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We report self-consistent calculations for the electronic structure of four complex defects, namely the
monohydrogen-vacancy (VH), dihydrogen-vacancy (VH,), trihydrogen-vacancy (VH;), and
quadrihydrogen-vacancy (VH,) complexes, in crystalline silicon. The calculations are based on a sem-
iempirical tight-binding theory. Each of the defects is described by a large repeated supercell. To over-
come the difficulties in the treatment of large Hamiltonian matrices, we use the recursion method for
computing the local densities of states and the localization of the defect states. We have also calculated
numerically the wave functions of the fundamental gap states, which are, in turn, used to derive the
hyperfine interaction parameters arising from the paramagnetic spin of the wave functions of the gap
states for the complex defects. We have found that, in the VH, defect, the electrical activity is passivated
by four hydrogen atoms, in agreement with early theoretical studies. For the defects VH, VH,, and VH;,
we have found that the electrical activity is only partially passivated. We show that the nonhydrogenat-
ed silicon dangling orbitals are responsible for the remaining electrical activity. We also demonstrate
that the Si-H bonding and antibonding states interact very weakly with the silicon dangling-bond states.
Models accounting for the electronic structure of the four defects are presented. The effects of the
symmetry-conserved distortions and the Jahn-Teller distortions on the electronic structure of the defects
are examined. The calculations have been done in detail for the experimentally well-studied VH, defect.
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The results of these calculations agree well with recent experimental studies on this defect.

I. INTRODUCTION

The interactions between defects and hydrogen atoms
in crystalline silicon are a phenomenon of great interest
to both experimental and theoretical physicists."’? It has
been demonstrated that a large variety of defects in sil-
icon can be passivated by exposure to hydrogen."> The
microscopic structure of many shallow donor- and
acceptor-hydrogen complexes has been well estab-
lished.>3-!! The mechanisms of hydrogen passivation of
many multivalent deep impurities have also been stud-
ied."? Here we are only concerned with hydrogen-
vacancy complexes.

In a recent experimental work,'? a hydrogen-vacancy-
complex defect in silicon was studied by the optically
detected magnetic resonance (ODMR) technique. The
defect was identified as a neutral dihydrogen-vacancy
complex in its lowest electronic excited state with a spin
triplet. Two silicon dangling bonds were assumed to be
passivated by the two hydrogen atoms. Two electrons
with parallel spins, one in the bonding and the other one
in the antibonding state of the two remaining silicon dan-
gling bonds, are responsible for the ODMR spectra.
Hydrogen-related defect complexes were also studied by
deep level transient spectroscopy (DLTS).!* 1In this
study, an electron trap, labeled the Z center, was ob-
served and assigned to the dihydrogen-vacancy-complex
defect. The proposed electronic structure of the Z center
is, however, different from that of Ref. 12. Three elec-
trons were proposed to stay in the two electron states
formed mainly from the two silicon dangling bonds in the
defect. Among the three, two electrons with spin paired
off were assumed to lie in the bonding state, while the
remaining one was assumed to be in the antibonding
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state. This model shows that the dihydrogen-vacancy-
complex defect observed from the DLTS spectra stays in
a spin-singlet state. The energy level of the spin-singlet
state was also determined in this study. The level is at
E_—0.20 eV, where E_, denotes the minimum of the con-
duction band. Furthermore, a hydrogen-related center
with tetrahedral symmetry in ion-implanted silicon was
studied by means of infrared-absorption spectroscopy.'*
The center has been associated with the fully hydrogenat-
ed vacancy or with monosilane located at the interstitial
tetrahedral site. All these experimental studies have pro-
vided us with examples supporting the assumption that
the hydrogen atoms can sufficiently passivate silicon dan-
gling bonds. Theoretical studies of the hydrogen-vacancy
complexes in crystalline silicon have been performed.!3-!7
However, detailed theoretical descriptions for the elec-
tronic structure of these complexes are not always avail-
able.

The purpose of this paper is to report on a systematic
theoretical study for the electronic structure of the
hydrogen-vacancy complexes in crystalline silicon using a
self-consistent semiempirical tight-binding theory. The
complex defects considered in this paper are those con-
sisting of a vacancy and one through four hydrogen
atoms being bonded to the nearest-neighbor silicon atoms
of the vacancy. We model the defect systems by super-
cells, each containing 2662 lattice sites plus atomic sites
of the hydrogen impurities and being subject to periodic
boundary conditions. These supercells are large enough
to eliminate rather completely the interdefect interac-
tions. The defect electronic structure is calculated with
the use of the recursion method (a real Green’s-function
method). By application of both the supercell and the re-
cursion methods, we preserve the properties of the silicon
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crystal well in the calculations, as would be achieved by
using the standard Green’s-function method, i.e., by solv-
ing for Dyson’s equation. In addition, the combination of
the two methods allows us to compute the defect states to
a high accuracy and to avoid the finite-size effects which
one would encounter in the calculations using a cluster
method. It should be noted that only the electronic
structure of the defect complexes is studied in this work.
It is clear that the examination of total energies as func-
tions of the positions of atoms is also very important.
This is so in particular for the fully hydrogenated vacan-
cy defect, i.e., the quadrihydrogen-vacancy complex,
where the electronic activity of the vacancy is assumed to
be completely passivated. However, we shall show in this
work that the electrical activities should indeed remain in
the other three considered hydrogen-vacancy complexes.
Thus, one should be able to detect these defects by using
electrical and optical techniques. Indeed, as we discussed
before, both the DLTS (Ref. 13) and ODMR (Ref. 12)
signals have been observed for the hydrogen-vacancy re-
lated complexes and have been assigned to the
dihydrogen-vacancy defect. Therefore, our electronic-
structure calculations are expected to be useful for exper-
imentalists to confirm their assignments of the detected
signals to the dihydrogen-vacancy defect and to identify
the monohydrogen- and trihydrogen-vacancy complexes.
In addition, we shall present the simple molecular-orbital
models for the electronic structure of the four hydrogen-
vacancy complexes, and we hope that such simple models
are helpful in understanding the physical origin of the
electronic properties of these complex defects.

The paper is organized as follows. In Sec. II a detailed
description of the atomic configurations of the four com-
plexes is presented. In Sec. III the theoretical approaches
used in the calculations are described. The results of our
calculations for the electronic structure of these four
complex defects and the models which we propose for
them are presented in Sec. IV. Comparison with avail-
able experiments and discussions are also given in this
section. Section V contains a brief summary of the paper
and conclusions.

II. CONFIGURATIONS OF
HYDROGEN-VACANCY COMPLEXES

In the present work the four concerned hydrogen-
vacancy complexes, namely, the mono-, di-, tri-, and
quadri-hydrogen-vacancy complexes, in crystalline sil-
icon, are denoted by VH, VH,, VH;, and VH,, respec-
tively. The atomic configurations in the central cell,
defined as a vacancy plus its four first neighboring silicon
atoms and the hydrogen atoms, are shown in Fig. 1. In
VH,, the four dangling bonds of the vacancy are all sa-
turated by hydrogen atoms, while in the other three com-
plexes, not all the dangling bonds are saturated. In the
calculations, these four complexes are modeled by first re-
moving a silicon atom from the crystal and then placing
one through four hydrogen atoms at a distance of 0.90 A
from the vacancy center, without all other silicon atoms
being displaced. These conﬁguratlons give a silicon-
hydrogen distance of 1.45 A and a hydrogen- hydrogen
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FIG. 1. Schematic illustration of the proposed atomic
configuration for (a) the monohydrogen-vacancy (VH) complex
in Cj, symmetry, (b) the dihydrogen-vacancy (VH,) complex in
C,, symmetry, (c) the trihydrogen-vacancy (VHj) complex in
C;, symmetry, and (d) the quadrihydrogen-vacancy (¥'H,) com-
plex in T,; symmetry in crystalline silicon. Only the central cells
of the four complex defects are shown. The four silicon atoms
in the central cell are labeled with integer numbers 1-4.

distance of 1.47 A, presenting a reasonable value of the
silicon-hydrogen bond length since this bond length in
the SiH, molecule is 1.48 A. Further discussion about
the choice of the value of 0.90 A for the distance of the
hydrogen atoms from the vacancy center will be present-
ed later. In order to study the effect of symmetry-
conserved distortions of the hydrogen atoms on the elec-
tronic structure, we also perform the calculations for the
VH, defect with the hydrogen at distances of 0.65, 0.75,
1.05, and 1.20 A from the vacancy center. When the
Jahn-Teller distortion is considered, we will allow both
hydrogen and silicon atoms to be displaced in order to
see how the electronic structure of the defect is changed
as the symmetry of the defect is lowered. However, for
the sake of simplicity, the displacements will only be
made for the atoms in the central cell of the defect.

III. THEORETICAL METHOD

Our calculations are based on the self-consistent sem-
iempirical tight-binding theory with the Wolfsberg-
Helmholz formula'® for the orbital interactions and the
Sankey-Dow model of Coulomb effect!® for the electron-
electron interactions. The electronic structure of the per-
fect silicon crystal is described by an sp? ﬁrst- and
second- nearest-nelghbor tight-binding Hamiltonian? and
a large supercell.?! The defect energy levels and the
changes in the local densities of states induced by the de-
fects are calculated using the Lanczos scheme?? and the
Haydock recursion method (a real-space Green’s-
function method),3-2° respectively. The wave functions
of the gap states are calculated with the use of a newly
developed numerical method.?® The hyperfine-
interaction parameters arising from the paramagnetic
spin of the electrons in the gap states of the complex de-
fects alone are, in turn, derived from the calculated wave
functions of the gap states.
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A. Tight-binding Hamiltonian for the perfect crystal
and description for the defect potential

In an sp? basis including both the first- and second-
nearest-neighbor interactions, the Hamiltonian H of the
perfect crystal in the tight-binding approximation takes
the form

Hy= 3 lioR)Ey(R){ioR|
i,o,R

+ 2

i,j,o,R,R’

lioR) Vo;;(R,R"){joR'| (1)

where i =s, p,, p,, or p, labels the orbitals; o is the spin
(T or !), and R denotes an atomic site vector. The
transfer-matrix elements V,;(R,R’) are taken as
nonzero only between the nearest- and the second-
nearest-neighbor atoms. The state [icR ) corresponds to
a localized orbital centered on an atom at L or on an
atom at L+d, where L is a lattice vector in the face-
centered-cubic lattice and d=(1,1,1)ay/4 is the vector
between nearest neighbors along the (111) axis (aj is the
cubic-lattice constant). In this work we use the tight-
binding parametrization of the host energy band of the
silicon crystal obtained by van der Rest and Pécheur.?’
With this parametrization, success has been achieved in
the study of the isolated vacancy,?’ vacancy pairs,?®?° im-
purities,?*3%3! and vacancy-impurity defect complexes>?
in silicon. The host crystal is further approximated by a
large supercell’! containing 2662 atoms and subject to
periodic boundary conditions.

