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Proximity effect in superconducting layered structures
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A general formalism for discussing the superconducting proximity effect and the charge-carrier
transfer effect in an inhomogeneous layered structure has been obtained from the Gor'kov equation.
Two practical systems, which are finite superconductor/nonsuperconductor multilayer and superlattice,
are considered. The physical properties such as the transition temperature, the coherence length, the
proximity effect, and the charge-carrier transfer effect have been discussed. %hen compared with exper-
iment, our calculations show that the depression of the transition temperature in the c-oriented Y-Ba-
Cu-0/Pr-Ba-Cu-0 superlattices is dominantly induced by the proximity effect.

I. INTRODUCTION

It has been an important issue to understand the super-
conducting properties in a layered structure especially
since the discovery of the high-T, superconductors. A
common feature of these materials is the presence of the
Cu-0 planes, in which reside the charge carriers contrib-
uting to the superconductivity. Experiments have re-
vealed a strong anisotropy between the in-plane and the
off-plane directions in their physical properties such as
the normal-state resistivity and the transport critical
current, ' the upper critical field, the thermal conduc-
tivity, etc. This suggests a weakly coupled layered struc-
ture for the high-T, superconductors (HTS's).

Recently, with significant progress on the device appli-
cations of HTS's materials, this issue becomes even more
important. The c-oriented YBa2Cu307 &/
RBa2Cu307 & superlattices [R =Pr(Ref. 5), Dy (Ref. 6),
and Gd (Ref. 7)], which have been used for investigating
the interlayer coupling of YBa2Cu307 5, are fabricated
by epitaxially depositing YBa2Cu 307 & and
R Ba2Cu307 & alternatively along the c axis. In a similar
way, various SIS and SNS (Refs. 8 and 9) structures have
been reported, showing interesting properties such as the
Sharpiro step, the modulation of the junction critical
current by the applied magnetic field, etc. The growth of
an ultrathin YBa2Cu307 & as a charge supply layer on
MgO (Ref. 10) and SrTi03 (Refs. 11 and 12) has resulted
in a field effect device. Basically, all these devices can be
described as a kind of inhomogeneous layered structure
composed of the Cu-0 planes from YBa2Cu307 & and
RBaCu307 s and the (001) unit-cell planes from MgO,
SrTi03, and other insulating materials.

However, a theoretical understanding of the supercon-
ductivity in layered-structure superconductors has not
been achieved because the following questions are not
answered yet. First of all, the pairing mechanism is not
known for high-T, superconductors even though many
models have been proposed. Second, it is not clear how
anisotropic the interlayer and the intralayer pair cou-
plings could be. Third, the Gor'kov equation has not
been solved for an inhomogeneous system even if one as-

sumes the BCS superconducting mechanism for Y-Ba-
Cu-O. Only a few simplified cases, such as the double
layers and homogeneous infinite layers, have been dis-
cussed. '

In this paper, we would like to report our work on un-
derstanding the superconducting properties of an inho-
mogeneous layered structure on the basis of the Gor'kov
equation. We simplify those multilayers and devices as
sets of two-dimensional (2D) planes. The electronic prop-
erties of each plane could be very different depending on
what material it represents. For HTS's, the charge car-
riers may form 2D Cooper pairs in the superconducting
state. The hopping of the charge carriers between layers
may result in the proximity effect. The rest of the paper
is organized as follows: Section II contains the descrip-
tion and the full solution of the equations. Two practical
systems are going to be discussed. One is the finite multi-
layers and the other is S/N superlattice. Here we will
use S to represent the superconductor and N for normal
materials, which includes metals (M), insulators (I), and
semiconductors (Sttt) or even another superconductor
(S). In Sec. III, we will calculate the transition tempera-
ture of the S& /S2 and S/Sm superlattices, the proximity
effect in a SN interface, the coherence length g, and the
Cooper-pair penetration length gz in the normal side. In
our previous paper, ' we point out that the proximity
effects are mainly responsible for the depression of the su-
perconducting transition temperature in Y-Ba-Cu-0/Pr-
Ba-Cu-0 superlattices based on the good agreement be-
tween our calculated T, and the experimental data. A
pronounced experimental investigation of this issue has
been reported' recently which excluded the possibility of
the dominant role of interdiffusion and charge-carrier
transfer and then suggested the role of the proximity
effect. Section IV contains discussions and conclusions.

