromagnetic (FM) or-
der of the planes. Furthermore, we believe that FM or-
der of the planes should give macroscopic signatures of
the broken V symmetry, which would be detected in oth-
er experiments, such as JMSR experiments seeking inter-
nal magnetic fields. For these reasons, we view the FM
hypothesis as less likely than either (i} or (ii) above, and
so we concentrate on the latter two hypotheses in the fol-
lowing.

Neither (i) nor (ii} can explain all the available results
without some recourse to technical questions other than

symmetry. We would like to briefly discuss some of these
questions below. We will also suggest two possible exper-
imental tests, based on our symmetry analysis, of the
PV -invariance hypothesis (i).

As we have noted in Sec. II, the PT-invariance hy-

pothesis is compatible with all known ellipsometric re-

sults save one. The challenge to (i) is the null result of
Spielman et a/. for arg(R++ /R ). The P'7-invariant

model predicts that, for the materials examined in this

experiment (1:2:3 and 2:2:1:2,each with two planes per
unit cell}, R++WR in general. It is of interest that,
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(33)

This quantity is zero for the ferromagnetic case, and
equal to 2Szz for the PV'-invariant case. (It is trivially
zero for cases in which '7 symmetry is unbroken. ) Hence
the measurement of a nonzero value for D, would
uniquely and unambiguously indicate P'7 symmetry.

A second test involves a transmission measurement like
that of Weber et al. The quantity S~2 defined above
(Sec. II} is simply the azimuthal rotation in transmission
for principal-axis input. Abbreviating this quantity as
0 ', where the superscript indicates the incident surface,
define

D2 S~2 S~2 0"I (34)

This quantity is also zero for a ferromagnet (i.e., for Fara-
day rotation), and 28' for the PV'-invariant state. D2 al-

in one case involving sample exchange, Spielman et al.
found arg(R++ /R ) =0 for the same sample for which

Lyons et al. found IR++ I

—IR I %0. A possible ex-

planation for this discrepancy involves the finite size of
the broken- Y-symmetry domains in each plane. There is
evidence from experiments with ferromagnetic garnets '

that the apparatus used by Spielman et al. is less
efficient in resolving multiple domains, if the latter are on
the order of a few micrometers in extent. (We note that,
if we were to reject all results of Spielman et al. for this
reason, and disregard the difference seen by Lyons et al.
in a single sample of 2:1:4,then the FM hypothesis would
remain as a viable explanation for the remaining optical
results; the objections to this hypothesis, mentioned
above, of course remain. )

Hypothesis (ii) requires the rejection of all results im-

plying broken 7 symmetry in the HTSC. Since the re-
sults of Weber et al. are not free of possible contamina-
tion from 'T-invariant artifacts (such as spontaneous lat-
tice distortion with diminishing temperature}, these re-
sults do not offer as strong a challenge to (ii} as do those
of Lyons et al. The latter results however directly con-
tradict (ii). That is, assuming these results are correct, V'

symmetry must be broken in the HTSC.
This contradiction is much stronger than the apparent

disagreement between the hypothesis (i) and the reflection
results of Spielman et al. : The results of Lyons et al. are
strictly forbidden by the null hypothesis (ii), while the
reflection results of Spielman et al. only fail to report an
effect allowed by (i). In other words, if we assume that all
the experimental results are correct as reported, then
simple logic forces the rejection of (ii}, leaving us with
(i)—the PV'-invariance hypothesis. It remains possible,
of course, that the premise of the previous sentence is not
valid; we note that, to date, none of the reported results
have been replicated.

Two tests of the H:invariance hypothesis are suggest-
ed by our analysis. The first involves
&c2=(IR ~+ I' —IR I ). As pointed out in Ref. 14, this
quantity can serve to distinguish ferromagnetic or "sim-
ple" broken 7 symmetry from the antiferromagnetic PV'
symmetry. Define

lows a further discrimination: If an observed 8 in a
transmission measurement arises from a misalignment of
the principal axes (arising with decreasing temperature),
and hence from simple linear birefringence rather than
spontaneously broken T symmetry, then D2 will be zero.
D2 does not, however, distinguish rotation due to broken
P and '7 symmetries (i.e., the PV'-invariant state) from
rotation due to spontaneously broken P symmetry alone,
for example, from a spontaneous "twist" in the sample.