We can formally express the Hamiltonian of a defect as
H=H,+ U, where U stands for the defect potential. In
the sp> first- and second-nearest-neighbor tight-binding
approach, the defect potential U can be written as

U= 3 licR)U;(R){ioR|
i,o,R

+ 2

i,j,o,R,R’

lioRYU,(R,R")(joR'| . 2)

In order to treat the defect potential for the complex de-
fect containing the hydrogen impurities, we need to in-
clude hydrogen orbitals in our basis (see the Appendix for
the general discussion on including the interstitial atomic
orbitals in the basis of host crystal). However, only the
hydrogen s orbitals are important and are included in our
basis, because the energy of the p orbitals is much higher
than that of the s orbitals. We keep all matrix elements,
diagonal and off-diagonal, of the defect potential U for
the vacant site, the hydrogen atoms, and the first- and
second-nearest-neighbor silicon atoms, except for the off-
diagonal elements between first- and second-nearest-
neighbor silicon atoms. Here we note that since the re-
cursion method is used in this work, the direct calcula-
tion of the matrix elements of the defect potential U is
not a required step. This is in contrast to the standard
Green’s-function technique by which one has to solve the
Dyson’s equation and thus one has to know explicitly all
the matrix elements of the defect potential U. Therefore,
for convenience, we shall directly evaluate all the off-
diagonal matrix elements of the Hamiltonian H for a de-
fect.
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For the vacant site, the diagonal matrix elements of the
Hamiltonian H can be taken as infinite in magnitude and
the off-diagonal matrix elements as zero. This standard
procedure is just equivalent to decoupling the vacancy
“atom” from the solid. For the first- and second-
nearest-neighbor silicon atoms and for the hydrogen
atoms, the off-diagonal matrix elements of the Hamiltoni-
an H can be expressed in terms of the orbital interactions
and are deduced from the corresponding off-diagonal ma-
trix elements of the perfect crystal Hamiltonian H,,
while the diagonal matrix elements of H can be related to
the electron occupations of orbitals and, therefore, need
to be evaluated self-consistently. The determination of
these Hamiltonian matrix elements will be described in
Secs. III B and ITI C.

B. Orbital interactions

In our earlier studies of some other silicon vacancy-
related complexes,32 the off-diagonal Hamiltonian matrix
elements corresponding to the orbital interactions be-
tween the first-nearest-neighboring atoms of the vacancy
were calculated from the bulk values of the crystal with
use of the Slater-Koster two-center approximation,* the
Wolfsberg-Helmholz formula,'® and the simplified Slater
orbitals.3*37 In this work we shall also use them to cal-
culate the off-diagonal Hamiltonian matrix elements cor-
responding to the orbital interactions between the hydro-
gen and silicon atoms and between the hydrogen atoms
themselves.

It was shown by Slater and Koster® that, in the two-
center approximation, the off-diagonal Hamiltonian ma-
trix element V(R ,R,) corresponding to the interaction
between orbital / centered on an atom at R, and orbital I’
centered on another atom at R, can be expressed in terms
of the two-center hopping integral vy.,,(R,,), where
R,=|R,—R,| stands for the distance between the two
atoms, and m =o or , as the conventional notation used
in molecular-orbital theory refers to the component of
angular momentum around the (R,—R;) axis. We note
that the two-center hopping integral is angle independent
and the detail relation between V;;.(R,R;) and vy, (R ;)
can be found in Ref. 33.

We shall further simplify our calculations by applying
the Wolfsberg-Helmholz formula'® to the two-center hop-
ping integral vy, (Ry,). For the v;,,(Ry,), the
Wolfsberg-Helmholz formula reads

Virm(R13)= 3K, (E,+E;)Sy(R ) , ©)

where E; and E, are the diagonal eigenvalues of the or-
bitals / and I, S;(R,,) is the overlap integral between
these two orbitals, and K, is a constant. To calculate the
overlap integral, we use the simplified Slater orbitals34-3’
of the type

R(r)=Ne ", @
where N is a normalization constant and g, is related to
the eigenvalue E; by

#u?/(2m)=—E, . 5
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The choice of the constant K,, in Eq. (3) is nevertheless
rather difficult from fundamental or even empirical argu-
ments. The way out of this problem is to express the ma-
trix elements of H in terms of the corresponding bulk
values of H,, that is, to deduce the constants K,, from
the matrix elements of H, using Eq. (3) and use them in
the defect calculations. For further details of our ap-
proach to the off-diagonal matrix elements of the Hamil-
tonian H, see the Appendix and Refs. 35 and 36.

It is clear that the orbital interactions between a hydro-
gen atom and its bonding silicon atom play an essential
role in passivation of the electrical activity of the silicon
dangling bond. We believe that the behavior of these in-
teractions is very similar to the behavior of the interac-
tions in the perfect crystal between the first nearest neigh-
bors and, therefore, these interactions are calculated from
the bulk values of the first-nearest-neighbor interactions.
The orbital interactions between hydrogen atoms them-
selves and between hydrogen atoms and silicon atoms
with the nonhydrogenated dangling bonds should, how-
ever, behave differently from the bulk orbital interactions
between the first nearest neighbors, because between
these atoms there are no direct bondings. These orbital
interactions should also behave differently from the bulk
orbital interactions of the second nearest neighbors, be-
cause between these atoms there is a vacant region where
an orbital orthogonality has been lifted. The above anal-
yses guide us in this work to set the values of these orbital
interactions to be at averages of the corresponding values
calculated from the bulk values of the first-nearest-
neighbor interactions and calculated from the bulk values
of the second-nearest-neighbor interactions. The remain-
ing orbital interactions involving hydrogen atoms should
be weaker than the hydrogen-silicon orbital interactions
we have just discussed. For the weaker hydrogen-silicon
orbital interactions we will only include in the calcula-
tions those ones between a hydrogen atom and a silicon
atom which is either chemically bonding to another hy-
drogen atom or a nearest neighbor of the silicon atom to
which the hydrogen atom is bonded. These orbital in-
teractions can be reasonably calculated from the bulk
values of the second-nearest-neighbor interactions. Fi-
nally, the orbital interactions between the silicon atoms
with dangling bonds are calculated from the bulk values
of the first-nearest-neighbor interactions, exactly as we
did in the calculations for the vacancy-related defects in
silicon®? and in I1I-V compound semiconductors.>®?’

C. Self-consistency

For a hydrogen-vacancy complex defect, the rearrange-
ment of the electronic charge will occur essentially in the
region where the defect is located. To take into account
effects of the charge rearrangement on the electronic
structure of the defect, calculations should be self-
consistent. In the present calculations, approximate self-
consistency is obtained with the use of an empirical mod-
el of Coulomb effects developed by Sankey and Dow for
impurities in semiconductors' and of a local charge-
neutrality condition proposed by Xu and Lindefelt for an
isolated vacancy in a semiconductor.>%3’
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In the latter case, taking as an example the neutral iso-
lated silicon vacancy, the diagonal matrix elements E
and E, of the Hamiltonian H on the neighboring atoms
of the vacancy are expressed as

E!=E,+AE',
E)=Eq,+AE' ©
P Op
and
E2=E, +AE?,
@)

2— 2
E}=E,,+AE?,

where Eo, and E,, are the corresponding silicon bulk
values and AE! and AE? are the energy shifts. We use
superscripts 1 and 2 to indicate, respectively, the first and
second nearest neighbors of the vacancy. With use of the
local charge-neutrality condition,’®3” AE! and AE? are
adjusted such that the total charge on the four first-
nearest-neighboring atoms of the vacancy is equal to the
total charge on the four corresponding atoms in the per-
fect crystal and such that the total charge on the second-
nearest-neighboring atoms is equal to the total charge on
their corresponding atoms in the perfect crystal.

We first consider the VH, defect, which can be han-
dled by using the Sankey-Dow model" without invoking
the charge-neutrality condition. In this model, atomic-
orbital energies are expressed in terms of different elec-
tron repulsion parameters Uy, U,,, and Ug,, together
with atomic bare ionization energies E and E;, as fol-
lows:

E:a( [na} )=Es0+ 2’ nsa'Uss + 2 npjo-’Usp ’ (8)
o’ jo'

E, ,({n,} )=Ep0+ E’npj

24 oUpt 210U ©)
<

jo’
where i and j=x, y, or z; o is the spin (1 or |); the prime
on the summation indicates that the self-interaction is ex-
cluded; and n, are the occupation numbers of spin orbit-
als a=io. We adopt values for E?, Eg, U, Uy, and Uy,

as determined by Sankey and Dow,!” who used the re-
quirement that the Hartree-Fock s- and p-electron ener-
gies and the observed ionization potentials of free atoms
should be reproduced. Using Egs. (8) and (9), the
atomic-orbital energies for the silicon atoms in the bulk
crystal and for the hydrogen atoms and the first- and
second-nearest-neighbor silicon atoms of the vacancy in
the VH, defect can easily be calculated. The diagonal
matrix elements of the defect potential U are obtained by
subtracting the calculated atomic-orbital energies for the
silicon atoms in the bulk crystal from the calculated
atomic-orbital energies for the hydrogen atoms and for
the first- and second-nearest-neighbor silicon atoms of the
vacancy. It is clear that the diagonal matrix elements of
the Hamiltonian H are some functions of the orbital oc-
cupancies n,, which in turn are fully determined by the
Hamiltonian H. Therefore, the procedure of the calcula-
tions should be repeated iteratively until self-consistency
is obtained.