II. FORMALISM

Our system is composed of N two-dimensional planes
which correspond to the Cu-0 planes for high-T, copper
oxides such as YBa2Cu307 Bi compounds, Tl compounds,
etc., and even the insulating material Pr-Ba-Cu-Q. For
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where O'I k is the field operator and it is defined by the
creation and annihilation operators for ferrnion charge
carriers of two-dimensional wave vector k and the z-

component spin ( 1 or 1) in the 1th Cu-0 plane:
r

Cl, ki
+I,k +

CI —kL .
(2)

(I(k)=el(k) pl
—

pl and—el(k. )=k /2mI' are the chemi-

cal potential and the kinetic energy of the charge carrier
with effective mass mI* in the 1th Cu-0 plane. Vlkk,
which is negative in S layers and zero in N layers,
represents the BCS pair coupling and may originate in

nonphonon mechanism. Tll is the hopping matrix.

~z, and ~, are Pauli matrices. The finite-temperature
Green's function is then defined as'

SrTi03, LaA103, and some other Porovski structure ma-
terials, which could be possible candidates for the insulat-
ing layer in the high-T, superconducting devices, we may
consider them to be a layered structure with its unit cell
as a plane. The charge carriers are assumed to reside in
these planes and can hop between them. The electronic
structure of each plane is determined by the kind of ma-
terial it represents. The superconductivity mechanism
for HTS's is assumed to be BCS-like since their basic
features in the superconducting state are similar to the
conventional superconductors. However, the pairing is
not necessarily phonon-mediated electron-electron in-
teraction. Based on the strong anisotropy between the c
axis and the ab plane, we assume the pairing to be limited
primarily in the Cu-0 planes so that only the intralayer
pair coupling will be considered. On the insulating layers
such as Pr-Ba-Cu-0 we simply assume this pair interac-
tion is zero. Two processes could be important when S
and N layers are stacking up layer by layer. The proxirni-
ty effect is induced when the Cooper pairs hop from S
layers to N layers. And the charge-carrier transfer effect
may become visible if there is a big difference between the
charge-carrier densities of S and N layers. Employing the
Nambu representation, ' the Hamiltonian of the layered
system can be written as follows:

H =g gl(k)%
l, k

defined as

—Vl, ~gl(k)~ &Ef, in superconductors
~l, k, k'

0, otherwise .

Fl I(k, O)= —( T,cl ktcI k& ), is the off-diagonal matrix
element of Cl l(k, r) at r=0. Introducing Matsubara's
Fourier transform, ' Eq. (4) can be reduced to a matrix
equation

(7)

Therefore solving the Green's function is equivalent to
inverting the matrix K, where the matrix E is defined as

EI I =ico„I gl(k—)r3 hlr, —
,

KI,) = —Tll, r3) l&l' .

(8)

c)3„—= (2n+1)nkBT is the Matsubara frequency for fer-
mions. Considering the hopping matrix TI I short-
ranged, we may assume that only the charge carrier hop-
ping between the nearest-neighbor planes is important.
Under this condition, the hopping matrix f'I I becomes

I, I' l, l +1~I', I + 1+3+ 1, 1 —1~1',I —1 3 ' (10)

Therefore the matrix XII. is actually tridiagonal. The in-

version of a tridiagonal matrix has been studied by Dy
et al. for some special case using the perturbation
method. By extending their method, we are able to solve
Eq. (7) for a finite multilayer such as a SN junction and a
superlattice under periodic boundary condition. In order
to make this paper short, the detailed derivation of these
solutions is given in Appendix A and the rigorous proof
is shown in Appendix B.

A. Solutions

1. Finite multilayers

When multilayers are not periodic or periodic but the
number of the unit cell is small, we call them finite multi-
layers. The boundary condition for a finite multilayer is
written as

b, l(k) = —V, Q F, , (k, O),
k

and we have used the s-wave approximation for the pair
interaction

C(l (k, r) —( T=,VI k(r)+l+k(0) ) . (3) T1 0 Tx %+1

It is straightforward to show that the Green's function
satisfies the Gor'kov equation based on the mean-field ap-
proximation,

86I l.(k, r}
=5II l3{r)+[g (kI) +re (kI) jr@I, Ia7.

(4)

g UB gDB
gp I I

1, 1

(12)

~l, l' ~l I T,-, U, , 1 (1',
(13)

Here N is the total number of the planes in the multilay-
er. Then the solution for Eq. (7) is

Here the gap function or the order parameter bI(k) is
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gUB 0 fDB 0 (17)

which can be obtained directly from Eq. (11). For simpli-
city of writing, matrices 0; and D;, which are defined by
Eqs. (All) and (A12) in Appendix A, have been intro-
duced.