Each of these tests requires the availability of nearly
perfect samples, such that the AFM order is maintained
from one surface to the other. Clearly, the domains must
also be sufficiently large to allow their positive
identification from either face of the sample. It is not
clear whether these requirements can be met with exist-
ing crystals. Of the three experimental groups discussed
above, Weber et al. reports the largest twin size (-300
pm); it is commonly assumed that twin size is an upper
bound for the size of broken-7-symmetry domains.

V. SUMMARY

Although a number of experiments have been carried
out over the past two years, seeking unambiguous evi-
dence of broken time-reversal ('T) symmetry in the
HTSC, the question remains unresolved. It seems clear
that the most promising hypotheses are (i) antiferromag-
netic order of broken 5' symmetry in the planes, and (ii)
no broken T symmetry in the HTSC. Our analysis shows
that (i) is compatible with all the known results, and is
supported by all but one. In contrast, (ii) is contradicted
by the results of Lyons et al. Hence (i) (the "P'T-
invariance hypothesis") appears stronger than (ii) at this
time. However, because of the near contradiction be-
tween the refiection experiments of Lyons et al. and
those of Spielman et al. , and the lack of other corro-
borating experiments to replicate the reported results,
one cannot place too much confidence in either (i) or (ii).
We hence await further experiments that may resolve the
question.

We have suggested two experimental tests for the PV'-
invariant model. Each requires extremely high-quality
crystals; hence it is unclear whether or not these tests will
be feasible in the near future. We point out however that
one of these proposed experiments —that based on mea-
surement of the quantity D, (Sec. IV above) —could
serve as a decisive test of the PV'-invariance hypothesis.
There is therefore, in our view, considerable motivation
for seeking to overcome the problems in sample prepara-
tion that may stand as obstacles to performing these tests.

Rote added. Since this work was submitted, it has been
pointed out by Spielman et al. and by Shelankov that
the presence of a substrate (in thin-film experiments) in-
validates our symmetry analysis, since the (film + sub-
strate) does not obey P'T symmetry. A particular conse-
quence of this (which can be verified using the approach
of Sec. III) is that a nonreciprocal rotation is expected for
the transmission experiments of Spielman et al. , i.e.,
Ss, ~ (n, —1)a where n, is the substrate dielectric con-
stant and u the magnetoelectric coefficient. Also,
Lawrence, Szoke, and Laughlin have repeated the ex-
periment of Lyons et al. for 1:2:3 single crystals and
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thin films, but failed to replicate their positive result. Ob-
viously, these developments are each discouraging for the
P'7-invariance hypothesis, tending instead to favor the
null hypothesis of unbroken V'symmetry in the HTSC.
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APPENDIX: ONSAGER RECIPROCITY
AND THE PRINCIPLE OF RECIPROCITY

The principle of reciprocity (POR) was given precise
statement in reference to light-scattering experiments by
Perrin, ' although its original statement dates from much
earlier. ' More recent (and concise) statements, and ap-
plications, may be found in De Figueiredo and Raab, '

and in Graham. ' In this appendix we will use "POR" to
denote the statement of Perrin. The POR then relates
the intensities of scattered light in an experiment e, and
in its time-reversed counterpart ez, analyzed in terms of
linear polarizations, as follows (see also Fig. 4): Assume
that, in experiment e&, light of intensity I& and polariza-

weak POR ORR . (Al)

(It is easy to show the converse ORR= weak POR. ) In
the following we state the POR in a form slightly more
general than that of Perrin (we call this the POR') and
then show that

POR =ORR . (A2)

The FOR* consists of the POR with the following
modifications. Let p, and p', be arbitrary (complex) po-
larizations; then, in the (time-reversed} experiment e2

[part (b) of Fig. 4], the polarizations p2 and p2 must be
the time-reversed counterparts of p', and p „respectively,

Now we establish some notation. We retain a Carte-
sian basis, and write p &

as ("}. Then the transfer function
for the polarizer P, giving p, is

tion p &
is incident on a sample S from r, and further that

scattered light of intensity I', is detected at r' after pass-

ing a polarizer that transmits only p', . In experiment e2,
light of intensity I2 and polarization pz=p', is incident
on the time-reversed sample S from r', and scattered light
of intensity I2 is detected at r after passing a polarizer
that transmits p2=p, . The POR then states that if
I2 =I& then I2 =I

&
~

In the above (and everywhere in this appendix),S:—S(r, r', 4) is a 2 X 2 scattering matrix expressed in the
chosen polarization basis; 4 again represents any 'T-odd

aspects of the scattering system. The time-reversed sys-

tem is then described by S=S(r', r, —4). The POR ap-
pears to constrain only the magnitudes of the com-
ponents of S; but in fact, as shown by Shelankov and
Pikus' (SP), it can be used to constrain the phases as
well.