Up to now, we have described the procedure for deter-
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mination of the self-consistent defect potentials of the iso-
lated vacancy and the VH, defect in Si. For the VH,
VH,, and VH; defects, we have both silicon-hydrogen
bonds and silicon dangling bonds. To keep the calcula-
tions simple, we will only determine self-consistently the
diagonal matrix elements of defect potential on the hy-
drogen atoms and on the four first-nearest-neighbor sil-
icon atoms. The diagonal matrix elements of the defect
potential on the second-nearest-neighbor silicon atoms of
the vacancy are simply approximated by the values self-
consistently determined for the isolated vacancy and the
VH, complex defect, in such a way that, for those which
are first nearest neighbors of the silicon atoms with dan-
gling bonds, the diagonal matrix elements are set equal to
the values obtained for the isolated vacancy, while for
those which are first nearest neighbors of the silicon
atoms with silicon-hydrogen bonds, the diagonal matrix
elements are set equal to the values obtained for the VH,
complex defect. We believe that this is a proper approxi-
mation, because the gap states are mainly derived from
the silicon dangling orbitals and the major parts of the
Coulomb effect are accounted for in the self-consistently
calculated matrix elements of the defect potential on the
hydrogen atoms and the first-nearest-neighbor silicon
atoms.

In the calculations for the VH, VH,, and V'H; defects,
the atomic-orbital energies of the hydrogen atoms and
the first-nearest-neighboring silicon atoms of the vacancy
are all self-consistently determined using Egs. (8) and (9).
The corresponding matrix elements of the defect poten-
tial on all the hydrogen atoms and the silicon atoms
which are directly bonded to the hydrogen atoms are
then calculated by subtracting the calculated atomic-
orbital energies for the silicon atoms in the bulk crystal
from those for the hydrogen and silicon atoms in these
defects. The corresponding matrix elements of the defect
potential on the silicon atoms with dangling bonds are
obtained by subtracting the calculated atomic-orbital en-
ergies of the silicon atoms for the isolated vacancy from
those for these defects, plus the energy shift AE! deter-
mined for the isolated silicon vacancy by the local
charge-neutrality condition described earlier in this pa-
per. It is clear that the calculations need to be iterated
until self-consistency is achieved.

D. The recursion method

The essential quantities in the present self-consistent
calculations are the electronic spin-orbital occupancies
n, of the spin orbitals a. They can be obtained by in-
tegration of the corresponding local densities of states
(LDOS) p (E),

E
na=f_:pa(E)dE. (10)

The local densities of states p,(E) can in turn be ex-
pressed in terms of the Green’s function
G(E)=(E —H)™! of a Hamiltonian H:
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pa(E)=—% lim ImG o(E +7¢) (11)

where G,(E) stands for the diagonal matrix element of
the Green’s function corresponding to the spin orbital a.

In the recursion method,?>?* the diagonal matrix element
G,(E) is given by
G (E)= !
a - b%
E _ao - 2
b3
E _al - 2
b
E—a,— 3
2 TR

(12)

where a, and b, are recursion coefficients. They are gen-
erated, as we transform the Hamiltonian H to a tridiago-
nal form, by the recursion relation

bn+l|un+1>=H|un>_an|un>_bn|un—l) ’ (13)

where |u, ) is a new orthonormal basis set starting with
the first element |u,) set equal to the spin orbital . In
principle, the continued fraction is infinite in length for
an infinite solid, but in practice it always truncated at
some finite level and the effects of the remaining tail of
the continued fraction are approximated by a terminator
t(E). In this work, the square-root terminator?>»?* is used
to generate the local densities of states p,(E). This termi-
nator replaces the band gap by a region with a low densi-
ty of states.

It is clear that the above procedure can be used to cal-
culate local densities of states for arbitrary linear com-
binations of the atomic orbitals in the basis. When the
linear combinations are symmetrized according to the ir-
reducible representations of the point symmetry group of
a defect, the symmetric gap levels of the defect can be ob-
tained by searching the poles in the diagonal matrix ele-
ments of the Green’s function of the symmetrical com-
binations or the peaks in the corresponding local densi-
ties of states. The localizations of the defect levels can be
estimated by integration of the corresponding changes of
the local densities of states over the peaks.

This is a very efficient method for computing the in-
tegrated quantities through the energy bands and for
identification of the resonances in the energy bands and
the bound states in the gap. However, to locate the ener-
gy positions of the bound states and to calculate the level
weights (projections) of the bound states on basis orbitals
or their linear combinations, we have found it more con-
venient to use the Lanczos scheme?? and the quadrature
approach developed by Nex? for the recursion method.

When the recursion in Eq. (13) is truncated at a finite
level N, an approximate tridiagonal Hamiltonian H” of
dimension N + 1 is obtained:
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a, b, 0 0
b, a, b, 0 0
0 b, a, b, 0 0
0 0 b a b 0
Hy= > o . (14)
ay—» by 4 0
by an—1 by
0 by an

In the Lanczos scheme,? the eigenvalues E} and eigen-
vectors |E}N) of the Hamiltonian H” are determined by
solving directly the corresponding eigenvalue equation;
the energy positions of the gap states are then obtained
by searching the convergent eigenvalues in the gap as N
increases.

The local densities of states and related quantities are
alternatively calculated using the quadrature approach.?
For the recursion truncated at level N, the local density
of state pN(E) is expressed in terms of the eigenvalues EY
and eigenvectors |E}N) of the H” defined in Eq. (14):

PNE)='S, [(ENa) P8(E—EN)
i=0
N
=3 oNSE—-EN), (15)
i=0
where oY is the weight (projection) of the eigenstate

|EX) on the orbital a. The corresponding electronic oc-

cupancy nY is

Ep occ
nY¥=[ " pNEME=3 ol , (16)
® i
where the summation runs over occupied states only.
The local density of state p,(E ) and electronic occupancy
n,, of the orbital a are limit values of pY(E) and n¥ with
N-—:

pLE)= hm pNE) (17)

and

n,= lim n (18)

¢ N—

The central quantity for the calculation of the local
density of states and the electronic occupancy in the
quadrature approach is evidently the weight o¥.. Tt has
been shown by Nex?® that the weight can be computed
from the following equation:

an(EN)
ol =— (19)
PN+1(E)
where py(EN) and gy (EX) are two polynomials satisfying
the three-term recurrence relations

Pu i \EM=(EN—a,)p,(EN)—blp, _(EM),
q,,H(E,-N):(E,N— bp i 19n—(EN)

(20a)

a,+1 )g, (EN)— (20b)

with the initial conditions p_,(EN)=q_,(EN)=0,
PolEM)=1, and qo(E¥)=b2=1. The weight w,; of the
true eigenstates |E; ) is

@i =

= lim ol . (21)

N— o
In all our calculations, we seldom need to go beyond
N =150.

Again, the quadrature approach is applicable to com-
puting local densities of states and related quantities for
any linear combinations of the atomic orbitals in the
basis. Using the Lanczos scheme and the quadrature ap-
proach, the energy positions and the projection weights
of the bound states in the energy gap can easily be calcu-
lated to arbitrarily high accuracy.

E. Electronic wave functions of gap states

The wave functions of gap states of a defect are a kind
of fundamental quantity that we need in order to com-
pute the hyperfine fields of the defect (see Sec. IIIF).
Once the energy positions of these gap states and their
projection weights on the basis functions are accurately
determined, their electronic wave functions can easily be
calculated using a numerical method introduced recently
by Xu.?® Here, we give only a brief outline of the
method. More details can be found elsewhere.?®

The wave function |¢/) of a gap state with eigenenergy
E can be expressed as a linear combination of the basis
orbitals (|¢,), a=iR, i=s, p,, p,, or p,) as follows:

ly)=Te'
a

%o w,)12|8,) (22)

where o,

weight of the gap state on the basis orbital |¢,) and e
is the phase factor. The phase shift 6,=0 or 7 needs to
be determined. We note that we have dropped the spin
label in both sides of Eq. (22) and the summation over R
should be understood to run through both hydrogen and
silicon atomic sites [cf. Egs. (1) and (2)]. The projection
weights {w,} satisfy the normalization condition

> w,=1.
a

, which is always positive, is the pro_]ectlon

(1

(23)

Since only relative phase shifts have an effect on the
physical results, we can choose, without losing any gen-
erality, any one of the phase shifts to be zero. To keep
the notation even simpler, we let the a take positive in-
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teger numbers and the phase shift 8, be zero, assuming
©,70. The wave function |1#) can then be written as

1) =) 2e)+ 3 e w,)12d,) . (24)
a=2

In order to determine the values for the phase shifts, we
define a test orbital for each a (a7#1):

1

m[(wl)l/2|¢l)+eiga((0a)1/2|¢a>] ,
1 a

|Po(0,)) =

(25)

with a trial phase shift §,. The projection weight of the
gap state on the test orbital is

B0,)= (@09 ?

w,+w.expli(6,—8,)]
)1/2

2

(26)

(0, F 0,

Here, we have used the orthonormality property of the
basis orbitals. We obviously have

o, +o, if 8,—6,=0

loy— 0,2 /(0 +0,) if 8,—0,=m

Dy

27

and

|0y —wg|* /(01 0,) SB4(0,) S0+, . (28)
This suggests a numerical procedure for the determina-
tion of the phase shifts {6,} in Eq. (24) as follows. We
first construct a test function for each a using Eq. (25)
and calculate the projection weights of the gap state on
the test orbital with the trial phase shift §,=0 and 8,=m
using Eq. (19). The correct values of the phase shifts
{6,] in the expansion of the wave function of the gap
state [Eq. (24)] are determined by the following rule: If
0,0,=0)=w,;+w,  then 6,=0, whereas if
®4(0,=7)=w,+o,, then 6,=7. Once all values of the
phase shifts {6,} are determined, the wave function of
the gap state follows simply by inserting them into Eq.
(24).

We make the following notes about the method. First,
the method does not require any information about the
eigensolutions other than the gap state of one’s interest to
be used as inputs. Secondly, when the gap state is very
localized, its wave function can be expanded in a small
number of the basis orbitals and, correspondingly, our
numerical procedure need only run for very few phase
shifts. Even further, the signals detected by many experi-
mental techniques only correlate to the partial wave func-
tions of gap states. The computation of the partial wave
functions is then a key step in the theoretical interpreta-
tion of the corresponding experimental results and can be
done very quickly using our method. Finally, for a defect
system with some symmetry properties, one can reduce
the number of the phase shifts which need to be numeri-
cally determined if the orbitals in the basis are sym-
metrized.
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F. Hyperfine interaction

Experimental techniques such as electron paramagnet-
ic resonance (EPR) probe the interaction between elec-
tronic wave functions and nuclear spins. When applied
to a defect in a semiconductor, the spectra of such tech-
niques, properly interpreted, contain highly detailed mi-
croscopic information about the structure of the defect
which often cannot be obtained in any other way. How-
ever, the conclusive structural identification of the defect
may only be obtained if theoretical calculations of
the hyperfine-interaction parameters for various config-
urations are available.