2. Periodic boundary condition

For a superlattice, or if the number of the unit cell is
large enough, we may apply the periodic boundary condi-
tion to simplify the calculation. Thus N is the number of
planes in one unit cell and the boundary condition is

I, I+ i N + I,N+ 1+1~ (18)

Since J, 0 and JL L + &
are no longer zero, the hopping be-

tween the interface of the neighboring unit cells should be
considered. Two more self-energy terms, which come
from cycling diagrams in the counterclockwise and clock-
wise directions, respectively (see Appendix A), should be
added. The solution then can be written as

f UB gDB fUC /DC (19)
gp I I I I

I, I I, I

i =I' —I

rl Tl+ l, l+ ~I(i+I)—
i =N —I'+I

+I, l g Tl;+1 I;D,(1 i), l &l', —

i =I —I'

(, I Q TI, +, (,JJI(l i)—
i =N+I' —I

H I+; 1 I+;~I(l+i), l )l',
(21)

where 21 and 2& are defined through the matrices 0
and D:

r

N —2

+;, , +, UI(l+i) T
i=1

(22)

fDC II &i ;+1,I DI(i I} ~i—+I,I .— (23)

61 I is defined as

i co„I+(I(k)r3+ b, l (k)r,
I, I l, l 2 +g.2+g2

=K
n

1=1,2, . . . , N . (14)

The self-energies 21 and fI., which represent contribu-
tions to layer I from the charge-carrier hopping through
all upper layers (I') I) and all lower layers (l'(l), re-

spectively, are defined through the following iterative re-
lations:

~I ~l, 1+1 { ~1+1,1+1 ~1+1] ~1+1,l ~

The iteration of RI and f& starts from / =N and I =1,
respectively, as

Here a modulus N is taken if the labels run out of the unit
cell. The expressions for fl and fl are given in Eqs.
(A5) and (A6). They are different from Eqs. (15) and (16)
since the starting points of iteration are l —1 and l + 1 in-
stead of layer N or layer 1, respectively.

B. Charge-carrier transfer e6'ect

The Fermi energy E~(1)=pi at zero temperature could
vary drastically from layer to layer in the SN junction
and S/N superlattice if the density of the charge carrier
in the normal layer is very low compared to that of the
superconductor. In this case the charge-carrier transfer
across the S/N interface may become important, which
could result in a substantial change of the Fermi energy,
especially in the normal layer. In order to study this
effect, we adopt a semiclassical approach. The change of
the charge-carrier density in the lth plane is defined as

EF E,il)
5n(l) =f NidE —f NldE, (24)

U( I) 0

where Ez(l) and EB are the Fermi energy in the lth plane
before and after the charge-carrier transfer. U(1}, the
electrostatic potential shift due to 5n(l), can be solved by
the Poisson equation in the form of the difference equa-
tion

4me1 5 lU(1+ 1)—2U(l)+ U(l —1)— =0,
e(l)

(25)

self-consistently in combination with Eq. (24). Here d is
the interlayer spacing, which is estimated as -6 A for
Y-Ba-Cu-O. If we take a summation of Eq. (25) from
l = 1 to N, the following relation is obtained

N

g 5n (1}=0, (26)

which implies that the total change of the charge carriers
within one unit cell is zero. For the finite multilayer, in
order to satisfy the above conservation equation, the con-
dition that the electrostatic field outside zero is applied,

U(N+1)=U(N), U(0)=U(1) . (27)

Therefore the total charge carrier is conserved during the
charge-carrier transfer.

In Fig. 1 the relative change of the charge-carrier den-
sity [5n(1)/np(l)] in the unit cell of a S/Sm superlattice
is plotted for different N, and N . Here N, +N„=N.
The original charge-carrier densities for S and Sm are
chosen to be 4X 10 '/cm and 1.0X 10' cm, respectively.
It is obvious that the relative charge-carrier density
change in the S layer is negligibly small (smaller than
1'%) while that in N layer could be as large as 200%%uo.

Therefore any effect on T, is unlikely induced dominantly
by the charge-carrier transfer effect for the c-oriented
S/N superlattice. It should be pointed out that this argu-
ment is based on the assumption that the electronic struc-
ture of each layer has not been changed, which is general-
ly the case of c-oriented devices. For a-oriented de-
vices, ' when the thickness of the superconducting
layer is comparable to the coherence length along the a
axis, the electronic structure of the superconductor may



14 062 J. Z. WU, X. X. YAO, C. S. TING, AND W. K. CHU 46

O
C

C

0—

I

I

~ I

U IO
~~ I

Q
C

I

N

I

I

J Ic
I

I I

2

=4/2
4/4
4/8
4/is-

8 10 12

A. Transition temperature

1. S& /S2 superlattices

If two different superconducting materials are de-
posited layer by layer alternatively, such as
YBa2Cu307/DyBa2Cu307 superlattice or Y-Ba-Cu-
0/Y, „Pr„Ba2Cu307superlattice when X (0.5, we
call it S1/S2 superlattice. The formalism discussed in
Sec. II for superlattice can be directly applied to this sys-
tem. The distribution of the energy gap is described by

Ef (1) 00

6,, =2N, VIksT f dg, g FI, I(4l~~n) ~

n = —oo

1=1,2, . . . , N . (28)
FIG. 1. Distribution of the relative charge-carrier transfer in

a unit cell of the S/Sm superlattice. Here Nl is the density of state at the Fermi surface for
the lth plane. The hopping matrix has the following form
generally:

already be dramatically modified so that the charge-
carrier transfer effect could be important.