The Onsager reciprocity relations (ORR) used in Sec.
II give the magnitude and phase of S in terms of S. For a
Cartesian basis, the ORR state that S=S . SP used a
"weak" statement of the POR, wherein the emitted and
detected intensities are unpolarized; they showed that

Ip = I')
PQ ~

(A3)

(A4)

X
(x' y*) .

lxl'+ lyl' .y.
For convenience we set I, = /x/ + /y/ =1. The light em-

erging at r', after passing through P'„ is

IX g X=P S

I& is then

FIG. 4. The principle of reciprocity for general (elliptical)
polarizations (denoted FOR* in the text). In experiment (a)

light of polarization p, and intensity I„coming from r, is scat-
tered by sample S to r'. After passing through polarizer P, its

intensity at r' is I', . In the time-reversed experiment (b), light of
polarization p2 =p I* is incident from r' with intensity I2. After

scattering from the time-reversed sample S, and passing through
the polarizer P, , light of intensity Iz is detected at r. The POR
then states that if I2 =I I then Iz =I', .

X
I', =(x" y")

IX=(x' y*)S (P, )

X

For the time-reversed experiment e2 we note that

(A5)
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and similarly for I' &. The input for e2 is

(A6)
2. POR = &ORR

We now back up to Eq. (A8) and assume instead that
the POR' is true. This gives

lg

C

r

X
C2 =PiSC

X
t (A7)

C is chosen to give I2 =I
&

= 1. Since we are free to
choose its phase, we set it real: C=1/QI', . The output
ofe2 is

t~T
(I', ) =(x' y')S P, S

We also know that

r r

X X
(I', ) =(x' y')S', (x y)S

(A 1 1)

we cannot assume C2 is real. In fact, using the property
(A3) of Pi, we can write

X X XCz, =, (x y)SC

T X=(x' y')S'P, S (A12)

The fact that (x' y') is arbitrary (and complex), plus Eqs.
(Al 1) and (A12), is sufficient to ensure that

(thus fixing Cz) or

I2 —C2 C2

t=C'(x' y')S, (x )S (AS)

S'P,'S =S'P",'S'.

This in turn is sufficient to give

S=e'&S~,

(A13)

(A14)

1 f T x
(x' y')S P, S

At this point we are prepared to obtain the two halves of
the relation FOR* ORR.

1. ORR~POR

We now assume the ORR. Then

i.e., we now have the ORR to within an undetermined
but global phase. The result (A14) was also obtained by
Shelankov and Pikus' starting from the weak POR. We
repeat their interferometric argument (slightly general-
ized) to complete the derivation. We surround our sys-
tem S with a set of partial mirrors, which bring about
multiple passages through S en route from r to r' (and
vice versa in the modified ez). The resulting system,
which we call S' is given by

S'=sz(1+rS+r S + )Ssi, (A15)
Iz =, (x' y')S'P, S

1

X
(x' y')S'

I) V

X
(x y)S

(A9) where s, is the amplitude to enter the first mirror from r,
s2 the amplitude to pass through the second to r', and r
the amplitude to be reflected so as to reenter S from the
direction of r (we take all of these to be real). Also

Now we note that I
&

is a real scalar. The first quantity in
square brackets in Eq. (A9) is [cf. Eq. (A5)] (I', ) and the
second is I', , both of which are thus I', . So we get

2-2S'=s, (1+rS+ r S + )Ssz . (A16)

I2 =I]
by assuming the ORR. Thus ORR~ FOR .

(A10) If we now set S'=e'~($') and S=e'~S, then Eqs.
(A15) and (A16) suffice to give P'=/=0. Thus we have
POR = )ORR.
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