The hyperfine-interaction parameters are often present-
ed as a tensor which is known as the hyperfine-
interaction tensor. For a defect in a semiconductor, the
elements of the tensor can be analyzed in terms of three
different contributions.®® The first contribution arises
from the paramagnetic spin of the electronic wave func-
tion of the gap state. This contribution actuates the elec-
tron hyperfine field of the defect. As a consequence of
the wave function of the gap state, one will have a contri-
bution to the elements of the hyperfine-interaction tensor
from a spin polarization of the valence band, and also a
contribution from a spin polarization of the atomic core
states. In this paper we shall disregard the contributions
to the hyperfine-interaction tensor from the two types of
spin polarizations. This is a crucial approximation. In a
recent calculation for chalcogen point defects and defect
pairs in silicon,*® Overhof, Scheffler, and Weinert showed
that the contributions from the spin polarizations, partic-
ularly of the valence band to the hyperfine-interaction
tensor elements, can be quite significant. However, at the
chalcogen nuclei the contributions from the spin polar-
izations were found to be relatively unimportant. At the
nearest-neighbor silicon nuclei of the chalcogen impuri-
ties, except for Te impurity, the major contributions to
the hyperfine-interaction tensor elements are found to
still come from the wave function of the gap state. In
this work we will only consider the hyperfine-interaction
tensor for the hydrogen nuclei and the silicon nuclei at
the nearest-neighbor sites of the vacancy. Therefore, al-
though only the hyperfine-interaction tensor elements de-
duced from the paramagnetic spin of the electronic wave
function of the gap state are presented, we expect that
our results can still be useful in analyses of EPR and
ODMR experiments.

The direction of the principal axis of the hyperfine-
interaction tensor is also of importance in the microscop-
ic identification of defects. Since the electron hyperfine
field is actuated by the paramagnetic spin of the electron-
ic wave function of the gap state, it should be well to as-
sign the direction of the symmetric axis of the partial
wave function of the gap state at each atomic site to the
direction of the principal axis of the hyperfine-interaction
tensor at the corresponding nucleus (see also discussions
below).

The hyperfine interactions arising only from magnetic
interactions between nuclei and paramagnetic spin of the
electronic wave function of the gap state are described by
the Hamiltonian given by’



1410 HONGQI XU 46
H, = > S Z(R)-I(R) ) (29) tensor X, arising from the wave function of the gap state
R alone, is axially symmetric around the axis along the

where the sum goes over all atomic sites R, I(R) is the
nuclear spin, S the total spin vector of the unpaired elec-
trons in the gap state, and A (R) is the hyperfine interac-
tion tensor and can be calculated by*°
1
5]

(30
where r; and r; are the components of the position vector
r from the nucleus at R to the electrons with the spin S.
g, is the electron g value and g, is that of the nucleus. ug
is the Bohr magneton and p, the nuclear magneton. The
term with |4(0)|%, the electron probability density at the
nucleus, is the Fermi contact term, which is isotropic.
The second term in Eq. (30) is the dipole-dipole interac-
tion term, which is anisotropic. The angular brackets in
this term mean an average taken over the wave functions
of the unpaired electrons in the gap state.

In order to make our theoretical results easier to com-
pare with experiments, we rewrite the wave functions of
the gap states [Eq. (22)] as follows:

lY)= 3 9(R)|®R)), 31
R

T 3r;r

8
T|¢<o>|25,,+<

A;;=8.8nlphn

i’y
5

where |7(R)|? is the projection weight of the wave func-
tion of the gap state on the atomic orbital |®(R)) cen-
tered at site R. The atomic orbital |®(R)) is further
defined as a linear combination of an s- and a p-like orbit-
al as follows:

|®(R)) =a(R)|¢,(R))+B(R)|,(R)) , (32)

where |a(R)|?>+|B(R)|*=1. Comparing Egs. (31) and
(32) with Eq. (22), we obtain the relations between the
coefficients 7(R), a(R), and B(R) and the coefficients

ezea(wa)l/z (a=iR,i=s,p,,p, and p,):
|77(R)|2=wSR+a)pxR+wpyR+wsz ,
la(R)2=w.g /In(R)|?, (33)
IBR)P=(w, g+o, g +o, )/ |1RI*.

The direction of the lobe of the p-like function in Eq. (32)
is defined by three direction cosines /, m, and n,

iGP
I=¢ ™w,)"?/IBl ,

i6'p

m=e ,V(wpy)l/l/'Bl , (34)

i6p
n=e z(wp )1/2/|B| .
z

Here the suffix R has been dropped.

It is a commonly adopted assumption*®*! that only the
atomic orbitals centered on the atomic site R have contri-
butions to 4A(R) and the contributions from the other
atomic orbitals are neglected. Under this assumption, it
can be seen from Eq. (30) that the hyperfine-interaction

direction of the lobe of the p-like function centered on the
atomic site R. Thus, the tensor 4A(R) from the nucleus
at site R can, in general, be described as***!

4,(R)=a(R)+2b(R),
A, (R)=a(R)—b(R),

(35a)
(35b)

where the hyperfine parameters a and b are given by

8

3 (36a)

a=-—"-g.8, gt lal’ 4,0

and

b”—‘%gegn.ua#nwp|7]|2<r_3)p . (36b)

The suffix R has again been dropped in these two equa-
tions. |¢,(0)|? in Eq. (36a) is the amplitude of the s-like
atomic orbital at the nucleus at site R, and {r ~3) » in Eq.
(36b) is the expectation value of r ~3 weighted over the p-
like atomic orbital centered on the site R. In this work
we shall not attempt to calculate the values of |¢,(0)|2
and (r~?) p for the atoms in question. Instead, we shall
use the values derived from the Hartree-Fock-Slater
atomic orbitals,

|4,(0)|>=34.52X10* cm 3
and
(r73),=18.16X10* cm~?,

for the silicon atoms,*? and the value derived from the
free atomic 1s orbital,

|4,(0)]2=2.148X10** cm~?,

for the hydrogen atoms.** These values were used in Ref.
12 where the VH, defect in silicon was studied by the
ODMR technique.

IV. RESULTS AND DISCUSSION

In this section the results of our calculations will be
presented and analyzed. In order to have a better under-
standing of the physical origin of the calculated electron-
ic structures, a set of qualitative models in terms of one-
electron molecular orbitals will be constructed for the
considered hydrogen-vacancy complexes. We shall also
make comparison of the results of our calculations with
experimental studies.

At the outset, we define the orbitals on which the
LDOS’s we discussed throughout this section are project-
ed. Even our self-consistent potential for a defect con-
sidered in this paper has been determined approximately
for the hydrogen atoms and the first- and second-
nearest-neighbor silicon atoms of the vacancy in the de-
fect; we shall only discuss our calculated LDOS’s for the
orbitals centered on the atoms shown in Fig. 1, that is, in
the central cell of the defect. At times, we will also dis-
cuss the calculated results for the isolated silicon vacan-
cy. In this case, the orbitals on which the considered
LDOS’s are projected are simply those centered on the
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four nearest-neighbor silicon atoms of the vacancy (the
central cell of the vacancy). Our calculated change in the
LDOS (ALDOS) presented in this section is defined as
the difference between the sum of the LDOS’s corre-
sponding to all the orbitals centered on the atoms in the
central cell of the defect and the sum of the LDOS’s cal-
culated for the perfect crystal corresponding to all the or-
bitals centered on a silicon atom and its four nearest-
neighbor atoms in the crystal. In order to obtain the
symmetrical properties of defect states, all the considered
orbitals have been symmetrized according to the irreduc-
ible representations in the point symmetry group of the
defect.

A. Quadrihydrogen-vacancy ( VH,) complex

We begin by first presenting our results for the V'H, de-
fect, because this defect is the most studied of the
hydrogen-vacancy complexes and because its electronic
structure can be very easily understood. In Fig. 2 we
show the calculated ALDOS’s of different symmetries for
the atoms in the central cell of the defect. The results
presented in this figure are obtained for a configuration in
which the hydrogen atoms have been placed a distance of
0.90 A from the vacancy center. It is clear that there are
no significant changes in the LDOS of the e and ¢; sym-
metries. In Fig. 2 we have not shown ALDOS for the a,
symmetry, because with an sp? basis, the a, linear com-
bination cannot be obtained from the orbitals centered on
the atoms in the central cell of the defect. We can, how-
ever, expect an even smaller change in the density of
states for this symmetry. Figure 2 shows that the VH,
defect induces two sharp peaks in the ALDOS of @, sym-
metry and a sharp and a broadened peak in the ALDOS
of t, symmetry. There is no electrically active state in
the fundamental band gap.

As discussed earlier, it is a reasonable first guess to
place the hydrogen atoms at a distance d =0.90 A from
the vacancy center. To judge this guess, we calculate the
electronic structure of the defect with the hydrogen
atoms at other distances d from the vacancy center. The
silicon atoms are always kept at the same positions. Fig-
ure 3 shows the resultso of our calculations for d =0.65,
0.75, 1.0§, and 1.20 A, together with the results for
d=0.90 A and the results for the undistorted isolated sil-
icon vacancy for comparison. In this figure only the re-
sults for the ALDOS’s of a; and ?, symmetries are
shown. The ALDOS’s of the e and ¢, symmetries remain
very small. It is found that the global electronic struc-
ture of the defect is same for these different d values.
However, quantitative differences in the calculated re-
sults for the different d values occur. For d =0.65 and
0.75 A, the upper a, state of the V'H, defect stays in the
fundamental band gap, while the lower ¢, state interacts
with the valence states of the crystal, forming a very
broad resonance state and giving a good recovery of the
electronic structure of the crystal valence band of ¢, sym-
metry. As d is increased, the position of the upper a,
state shifts towards higher energy and eventually into the
conduction band, while the position of the lower ¢, state
in the valence band shifts towards lower energy and the
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FIG. 2. Calculated changes in the local densities of states
(ALDOS) of (a) a,, (b) ¢, (c) ¢, and (d) t, symmetries induced by
the neutral VH, defect (in T, symmetry) in crystalline silicon
with the hydrogen atoms being placed a distance of d=0.90 A
from the vacancy center, corresponding to all the atomic sites in
the central cell of the defect. Units are electrons per eV. The
spin degeneracy is excluded. The energy at the top of the
valence band is set to zero. The edges of the fundamental band
gap are identified by dot-dashed lines.
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localization of the state is increased, which indicates that
the recovery of the valence electronic structure is getting
worse. On balance, the choice of d=0.90 A seems
reasonable. In addition, these results show that when the
hydrogen atoms are moved away from their bonding sil-
icon atoms, an empty a, gap state drops out from the
conduction band.