III. RESULT

J1 ~l, 1+1~

T(1~= ' 2~1, 1+1&

J12~1,1+1~

inside S1

inside Sz

S1 and S2 interface .

(29)

With the solution of the Gor*kov equation, many phys-
ical properties of the superconducting layered structures
can be discussed. In the following, the transition temper-
ature of a S, /S2 and a S/Sm superlattice will be studied
(Sec. IIIA). By investigating the proximity effect near
the interface of the superconductor and normal material,
especially by computing the coherence length g, and the
Cooper pair leaking length gz, some physical insight has
been obtained (Sec. III B).

When the temperature approaches the superconducting
transition temperature T„the system will experience a
second-order phase transition; therefore the order param-
eter or the energy gap 51 approaches zero. Thus we may
assume that they are small quantities in the vicinity of T,
and linearize Eq. (28). T, can then be solved from the
nontrivial solution of this linearized equation:

E ~ii dF, , (g, , co„)
2NIVIksT f— dg(

0
n = —oo 1' 1'

I =1,2, ~

Ia,. j' =0
(30)

Tc1 & Tc12 & Tc2 (31)

In Fig. 2, the transition temperature T, 1z of a S1/S2 su-

perlattice with N„=N,2=2 is shown for different hop-
ping constants. Here we have taken J =J, =J2=J12 for
simplicity of the discussion. The transition temperature
has been normalized to that of S1 at J1 =0. In our calcu-
lations, we have chosen Nl Vl to be 0.39 and 0.34 for S,
and S2, respectively. The Fermi energies are assumed
0.127 eV for both S1 and S2 and the charge carrier
transfer effect has been neglected because the difference
of the charge-carrier density between these two supercon-
ductors is assumed little.

Curves T„andT,2 in Fig. 2 are the transition tempera-
tures for layered structures composed of only S, or S2,
respectively. The transition temperature of the S1/S2 su-

perlattice T,12 locates in between T„and T,2 because of
the proximity effect, i.e.,

1.2

1.0—

0.8—

0.6—
U

0.4—

0.2
0

I I I I

20 40 60

J (mev)

FIG. 2. Superconducting transition temperature in Sl (T I),
S2 (T,2), and S&/S, (T,») superlattices.
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We have also checked the transition temperature for the
varying thickness of S, and found that T„2will saturate
to T ] with increasing thickness of the S, layer, and vice
versa. Our calculation also shows that T, drops mono-
tonically with increasing hopping constant because the
break of the Cooper pairs during the charge hopping des-
troys the superconductivity.

1..2 ~ ~ ~ ~
I

~ ~ ~ ~ I ~ ~ ~ 0 I ~

1.0

0.8

0.6

2. S/Sm superlattice

If the superconductor and semiconductor or insulator
are deposited alternatively, we have a S/Srn or S/I su-

perlattice. Among them the Y-Ba-Cu-0/Pr-Ba-Cu-0 su-

perlattice is a popular one. Sine the coherence length of
the HTS's is very short, the discussions for S/Sm and
S/I superlattices are similar. Therefore we will consider
only the S/Sm superlattice for simplicity.

An important difference between the S, /S2 and S/Sm
superlattices is that the latter may not become supercon-
ducting at any temperature if the thickness of the normal
layer is large compared to the coherence length of the su-
perconductor. In another words, a S/Sm superlattice
may be composed of many superconducting islands
separated by the normal layers which will not become su-
perconducting due to the proximity effect. As we already
know, the coherence length of Y-Ba-Cu-0 is about 3-5 A
along the c direction, which is certainly not long enough
to make Pr-Ba-Cu-0 superconducting in the Y-Ba-Cu-
0/Pr-Ba-Cu-0 superlattices by the proximity effect be-
cause the thickness of the Pr-Ba-Cu-0 layer is at least 12
0
A. However, the charge-carrier transfer effect in the
S/Sm interface may become substantial because the
charge density of superconductor is estimated two to
three orders higher than that of semiconductor. There-
fore the regular method of calculating the transition tem-
perature of a superconducting superlattice as it is dis-
cussed in Sec. III A 1 can no longer be applied here.