By comparison of these results with the calculated
ALDOS’s for the undistorted isolated silicon vacancy, we
immediately see that the @, resonance state of the silicon
vacancy is pushed out from the valence band, while the ¢,
bound state is pushed away from the fundamental band
gap. This electronic structure of the defect can be well
described by a model presented in Fig. 4. In the model,
the four hydrogen s orbitals are symmetrized, giving an
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a, and three degenerate ¢, combinations [Fig. 4(a)]. The
same symmetrizations are done for the four hybrid orbit-
als on the nearest-neighbor silicon atoms of the vacancy,
pointing towards the vacancy center [Fig. 4(c)]. In order
to have the relative energy positions of the symmetrized
orbitals right, we have calculated the projection weights
of the lower a, and the upper ¢, state on the atoms in the
central cell of the defect for d=0.90 A, even though
these two states may have no physical relevance for the
electronic and optical properties of the defect. We have
found that 81% (18%) of the wave function of the lower
a, state well below the valence band is localized on the
four hydrogen (silicon) atoms in the central cell of the de-
fect, while 67% (30%) of the wave function of the upper
t, state well above the lowest conduction band is local-
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FIG. 3. Calculated changes in the local densities of states (ALDOS) of a, and e symmetries induced by the neutral VH, defgct in
crystalline silicon, for all the atomic sites in the central cell of the defect for the hydrogen atoms at a distance of (a) d=0.65 A, (b)
d=0.75 A, (c)d=0.90 A, (d) d=1.05 A, and (e) d=1.20 A from the vacancy center. (f) is the calculated corresponding ALDOS for
the undistorted isolated silicon vacancy. Units are electrons per eV. The spin degeneracy is excluded. The energy at the top of the
valence band is set to zero. The edges of the fundamental band gap are identified by dot-dashed lines.



46 HYDROGEN-VACANCY COMPLEXES IN SILICON . ..
v \E
/ AN
// \
e N
ta—H—
N \\ Q\\\\\\\l \\ N
™ \ --H—t2

el

/

N /

N /

\\ /

N /

\1 /al

VH,

(a) (b) (c)
FIG. 4. Schematic illustration of the one-electron

molecular-orbital treatment for the electronic structure of the
neutral VH, defect (in T, symmetry) in crystalline silicon. (a)
shows an a, and a ¢, level associated with the linear combina-
tions of the four hydrogen s orbitals. (c) shows an a, and a ¢,
level formed from the four silicon hybrids surrounding the va-
cancy. (b) is the energy-level scheme of the VH, defect resulting
from the interactions between the two a, levels and between the
two ¢, levels shown in (a) and (¢). The four Si-H bonds are
formed as the a; and ¢, bonding states are fully occupied by
eight electrons.

ized on the four hydrogen (silicon) atoms. These results
lead us to place the a, (¢,) combination of the hydrogen
orbitals below (above) the a; (¢,) combination of the sil-
icon hybrid orbitals. The defect states of V'H, are finally
formed by the interactions between the symmetrized hy-
drogen s and silicon hybrid orbitals, giving a bonding and
an antibonding a, state and a bonding and an antibond-
ing t, state [Fig. 4(b)]. Due to the interactions, the z, gap
level of the isolated silicon vacancy has been removed
from the fundamental band gap. The four Si-H bonds in
the defect are formed as the a, and ¢, bonding states are
fully occupied by electrons. This feature of passivation of
the silicon dangling bonds is different from that by the
substitutional group-V  impurity atoms in the
quadrigroup-V —vacancy complexes,’? where the deac-
tivation of the electrical properties of the isolated silicon
vacancy is due to the lowering of the energies of the dan-
gling orbitals by the group-V impurity ions.

Our results are, in general, consistent with other simi-
lar calculations,'*~!7 even though different theoretical ap-
proaches have been used. However, no detailed compar-
isons between those calculations and ours will be made in
this paper.

B. Monohydrogen-vacancy ( VH) complex

In the (VH) defect, the hydrogen atom can saturate
one of the silicon dangling bonds pointing towards the
vacancy center. In the absence of Jahn-Teller distortions,
a typical configuration of the defect is illustrated in Fig.
1(a), where only the central cell of the defect is shown
and the hydrogen atom is placed a distance of 0.90 A
from the vacancy center or, equivalently, 1.45 A from its
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bonding silicon atom (Si;). The point symmetry group of
the defect in this case is C;,. We have done calculations
for the neutral defect in this symmetry. Figure 5 shows
the calculated ALDOS’s of the a; and e symmetries for
all atomic sites in the central cell of the defect. It can be
seen that for the a, symmetry, the VH defect has a strong
resonance at an energy just below the upper edge of the
valence band and a defect state at an energy above the
lowest conduction band. For the e symmetry, the defect
introduces a bound state in the fundamental band gap.
In Table I the energy positions of these defect states have
been listed. We note that for the defect in its neutral
state, the e symmetry gap state is at E,+0.72 eV (E,
denotes the upper edge of the valence band), the same en-
ergy position as the ¢, gap state of the ideal isolated sil-
icon vacancy.’ In Fig. 5, we have not shown the calcu-
lated ALDOS of a, symmetry. We here note that, as for
the LDOS’s of e and ¢, symmetries of the VH, defect, we
have found that the VH defect does not introduce any
significant change in the LDOS of a, symmetry.

In the central cell of the VH defect, the atoms can be
divided into three groups such that in each group the
atoms are symmetrically equivalent. The three groups
are the following: one consisting of only the hydrogen
atom, one only the Si; atom, and one the other three sil-
icon atoms (Si,, Si;, and Si;). We have done the calcula-
tions for the localizations of the a; and e defect states on
each of the three groups of atoms. The results are also
listed in Table I. It is shown that the a, resonance state
in the valence band and the e gap state at £, +0.72 eV
appear mainly as the combination of the atomic orbitals
of the three silicon atoms (atoms Si,, Si;, and Si,) which
have not been saturated by the hydrogen atom, whereas
the a, state at an energy above the lowest conduction
band appears essentially as a combination of the orbitals
of the hydrogen atom and its bonding silicon atom Si,.
We note that the calculated results for the a, state locat-
ed above the lowest conduction band may still have no
physical relevance for the electronic and optical proper-

a; symmetry

=
u
<
1%}
=
205
B
§ 0.0 s
cl -0.5
1% € symmetry
g 05
~ 00 W
=]
= -0.5
[}
a0
=]
2
o
-20.0 0.0
Energy (eV)

FIG. 5. Calculated changes in the local densities of states
(ALDOS) of a; and e symmetries induced by the neutral VH de-
fect (in C;, symmetry) in crystalline silicon, corresponding to all
the atomic sites in the central cell of the defect. Units are elec-
trons per eV. The spin degeneracy is excluded. The energy at
the top of the valence band is set to zero. The edges of the fun-
damental band gap are identified by dot-dashed lines.
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TABLE 1. Calculated a, and e energy levels in and around the fundamental band gap and their localization characters a;, 8;, and
7; for the neutral and non-Jahn-Teller-distorted VH defect in silicon. The energies of the levels are measured relative to the top of
the valence band. The point symmetry group of the defect is C3,. The sum over j in column 7 runs over the equivalent atoms only.
The level localization is defined as the sum of the localizations of a defect state on all atoms in the central cell of the defect. The
column labeled level occupancy indicates electron occupation of the levels of the neutral defect.

Energy Number of
level Atomic equivalent Level Level
(eV) Symmetry identity atoms a3 B > 7 localization occupancy
J
—0.41 a; H 1 1.00 0.011 0.70 2
Si; 1 0.10 0.90 0.032
Si, 3 0.11 0.89 0.652
0.72 e Si; 1 1.00 0.000 0.64 1
Si, 3 0.20 0.80 0.643

ties of the defect, but again they can be used as a clue to
the physical origin of the defect states in and around the
fundamental band gap.

In Fig. 6 we show the model that we propose to explain
our computational results. The s orbital of the hydrogen
atom interacts strongly with the Si; hybrid orbital point-
ing towards the hydrogen atom, giving a bonding and an
antibonding a, state with a large energy separation [Fig.

a —H—@EV

a a a

I
VH VH
JT
Cav Cin Cay Csy

(a) (b) () (d)

FIG. 6. Schematic illustration of the one-electron
molecular-orbital treatment for the electronic structure of the
neutral VH defect in crystalline silicon. (a) shows two a, energy
levels associated with a bonding and an antibonding combina-
tion of the hydrogen s orbital and the hydrogen-saturated sil-
icon hybrid towards the vacancy center. (d) shows an @, and an
e energy level formed from the three silicon dangling orbitals.
(c) is the energy-level scheme of the VH defect in C;, symmetry,
obtained simply by the combination of the results shown in (a)
and (d). A very weak interaction between the a,; antibonding
combination of the hydrogen s orbital and the hydrogen-
saturated silicon hybrid and the a; combination of the silicon
dangling bonds is indicated in (c). (b) shows the electronic
structure for the defect after a Jahn-Teller (JT) distortion,
which lowers the defect symmetry from C;, to C,,. The Si-H
bond is formed as two electrons are accommodated in the bond-
ing state formed from the hydrogen s orbital and the hydrogen-
saturated silicon hybrid.

6(a)]. The formation of the Si-H bond is due to the occu-
pation of two electrons on the a, bonding state. This Si-
H bond resembles very well the Si-Si bond of the silicon
crystal in the electronic properties and, thus, gives contri-
butions to the valence band in a wide range of energies.
Therefore, no localized defect state mainly associated
with the a; bonding state has been found in the valence
band (see Fig. 5 and Table I). The three silicon dangling
bonds pointing to the vacancy center are symmetrically
equivalent and can thus be symmetrized according to the
irreducible representations of the point symmetry group
C,,, giving an a; and an e symmetry state [Fig. 6(d)]. It
is clear that the e gap state of the VH defect stems from
the e symmetry state of the three silicon dangling bonds
and, therefore, stays at the same energy position as the 7,
gap state of the isolated silicon vacancy. However, a
weak interaction between the a, state of the three silicon
dangling bonds and the Si-H antibonding state is expect-
ed to occur and, thus, a very small contribution to the a,
resonance state of the VH defect from the hydrogen and
Si atoms is found (see Table I). All these discussions are
summarized in Fig. 6(c).

Clearly, the VH defect in its neutral state should un-
dergo a Jahn-Teller distortion, since the fourfold-
degenerate (including spin) e level is occupied by only one
electron. A possible Jahn-Teller distortion is that two sil-
icon atoms (for example, the Si; and Si, atoms) with dan-
gling bonds pull together to form a pair-bonding state
and the remaining one (the Si, atom) moves away from
the vacancy center. The Jahn-Teller distortion will lower
the symmetry of the defect from C;, to C,, and, thus,
cause a splitting of the e level according to e=a’'+a”’
with the spin-unpaired electron at the a’ gap state. A
schematic description for the electronic structure of the
Jahn-Teller-distorted ¥H complex defect is shown in Fig.
6(b).

The VH defect in its neutral state is clearly an electron
paramagnetic resonance active center. Table II gives the
calculated  hyperfine-interaction = parameters  and
coefficients of the spin-unpaired electron wave function
for the atoms in the central cell of the defect after two as-
sumed Jahn-Teller distortions. In each case, only the
three silicon atoms (Si,, Si3, and Si,) with dangling bonds
and the hydrogen atom have been distorted, while the
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hydrogen-saturated Si; atom has been fixed on its Cj,
symmetric position shown in Fig. 1(a). In the first
(second) case, the x and y coordinates of the hydrogen
atom and the Si,, Si;, and Si, atoms have been displaced
by 10% (20%) from their C,, symmetric positions of Fig.
1(a) and the z coordinate of the hydrogen atom by 20%
(40%). In Table II, in addition to its three direction
cosines /, m, and n, the axial direction of the hyperfine
tensor for an atom (Si; or Si,) in the mirror plane of the
defect is also presented by the angle 6 (0° <6 =<180°) be-
tween the axial direction and the {(110) direction in the
mirror plane. It can be seen that 50% of the spin-
unpaired electron wave function is localized on the Si,
atom, and 10% on the Si; and Si, atoms. Contributions
to the unpaired electron wave function from the hydro-
gen and Si; atoms are negligibly small. The axial direc-
tion of the hyperfine tensor at the atomic site Si, is found
to be almost parallel to the (111) direction or to the
dangling-bond direction of the Si, atom in the isolated
ideal vacancy. The axial directions of the hyperfine ten-
sors at the atomic sites Si; and Si, have been slightly
oriented towards to the directions favorable to form a
pair bonding between the two atoms. These results are
found to have a very small dependence on the magnitude
of the Jahn-Teller distortion, as can be seen by compar-
ison of the calculated results for the two assumed Jahn-
Teller distortions (Table II). However, the spin-unpaired
electron energy level is indeed lowered by the Jahn-Teller
distortion. This lowering can exceed the increase in ener-
gy of the level caused by condensing the unpaired elec-
tron state to only one silicon dangling orbital (see case II
of Table II). The axial direction of the hyperfine tensor
at the atomic site Si; is also changed with the Jahn-Teller
distortion in a trend towards the { 111) direction (i.e., to-
wards 6=35.26°). This is in accord with that when the
Jahn-Teller distortion is nearly vanishing; the axial direc-
tion of the hyperfine tensor should be nearly perpendicu-
lar to the (111) direction.

There are no experimental results on the VH defect
with which our calculated results can be compared.
However, it has been found that the unpaired electron
states in the VH defect and in the VP defect, i.e., the sil-
icon E center,*! are very similar in many aspects, such as
the localizations of the unpaired electron states and the
hyperfine tensors at silicon atomic sites surrounding the
vacancy. This could result in a difficulty in distinguish-
ing the experimental signals of the VH defect from that
of the VP defect. A clue to identification of the VH de-
fect is, of course, the Si-H bond which should give contri-
butions to the infrared-absorption spectra. In addition, a
small but not vanishing localization of the unpaired elec-
tron state on the hydrogen atom and its bonding Si atom
may also help identify the defect. We point out that if an
E-center-like EPR signal is observed in the hydrogenated
silicon sample while the correlation of the signal to the E
center is hard to be established, one should consider if the
signal can be assigned to the VH defect.

C. Dihydrogen-vacancy ( VH,) complex

In the VH, defect, the two silicon dangling bonds are
saturated by the hydrogen impurity atoms. In the atomic

TABLE II. Calculated spin-unpaired electron energy levels and hyperfine-interaction parameters, arising from the paramagnetic spin of the wave function of the gap state, and
wave-function coefficients for the atoms in the central cell of the neutral ¥H defect in silicon after two assumed Jahn-Teller distortions, labeled I and II. The energies of the levels are

measured relative to the top of the valence band. Ax, Ay, and Az are displacements of the atoms from their C;, symmetric positions shown in Fig. 1(a). I, m, and n are the direction

cosines of the axially symmetric axis of the hyperfine tensor at each atomic site, and 6 is the angle between the direction of the axially symmetric axis and the (110) direction. The

f of the defect states on all atoms in the defect central cell.

level localization is defined as the sum of the localizations 73

Energy

Level
localization

level Atomic Ax

(eV)
0.72

Case
number

Ui

1

site

0.63

0.000
0.000

0.501

1.00
0.02
0.21
0.20
0.20

0.001

0.052 —0.104

0.052

0.98
0.79
0.80
0.80

0.94
0.58
0.56
0.56

0.25
—0.58
—0.58

0.25
—0.58

69.44

144.73

0.0002

0.180
0.023

0.0001

0.000
0.000
0.000
0.000

0.000
—0.136
—0.136

0.000

—0.136

Si,

1.892
0.228

Si,

0.064

0.60
—0.58

0.136
—0.136

i

Siy

0.064

0.60

0.023

0.228

0.136

0.62

0.000
0.001

0.536

1.00
0.04
0.20
0.18
0.18

—0.208 0.002

0.104
0.000

—0.272
—0.272

0.104
0.000

—0.272

0.61

II

0.96
0.80
0.82
0.82

0.87
0.58
0.56
0.56

0.35
—0.58
—0.59

0.35
—0.58

60.55
144.55

0.0005

0.195
0.016

0.0008

0.000
0.000
0.000
0.000

Si,

1.920
0.139
0.139

Si,

0.042
0.042

0.58
—0.59

0.272
—0.272

Si,
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0.58

0.016

0.272

Si,
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TABLE III. Character table for the point symmetry group
CZU’

E C2 g, Oy
a, 1 1 1
a, 1 1 —1 —1
b, 1 —1 1 —1
b, 1 -1 —1

configuration shown in Fig. 1(b), the Hamiltonian of the
defect is invariant under the operations of the point sym-
metry group C,,. In order to specify unambiguously the
labels for the irreducible representations in the group C,,
used in the present paper, we give in Table III its charac-
ter table. In this table, o, is the reflection operation with
respect to the mirror plane v containing the two hydro-
gen atoms, while o, is the reflection operation with
respect to the mirror plane v’ containing the two nonhy-
drogenated silicon atoms. Since the group C,, can only
have one-dimensional irreducible representations, no
Jahn-Teller distortion can occur for the V'H, defect.

In Fig. 7 we display the calculated ALDOS’s for the
defect at the neutral ground state [denoted by (VH,)°],
corresponding to all the atomic sites in the central cell of
the defect. Only the results of a,, b;, and b, symmetries
are shown in this figure. For a, symmetry, no significant
change in the LDOS is found for the VH, defect. In Fig.
7, five localized defect states can be clearly identified: As-
sociated with a; symmetry are two bound states at
E,+0.05 eV and E, —12.87 €V and one resonance state
at E,+5.10 eV. Associated with b; and b, symmetries
are one (resonance) state at an energy well above the
lowest conduction band and one bound state at E, +0.72
eV, respectively. In Table IV we only list the calculated
energy positions of the two gap states for (VH,)". We
have also done the calculations for the defect at the
ground states of the single-positive and the single-
negative charge states [denoted by (VH,)'" and
(VH,)!~, respectively] and at the neutral excited state

a; symmetry
05 !

0.0

05 by symmetry

0.0
-0.5
by symmetry
0.0
-0.5

i
i
i
i
i
P
i
T
i
ifli
e
i
y
d
i
i

Change in LDOS (electrons/eV)

200 0.0
Energy (eV)

FIG. 7. Calculated changes in the local densities of states
(ALDOS) of a,, b;, and b, symmetries induced by the neutral
VH, defect (in C,, symmetry) in crystalline silicon, correspond-
ing to all the atomic sites in the central cell of the defect. Units
are electrons per eV. The spin degeneracy is excluded. The en-
ergy at the top of the valence band is set to zero. The edges of
the fundamental band gap are identified by dot-dashed lines.
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[denoted by (VH,)°*]. The reason for doing these will
become clear when we compare our calculations with ex-
periments. In these calculations, electronic structures are
found to be very similar to (VH,)°. Again, only the cal-
culated results for the gap states of (VH,)'", (VH,)! ™,
and (VH,)** have been listed in Table IV.