Based on this argument, the energy gap is no longer a
proper order parameter in a S/Sm multilayer since the
pair coupling in the semiconducting layers is zero. In-
stead solving the energy gaps by Eq. (28), we will calcu-
late the pair amplitude F& &(0,0) in each plane by the fol-
lowing equation:

E —U(1) 00

F~ i(0,0) =2Nika T f dk g Fi, i(k }
0 n= —oo

1=1,2, . . . , N . (32)

Due to the proximity effect, the superconducting pairs
can leak into the semiconducting layers; therefore the
pair amplitude in Sm is not zero and can be solved self-
consistently. However, the transition temperature of a
S/Sm superlattice cannot be obtained by linearizing the
above equation because the superconducting phase tran-
sition in the Sm layer is senseless. Instead, we will find
out T, by calculating the temperature dependence of the
pair amplitude. Below T„FII is finite and when T =T„
FI I o. It has been noticed that the integral limit of Eq.
(32} is shifted from (O, EI(l)) to (O, EI—U(l) } by consid-
ering the charge-carrier transfer effect.

In Fig. 3 the transition temperature of a S/Sm super-

0 4

0.2

0..0 I I ~ ~ a a I I I

0 10 20 30

FIG. 3. Dependence of the normalized transition tempera-
ture on the thickness of the Sm layer.

lattice has been plotted against the number of the Sm lay-
er for J =20 and 30 meV and Ns =2 and 4, respectively.
The density of state for Sm layer is estimated two orders
lower than that of the S layer. It is interesting to see in
Fig. 3 that the transition temperature of a S/Srn super-
lattice drops initially with increasing thickness of the Sm
layer and then saturates to a finite value T„instead of go-
ing to zero. The saturation temperature T„increases
with the thickness of the S layer which, as we will discuss
in the next section, is compatible with coherence length
in the S layer. When the superconductor is much thicker
than the coherence length, T„willbe less sensitive to the
thickness of the Sm layer. The increase of the hopping
constant will result in a decrease of T„anda bigger Sm
thickness to reach the saturation because both the coher-
ence length g, in the S layer and the Cooper pair leaking
length gN are increasing with the hopping const (see Sec.
IIIB). In Ref. 16, we have compared our calculations
with the experimental result quantitatively and found
that the agreement between theoretical and experimental
results is very good under the parameter we chose.
Therefore we would like to point out that the depression
of the transition temperature in the Y-Ba-Cu-0/Pr-Ba-
Cu-0 superlattice is caused dominantly by the proximity
effect. We believe that this saturation phenomenon is
universal for a c-oriented HTS/Sm superlattice.

B. Coherence length

In order to obtain some insight, we will calculate the
coherence length in the superconducting layers and the
Cooper pair leaking length in the semiconducting layers.

1. g, in superconductor

The coherence length g, can be obtained by calculating
the off-diagonal term of the anomalous Green's function
Fii(0, 0). ' Taking N, =20 and N, =14 in the S/Sm
superlattice, we can label the planes in a unit cell. There-
fore planes 1 —20 are from S and planes 21 —34 are from
Sm. F& &. in S layers are then calculated with /'=10 and
I —I'=2, 4, 6, 8, 10. Since FI &

drops approximately ex-
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FIG. 4. Temperature dependence of the coherence length g, . FIG. 5. Distribution of the pair amplitude across the inter-
face of the superconductor and normal material at different

temperatures.

ponentially with I —I', we therefore calculated the coher-
ence length by the following relation:

I —I'
F& &.(r, r) =const. exp (33)

2. Cooper pair penetration length g~

In Fig. 5 we have shown how the pair amplitude FI I

drops across the interface from the superconductor to the

The coherence length thus calculated has been displayed
as a function of the normalized temperature and the hop-
ping constant in Fig. 4. It is interesting to see that within
a wide temperature range below T„g,is almost a con-
stant. In Ref. 16, we have chosen J =30 meV to fit the
measured T, in the Y-Ba-Cu-0/Pr-Ba-Cu-0 superlattice.
The coherence length calculated in Fig. 4 at this value is
about 0.4—0.8 inter —Cu-0 plane spacing within the range
T/T, &0.95, i.e., 3-5 A, which is consistent with the
well-known experimental result for Y-Ba-Cu-O. There-
fore, when the temperature is not very close to T„the
charge-carrier pairing stays in the 2D type. In the vicini-

ty of T„g,increases sharply and approaches to infinity
as T~T„which implies charge-carrier hopping may
help to form a weak interlayer pairing around T, .