It seems that the electronic structure of the V'H, defect
is more complicated than the VH defect. However, the
calculations for the localization characters of the defect
states will still help us understand it. We have found that
for the defect in each of the four concerned defect states,
the two bound states (one a, and one b, state) in the fun-
damental band gap are mainly localized on the two sil-
icon atoms with nonhydrogen-saturated dangling bonds,
whereas the other three defect states are localized on the
other two silicon atoms and the two hydrogen atoms in
the central cell of the defect. In Table IV the calculated
localization characters of the two fundamental gap states
are given. Based on these results, the one-electron
molecular-orbital model of the V'H, defect can be con-
structed. This is shown in Fig. 8. The hybrids of the Si,
and Si, atoms can be symmetrized to give an a, and a b,
combination [Fig. 8(a)]. The same goes for the two hy-
drogen s orbitals [Fig. 8(c)]. The two a; (b;) combina-
tions (one from the two silicon hybrids and one from the
two hydrogen s orbitals) will interact strongly, resulting
in a bonding and an antibonding a; (b,) state [Fig. 8(b)].
The two Si-H bonds are then formed as the two bonding

- —b,
/ \
| \
! \
! \
,’ /_.\EL‘ ________ —a,
J
AINHENNT '
i v
b;——-(, /I \\ / —b b,
/ A
a_-—H-a,

NEV
\ b T
\ 1

\

1

a, _H_(\‘\ i \ "

\—‘H—/g‘— -------- —H—a;
(Si-H) VH,
(a) (b) (c) (d) (e)
FIG. 8. Schematic illustration of the one-electron

molecular-orbital treatment for the electronic structure of the
ground state of the neutral VH, defect (in C,, symmetry) in
crystalline silicon. (a) shows an a, and a b, energy level associ-
ated with the two hydrogen-saturated silicon hybrids towards
the vacancy center. (c) shows an @, and a b, energy level associ-
ated with the two hydrogen s orbitals. (b) is the energy-level
scheme resulting from interactions of the two a, states and the
two b, states shown in (a) and (c). (e) shows an a, and a b, ener-
gy level formed from the two silicon dangling orbitals of the de-
fect. (d) shows the electronic structure for the VH, defect, ob-
tained simply by the combination of the energy-level schemes
given in (b) and (¢). The two Si-H bonds are formed as four
electrons are accommodated in the bonding a, and b, states
formed from the hydrogen s orbitals and the hydrogen-
saturated silicon hybrids.
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TABLE IV. Calculated energy levels in the fundamental band gap and their localization characters a;, B;, and 7; for the V'H, de-
fect in silicon. The energies of the levels are measured relative to the top of the valence band. The point symmetry group of the de-
fect is C,,. The sum on j in column 8 runs over the equivalent atoms only. The level localization is defined as the sum of the localiza-
tions of a defect state on all atoms in the central cell of the defect. The column labeled level occupancy indicates electron occupation

of the gap levels at different states of the defect.

Energy Number of
Defect level Atomic equivalent Level Level
state (eV) Symmetry site sites al B D H localization occupancy
J
(VH,)° 0.05 a, H 2 1.00 0.005 0.38 2
Si; 2 0.14 0.86 0.009
Si; 2 0.15 0.85 0.366
0.72 b, Si; 2 1.00 0.006 0.66 0
Si; 2 0.20 0.80 0.650
(VH)'* 0.02 a H 2 1.00 0.003 0.17 1
Si; 2 0.09 0.91 0.004
Sis 2 0.14 0.86 0.160
0.64 b, Si, 2 1.00 0.000 0.65 0
Si; 2 0.20 0.80 0.654
(VH,)'~ 0.29 a, H 2 1.00 0.005 0.60 2
Si; 2 0.26 0.74 0.013
Si; 2 0.17 0.83 0.579
1.00 b, Si, 2 1.00 0.000 0.57 1
Si; 2 0.25 0.75 0.574
(VH,)°* 0.12 a, H 2 1.00 0.006 0.48 1
Si; 2 0.18 0.82 0.011
Si; 2 0.15 0.85 0.476
0.79 b, Si, 2 1.00 0.000 0.64 1
Sis 2 0.22 0.78 0.636

states are occupied by the four electrons. Since the b,
bonding state resembles well the corresponding Si-Si
bond in the crystal, it will contribute the valence band in
a wide range of energies. Therefore, no localized b, de-
fect state has been found in the valence band. The
remaining silicon dangling bonds, on the other hand, can
be symmetrized to give an a, and a b, state [Fig. 8(e)].
We note here that the energy separation between the a,
and b, states of the silicon dangling orbitals has reason-
ably been set larger than the energy separation between
the a; and b, states of the two silicon hybrids saturated
by the hydrogen atoms, since the interaction between the
former two states behaves as the first-nearest-neighbor in-
teractions, while that between the latter two states
behaves as the second-nearest-neighbor interactions. We
note also that the b, state is located, as it should be, al-
most at the same energy as the ¢, gap state of the isolated
ideal silicon vacancy. The electronic structure of the
VH, defect [Fig. 8(d)] are simply obtained by combining
the symmetric states of the two hydrogen s orbitals and
the two hydrogen-saturated silicon hybrids [Fig. 8(b)] and
the symmetric states of the two silicon dangling bonds
[Fig. 8(e)]. The interactions between the a; states can

occur. However, these interactions must be very weak,
due to the large energy separations between these states.
Our results clearly show that the ground state (VH,)° of
the neutral defect is a spin-singlet state, consistent with
the experimental work of Ref. 12.

Experimentally, the VH, complex defect has been
studied with the use of the DLTS and ODMR tech-
niques. In the study by DLTS,!? an electron trap was ob-
served in n-type silicon and was assigned to the VH, de-
fect with no charge state of the defect being conclusively
determined. The activation energy of the electron trap
was determined to be 0.2 eV. We have found that the
(VH,)'~ defect has a single-particle gap state, occupied
by one electron, at E,—0.14 eV. This result strongly
supports that the electron trap observed in the DLTS ex-
periment is associated with the defect at the single-
negative charge state (VH,)! .

In the study by ODMR,!? a spin triplet was identified
to be (VH,)%*, the excited state of the V'H, defect at its
neutral charge state. The model proposed for under-
standing the experimental results is based on the require-
ments that the V'H, defect introduce two energy levels in
the fundamental band gap and the defect can stay at the
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(VH,)'™ [or (VH,)!*] charge state. Our calculations
clearly support the proposed model. In addition, the au-
thors of this study have calculated the localizations of the
electronic wave function of the spin-triplet state from the
measured hyperfine-interaction tensors. The general
agreement between the experimental results and our cal-
culated results is also achieved. We have to note that for
the spin-triplet electronic state, a linear combination of
the products of the one-electron wave functions of the
two gap states should, to the lowest-order approximation,
be used in the calculations of the hyperfine-interaction
tensors.** When the lobes of the p function on an atomic
site in the one-electron wave functions of the two gap
states have the same symmetry axis directions, calcula-
tions by using one-electron wave functions will give the
same results as the calculations by using the full triplet
electron wave functions, i.e., the linear combinations of
the products of the one-electron wave functions of the
two gap states. In the present paper, the calculations for
the spin-triplet state of ( VH,)°* are done by using the full
triplet wave functions. The results of our calculations are
given in Table V. Deviations from axial symmetry in the
hyperfine-interaction tensors at the silicon sites in the
central cell of the defect have been found. To describe, in
general, these hyperfine tensors, we have to use three pa-
rameters, a;, bj and c;. In terms of thesq_,> the largest
principal value A4, of the hyperfine tensor A is given by
A,=a;+2b;, the second largest one A4, by
A,=a;j—b;+c;, and the smallest one A4; by
A3;=a;—b;—c;. As can be seen in Table V, the devia-
tions from the axial symmetry in the hyperfine tensors at
the silicon sites are all negligibly small. For the Si; site,
the direction of the approximate symmetry axis is in the
mirror plane v’ containing the two nonhydrogenated sil-
icon atoms and very close to the (111) direction, which
is the axial direction of the hyperfine tensor assumed in
the ODMR study. For the isotropic component of the
hyperfine tensor at the Si; site, our predictions are
somehow larger than that derived from the ODMR
study. This results from our having predicted a larger

value for the s character of the one-electron wave func-
tions of the two gap states than the ODMR study.

The calculations for the hyperfine-interaction parame-
ters arising from the paramagnetic spin of the wave func-
tion of the unpaired electron in the gap state have also
been carried out for the spin-doublet state (FH,)'~. The
results are also presented in Table V. If the silicon sam-
ple is prepared under the same condition as described in
Ref. 13, it is one can expect to observe an EPR signal
arising from (VH,)!~. Thus our calculations may help to
identify it.

D. Trihydrogen-vacancy ( VH;) complex

In the atomic configuration shown in Fig. 1(c), the
Hamiltonian of the VH, defect is invariant under the
operations of the point symmetry group C,,. In Fig. 9
we display the calculated ALDOS’s of a; and e sym-
metries for the defect at the neutral state, corresponding
to all the atomic sites in the central cell of the defect. No
significant changes in the LDOS of a, symmetry are
found. As can be seen in this figure, three localized states
appear due to the VH; defect. For the a, symmetry, the
defect introduces a defect state at E, —15.86 eV, well
below the calculated valence band, and a bound state at
E,+0.40 eV, in the fundamental band gap. For the e
symmetry, the defect introduces a (resonance) state at
E,+10.71 eV, well above the lowest conduction band.
We have found that the two defect states far away from
the fundamental band gap are essentially localized on the
hydrogen and their bonding atoms, while the bound state
in the fundamental band gap is basically localized on the
Si, atom, whose dangling orbital has not been saturated
by a hydrogen atom. The results of our calculations for
the fundamental gap state are given in Table VI.

The results of our calculations can still be easily under-
stood with the use of the one-electron molecular-orbital
model shown in Fig. 10. The three silicon hybrids of the
Si,, Si;, and Si, atoms towards the vacancy center [Fig.
10(a)] interact strongly with the three hydrogen s orbitals

TABLE V. Calculated hyperfine-interaction parameters, arising from the wave functions of the spin-unpaired electrons in the gap
state, of the V'H, defect in the spin-triplet state (S =1) (V'H,)°* and the spin-doublet state (S=1) (VH,)' " in silicon for the atoms in
the central cell of the defect. For (VH,)*, I, m, and n are defined as the direction cosines of the first principal axis of the hyperfine
tensor, on which the hyperfine tensor has the largest principal value, and 0 is the angle between the direction of the first principal axis
of the hyperfine tensor and the { 110) direction for Si; or the {110) direction for Si;. For (VH,)!™, I, m, n, and 6 are the correspond-
ing values for the symmetry axis of the hyperfine tensor. The numbers in the brackets are ODMR values derived from Ref. 12.