In the Y-Ba-Cu-0/Pr-Ba-Cu-0 superlattices, when

N, =2, the Cooper pair in the Y-Ba-Cu-0 layer has a
comparable size with the layer thickness so that it is easy
to be broken. Therefore the transition temperature of the
superlattice is drastically depressed. This depression is
then weakened as the thickness of the S layer is in-
creased. It has been shown in Fig. 2 of Ref. 16 that
T /T o 0.8 when N, = 8 where the coherence length is
very short compared to the thickness of the Y-Ba-Cu-0
layer. The influence of the proximity eeet on the deeper
layer of Y-Ba-Cu-0 from the interface is already screened
out by the layer near the interface. With further increas-
ing of the thickness of the Y-Ba-Cu-0, the transition tem-
perature will saturate to T,o, which is the transition tem-
perature of the Y-Ba-Cu-0 thin film.

normal layer. The layers 1-10 represent the supercon-
ductor while layers 11-17 are the semiconductor. As is
shown in Fig. 5, the penetration of the Cooper pair into
the N side increases with the hopping constant. The
transition area across the interface is very sharp at low
hopping constant and becomes broader as the hopping
constant is increased. The distribution of FI I can be
fitted approximately by the following formula

I —Io
(34)

N
FI I

~ exp

g~= A (J)/T, (35)

if the temperature is not very low. As T approaches T„

10
Q

80
0
I) 6
E
C

2

0 I

0.02 0.04 0.06 0.08 0.10

i/T (K )

FIG. 6. Temperature dependence of the Cooper pair leaking

length.

In Fig. 6, gz has been plotted as a function of I/T for
J = 10, 30, and 50 meV. It has been noticed that all those
curves can be described approximately by the equation
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only a few Cooper pairs could survive and penetrate to
the N side so that gz is actually zero. This is obvious in

Fig. 6 if the curves are extrapolated to the high-T end.
A (J) is a monotonic function of the hopping constant.
This I/T relation may suggest Pr-Ba-Cu-0 is clean,
which is not diScult to accept because of the structure
similarity between Y-Ba-Cu-0 and Pr-Ba-Cu-0; the
former has been known as a clean material.

Our calculations have shown here that the Cooper pair
penetration length gz is about two to three Cu-0 plane
spacing under the parameters in Ref. 16. It implies that
the Cooper pairs can only enter very thin layers of the
semiconductor. The deeper Sm layers stay in the normal
state so that many superconducting islands centered at
the superconductor are formed below the transition tem-
perature of the superlattice. Therefore when the thick-
ness of the Sm layer in the S/Sm superlattice is in-

creased, the inhuence on T, is actually saturated. Experi-
mentally, we expect this T, saturation if the coherence
length is short compared to the thickness of the S and Sm
layers.

IV. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have established a general formalism
to discuss the superconducting proximity e6ect in an in-
hornogeneous layered structure. The advantage of this
formalism is obvious. First, since it is derived directly
from the Gor'kov equation, certainly it can be used in the
whole temperature range below T, . Second, it can be ap-
plied to any inhomogeneous layered system, especially
the HTS materials where the nonuniformity in a very
short scale is inevitable. Third, in calculating the self en-

ergy, we have made the summation over all the possible
connected Feynmman diagrams caused by the nearest-
neighbor charge-carrier hopping so that solutions given
in Eqs. (12), (13), and (19)—(21) are the exact solutions of
the Gor'kov equation under the mean-field approxima-
tion even though the perturbation method has been
adopted in the derivation.

Utilizing the established formalism, we have studied
the proximity effect in the S/N interface and S/N super-
lattice. Several interesting results have been obtained. It
has been found that the transition temperature of S/Sm
superlattice will decrease and then saturate to a finite
value with increasing thickness of Sm layer. The depres-
sion of T, is large when the thickness of the S layer is
compatible with the coherence length. The semiconduct-
ing layers will remain nonsuperconducting in the S/Sm
superlattice since the Cooper pair leaking length g~ is
small. Therefore the S/Sm superlattice is composed of
many superconducting islands. Our calculations have ex-
plained most experimental features for the Y-Ba-Cu-
0/Pr-Ba-Cu-0 superlattices. The calculated inversely
linear T dependence of gz implies that our formalism can
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APPENDIX A

As we see from Eq. (7), the solution of the Green's
function is actually equal to the inversion of the matrix
k Assuming it is composed of a dominant diagonal term
and a perturbative off-diagonal term (later on we will find
this assumption is not necessary), i.e.,

t=k, (Al)

we can expand the Green's function as a perturbative
series

n=0
(A2)

For each element of C, the expansion is of the following
form:

be applied directly to most normal materials in the clean
limit.

Our formalism could be more useful under the follow-
ing modifications. (1) The two-dimensional BCS-type
pair coupling for the superconductivity can be extended
to an anisotropic pair coupling (i.e., intralayer coupling
plus interlayer coupling) if the interlayer coupling is lim-
ited within the unit cell. This assumption is not very
rigorous because the 2D behavior has been observed for
most HTS's if the temperature is not very close to T, .
On the other hand, since the a-oriented Y-Ba-Cu-0/Pr-
Ba-Cu-0 trilayers ' and superlattice have been re-
ported, the inclusion of the interlayer pair coupling
within several layers will be important to explain the ex-
perimental observations. (2) In this paper, only equilibri-
um properties have been discussed to keep this paper
short. By introducing electrical and magnetic fields, the
nonequilibrium properties can be studied. In particular,
the linear response behavior when the fields are weak will
be very important for the device applications of the
HTSC materials. (3) We have adopted a coherent tunnel-
ing Hamiltonian in Eq. (1) which is based on the assump-
tion that the number of the scattering centers along the c
direction is not very large. The calculation of the in-
coherent tunneling is also possible even though it is a lit-
tle complicated. At this moment, it is still too early to
judge which one is dominant because of the lack of exper-
irnental data.
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here f'& and Ci i have been given in Eqs. (10) and (14),
respectively. Since the solution of the superlattice is
more complicated than that of the finite multilayer, in the
following we will derive the solution of the superlattice
first. At the end of this section, we will show that the
solution of the finite multilayer can be obtained directly
from our derivation.

If we look carefully at the expansion (A3), and assume
that C represents site m and f'„actsas the bridge
from site n to site m [see Fig. 7(a)], each term in the ex-
pansion can then be represented by a different diagram
starting from layer I and ending at layer I'. The element
Cl &

is therefore a summation of all the different diagrams
from I to I'. The weighting factor for each diagram is 1.

Let us first discuss the diagrams for the diagonal ele-
ments of the Green's function. Under the periodic
boundary condition (18), the superlattice can be
simplified to a unit cell with 1st and Nth connected to
form a circle [see the third drawing in Fig. 7(a) for
l}!=4]. Each diagram from I to 1 can then be decom-
posed into four t es of basic units; we call them

and I . The schematic representation of
these four units has been given in Figs. 7(b) —7(e), respec-
tively. Here the superscripts U and D are the abbrevia-
tions of down or up, which imply the directions of the
first bridge from site I is to I' ( I or I' & I, respectively. B
and C are the abbreviations of back and circle, which
identify the way to build up the series of the bridges by
going back or making a circle to site l.

In Figs. 7(b) and 7(c), we see the farthest sites from site
I for RI and fl are, respectively, site l —1 and 1 + l. If
we define f& (m) (m ) l ) to be the total routes from site
m up to site l —1 and then back to site m, RI (m —1)
can then be obtained by adding site m —1 to 2i (m),
which is

1

(a) G„H N-4 Q unit cell Q 2

1+1
.

(c)
Qi + 1 Q~si

1+1

E3
1+1

(d)

1+1 1+1

(e)

FIG. 7. (a) Definitions of the site and bridge; and the di-

agrammatic expressions of the self energies: (b) Xl, (c) Xl, (d)
vc and(e) yDc

(m —1)=1, g [0 2, (m}]"0 f'
n=0

Applying the boundary conditions

or

(m —1)=f', [(0 )
' —f, (m)] 'f' (l —l)=0, 2( (l+1)=0, (A7)

Similarly, the iterative equation for f! (m + 1) is

(m 1+)=f' +, [(0 )
' 2( (m)]—'T

(A5)

(A6)

we obtain Rl =2& (l) and RI =XI (1) by the iteration
relations (A5) and (A6), respectively.

With the help of Rl and f,&, the cyclic diagrams Rl
and Rl can be formed step by step through all the lay-
ers:

=T( I+U (lI+1)TI+, I+2UI(l +2) Tl —2, ! 1UI(1 —1)TI

,DI(l —1)TI, I 28,(!—2) T~+~ I+,DI(1+1}1',+, I .

(A8)

(A9)

0,(m)=[(G )
' —2, (m +1)] (A10)

Here in order to shorten the writing, we have used the
notation Ol(m) and Bl(m), which are defined as

DI(m}=[(6 )
' —2) (m —1)] (A 1 1)

~ UB
Physically the difference between 2, I and UI is clear.
The former is the summation of a11 noncyclic connected
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diagrams along the up direction and the latter, that in-

cluding both connected and unconnected diagrams under
the same condition. The explanations for Ri and D( are
very similar. %'e would like to mention that when the di-
agrams pass through the superlattice unit-cell boundary,
the modulus X for the layer number is taken simultane-
ously so that the equation for the Green's function is
closed up within one unit cell of the superlattice. Since
each diagram in the expansion of 0/ I can be formed by
these four basic element diagrams, the solution for 0/I
can then be written as Eq. (19) (Ref. 18) following the
basic rule of the Feynman diagram.

The off-diagonal element of the Green's function 0( I, is

the combination of diagrams from I to I and then I to I'
(no longer going back to /). For the superlattice there are
two possible directions to reach l'. For 1&l', one is
directly going down from l to I' and the other is going up
cyclically through / + 1, / +2, . . . , /' —2, /' —1, then to /'.
That is,

Cl I
—0/I I fl I 18/(/ 1) ' ' ~l'+l, l'~l(/ )

+ ~l, I+1~1{/+ 1 }~/+1,I+2 ~l' —l, l'~l(/

(A12)

Similarly we can write the solution for 0( I. when / (/',

I I
—~l I t ~l I + 1 Ol (/ + 1 ) ' ' ' 1l 1 I Ol (/ )

+ ~l, l —1DI(/ 1)1l—l, l —2 ~l'+l, l'~l( ) l

(A13)

The solution of the finite n layer is easy to obtain from
the above derivation by simply applying the boundary
condition (11). Equations (A5) and (A6) will start from
m =/1/ and m =1, respectively, because f( (N) andNUB

(1) are zero. If we notice that 2( (m)=f (m),
Eqs. (A5) and (A6) can then be reduced to Eqs. (15) and
(16), respectively. It is obvious that there is no cyclic dia-
gram so that 2/ and Ri are zero and only the first
term in Eqs. (A12) and (A13) are left for the off-diagonal
solution.

APPENDIX B

In deriving the solution of Eq. (7), we have used the
perturbation method by assuming the off-diagonal ele-
ments are small compared to the diagonal elements. This
assumption is actually not necessary since all the pertur-
bative terms have been added up. Nevertheless it is
necessary to give a rigorous proof that the solution we
derived in Appendix A is the solution of Eq. (7).

In a matrix element form, Eq. (7) can be written as

~/, I 14 1,—/+ ~—1,1~/, I+1, 1+/k/ +1( =5( I . (81)

When / =/', we can substitute the expressions of 6/I
0( I and C//+1 into Eq. (Bl):

(, ([l~( I 1~((/ —1—)+ Ii I+101(/+1) f'( 2 (,0((/ —1)]k/ l, l+~l I—

+ I. ~l I+10)(/+ 1)+II I Pl(/ 1 }—' ' ' ~(+2,(+1+1{/+1)]E/i/ I]=I
Using defi»t/ons (9) and (14) for E( (+1 and E( I and multiplying the 0/ I from the left, Eq. (82) is reduced to

I I 1D((/ —1)~1 1, ( ~(, I+—1~/(/+1) f'( 2 ( 10((/ —1)f( 1,(+(~l /)—
V+101(/+1)11+1,1 Pl, l —/D/(/ —1) f', +21+181(/+ l)f(+1(={/ /)

(82)

(83)

Comparing Eq (83) with Eqs (A5), (A6), (A8), and (A9), we can immediately find that it is exactly the same as Eq. (19);
therefore the diagonal elements of the solution satisfy the original equation (7). The proof for /'=/+1 is similar to that
above; we leave it for readers to save the space here.

For / ) /' and /'K/+ I, we substitute Eqs. (20) and (21) into Eq. (Bl),

I, I I ~l, I —1~/ { )~l —1, I —2 ~l', I' —1~1{ }~I' —l, l'+ ~l, I + 1 ~l { + ) ~1 +1,!+2 ~l' —2, (' —1 ~l{ }~I' —1, l'

~l / —1D/{ )~l —1, / —2 ~l'+1 I'~l( )(~l , I }~l'/+'1 ~/(/ + ~(+1,1+2 ~/' —l, l'~l(/ )(~l', I' )

+ ~l, l —l~l(/ 1)~l —l, l —2 ~l'+2, /'+ 1~1(/ + 1)~l'+l, l'

+ Tl, I + 1 ~l {/ + 1 ) ~l + I, I +2 ~l', !'+1 ~l {/ + 1 }~l'+ 1, l' ] (84)

We can separate the six terms on the left-hand side of Eq. (84} into two groups. The three odd number terms can be
written as follows:

(85)G(i'�(,D((/ ——1) . f'( +2 (+18((/'+1}F1+I ( II 8((/')[(0l ( )
' ——1( (. ,8({/' l)f'I,

1 1.]]—.
Recalling the definition for 8/(/ ) in Eq. (A10), the summation inside the brace of Eq. (84) is actually zero In a simi.lar
way, we can prove the three even-number terms contribute nothing to Eq. (84) by using definition (Al 1). Therefore we
have verified that Eqs. (19)—(21) are the solution of Eq. (7). The rigorous proof of the finite multilayer solution Eqs. (12)
and (13) are very similar, so we will not give it here to keep this paper short.
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