Total
Defect spin Atomic a; b; c; 0
state S site (107° eV) (107 eV) (107° eV) (deg) 1 m n
(VH,)°* 1 H 0.008
(0.024)
Si, 0.009 0.001 0.004 57.40 0.381 0.381 0.842
Si; 0.965 0.102 0.175 36.91 0.565 —0.565 0.601
(0.620) (0.150) (0.000) (35.26) (0.577) (—0.577) 0.577)
(VH,)'~ % Si; 0.004 90.00 0.707 —0.707 0.000
Si, 1.278 0.098 36.11 0.571 —0.571 0.589
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FIG. 9. Calculated changes in the local densities of states
(ALDOS) of a, and e symmetries induced by the neutral V'H;
defect (in C;, symmetry) in crystalline silicon, corresponding to
all the atomic sites in the central cell of the defect. Units are
electrons per eV. The spin degeneracy is excluded. The energy
at the top of the valence band is set to zero. The edges of the
fundamental band gap are identified by dot-dashed lines.

[Fig. 10(c)], giving a pair of a, states and a pair of e states
[Fig. 10(b)]. The six electrons brought by the three sil-
icon hybrids and the three hydrogen s orbitals occupy the
bonding a, and e states as shown in Fig. 10(b), resulting
in the formation of the three Si-H bonds in the defect.
However, our calculations show that no localized states
associated with the three Si-H atomic pairs appear in the
calculated valence and conduction bands (see Fig. 9).
This clearly indicates that both the Si-H bonding e state
and the Si-H antibonding a, state resemble the corre-
sponding Si-Si bonding and antibonding states in the
crystal very well. Figure 10(e) shows an a; state associat-
ed with the remaining silicon dangling orbital for the
VH, defect. The global electronic structure of the VH;
defect is given in Fig. 10(d). Only very weak interactions
between the a, state associated with the silicon atom with
the dangling bond and the a, states associated with the
three Si-H atomic pairs are found (see Table VI). The
symmetry-conserved lattice distortions can occur. Our
model, however, predicts that the lattice distortions will
not affect the properties, such as energy position and lo-
calization, of the fundamental gap state significantly,
since this state is basically a single silicon-dangling-bond
state.
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FIG. 10. Schematic illustration of the one-electron

molecular-orbital treatment for the electronic structure of the
neutral VH; defect (in C,, symmetry) in crystalline silicon. (a)
shows an a; and an e energy level associated with the three
hydrogen-saturated silicon hybrids towards the vacancy center.
(c) shows an a, and an e energy level associated with the three
hydrogen s orbitals. (b) is the energy-level scheme resulting
from interactions between the two a, states and between the
two e states shown in (a) and (c). (e) shows an a, level due to the
only silicon dangling orbital of the defect. (d) shows the elec-
tronic structure for the VH,; defect, obtained simply by the
combination of the energy-level schemes given in (b) and (e).
The three Si-H bonds are formed as six electrons are accommo-
dated in the a; and e bonding states associated with the three
hydrogen s orbitals and the three hydrogen-saturated silicon hy-
brids.

We predict that for the VH; defect at the neutral state,
the a, gap level is occupied by one spin-unpaired elec-
tron, leading to a paramagnetic spin-doublet state. In or-
der to help experimentalists to identify the defect, we
present in Table VII the calculated hyperfine-interaction
parameters, arising from the paramagnetic spin of the
wave function of the unpaired electron in the gap state, of
the neutral VH; defect for the atoms in the central cell of
the defect. As can be seen in this table, very large
hyperfine interactions will arise from the Si; atom, and
the axially symmetric axis of the corresponding hyperfine
tensor will be along the (111) direction.

TABLE VI. A calculated energy level in the fundamental band gap and its localization characters a;, B;, and 7; for the neutral
VH; defect in silicon. The energy of the level is measured relative to the top of the valence band. The point symmetry group of the
defect is C;,. The sum on j in column 7 runs over the equivalent atoms only. The level localization is defined as the sum of the local-
izations of the defect state on all atoms in the central cell of the defect. The level occupancy is electron occupation of the gap level of

the neutral defect.

Energy Number of
level Atomic equivalent Level Level
(eV) Symmetry site sites a? B 37 localization occupancy
J
0.40 a, H 3 1.00 0.004 0.63 1
Si; 1 0.18 0.82 0.625
Si, 3 0.43 0.57 0.003
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TABLE VII. Calculated hyperfine-interaction parameters, arising from the paramagnetic spin of the
wave function of the gap state, of the neutral V'H; defect in silicon for the atoms in the central cell of
the defect. I, m, and n are the direction cosines of the axially symmetric axis of the hyperfine tensor at
each atomic site, and 0 is the angle between the direction of the axially symmetric axis and the (110)

direction.

Atomic a; b; 0
site (107° eV) (107° eV) (deg) 1 m n
H 0.008
Si; 2.058 0.232 35.26 0.577 0.577 0.577
Si, 0.007 0.000 172.32 —0.704 —0.704 0.095

V. SUMMARY AND CONCLUSIONS

In this paper we have reported on self-consistent tight-
binding calculations for the electronic structure of the
four hydrogen-vacancy complexes, namely, VH, VH,,
VH,, and VH,, in crystalline silicon. The calculations
were done with the use of the recursion method and the
large repeated supercell approximation. Using a new nu-
merical method, the wave functions of the gap states of
the complex defects were calculated. The hyperfine-
interaction parameters arising from the paramagnetic
spin of the unpaired electron in the gap state of the de-
fects were, in turn, derived from the calculated wave
functions. The effect of the symmetry-conserved lattice
distortions of hydrogen atoms on the electronic structure
was particularly studied for the VH, defect. The results
can be used to assess the validity of the atomic structures
which we have proposed for the four hydrogen-vacancy
complexes in Fig. 1. We have also proposed a set of one-
electron molecular-orbital models for the four defects.
All the electronic structures of the defects can be well un-
derstood with our models.

In the VH, complex defect, the electrical activity of
the isolated silicon vacancy is found to be well passivated
by the four hydrogen atoms bonding to the neighboring
silicon atoms of the vacancy in agreement with early
theoretical studies. The crucial input parameter in our
calculations for VH, is the Si-H bond length or,
equivalently, the distance (d) of the hydrogen atoms from
the vacancy center. We have found that using the
method described in this paper, a good choice of the pa-
rameter is d =0.90 A, which gives a reasonable Si-H
bond length of d =1.45 A and has been used in the calcu-
lations for the other three hydrogen-vacancy complexes
in the cases where no lattice distortion is considered. We
have found that the ¢, gap state of the isolated vacancy
has been pushed down to the valence band, while the a,
resonance state of the isolated vacancy at the top of the
valence band has been pushed up to the conduction band.
We have also found that when the hydrogen atoms are
moved away from their bonding silicon atoms, an unoc-
cupied a, level will fall into the band gap from the con-
duction band. All these calculated results indicate that
the strong interactions of hydrogen s orbitals with silicon
hybrids are responsible for the passivation of the vacancy
defects in silicon.

In the VH, VH,, and VH; complex defects, the electri-
cal activities of the isolated silicon vacancy are all only

partially passivated by hydrogen atoms. For the VH de-
fect in its C;, point symmetry configuration shown in
Fig. 1(a), an a, strong resonance state at the top of the
valence band and an e bound state in the fundamental
band gap were found. We have demonstrated that the
two defect states are mainly silicon-dangling-bond-like
and have almost no contributions from the hydrogen
atoms and the hydrogen-saturated silicon atoms. For in-
stance, for the e gap state at E, +0.72 eV, about 60%
(0.0%) of its wave function is localized on the three Si
atoms having dangling bonds (the H and its bonding Si
atoms). We have shown that the hydrogen s orbitals and
the hydrogen-saturated silicon hybrids can only give the
defect states at energies far from the fundamental band
gap. We have predicted that the VH defect in its neutral
charge state should undergo a Jahn-Teller distortion
since the e gap state is occupied by only one spin-
unpaired electron. The Jahn-Teller distortion will lower
the symmetry of the defect from C;, to C,, and, thus,
cause a splitting of the e gap level according to
e=a’'+a'" with a spin-unpaired electron at the a’ gap
state. We have found that over 50% of the wave function
of the spin-unpaired electron is accounted for on one of
the three nonhydrogenated Si atoms surrounding the va-
cancy. The EPR spectra of the VH defect are predicted
to be very similar to the Si E center, revealing a difficulty
in its identification. A clue to the identification of the de-
fect is the Si-H bond, which should have a contribution
to the infrared-absorption spectra. In addition, small but
not vanishing hyperfine interactions with the hydrogen
and its bonding Si atoms are predicted for the defect.
This prediction may also help identify it.

The VH, defect in the configuration as shown in Fig.
1(b) has the C,, point group symmetry and thus does not
undergo any Jahn-Teller distortions. We have found that
the defect introduces an a, and a b, state into the funda-
mental band gap. As we have shown for the VH defect,
both of the two gap states of the V'H, defect are silicon-
dangling-bond-like. The two hydrogen s orbitals and two
hydrogen-saturated silicon hybrids have only very small
contributions to the two gap states and can only create
localized defect states at energies far from the band gap.
Four defect states of VH, have been studied. They are
the ground states of the two charge defect states
[(VH,)'" and (VH,)' "] and the ground and lowest ex-
cited states of the neutral defect state [(V'H,)° and
(VH,)°*]. We predict that the b, gap state in the
(VH,)!™ defect stays at E.—0.14 eV and occupied by
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one electron, which supports the assignment of the Z
center to the defect in a DLTS study.!* In the defect
state (V'H,)°, the two electrons are found to be accommo-
dated in the a, gap state with their spins paired off, giv-
ing rise to an EPR inactive defect center. However, the
neutral excited state (VH,)** of the defect is expected to
be paramagnetic, since the two electrons with parallel
spins can be accommodated in the a; and the b, gap
states, respectively, leading to a spin-triplet electron
state. The calculated hyperfine-interaction parameters
for the neutral excited state (VH,)* of the defect agree
in general with the ODMR study of Ref. 12, although we
have only done calculations for the hyperfine-interaction
parameters arising from the wave functions of gap states
alone. However, with the use of the zeroth-order spin-
triplet electronic wave functions, we predict that the
hyperfine-interaction tensors at the silicon atomic sites
surrounding the vacancy are not axially symmetric, but
the deviations from the axial symmetries are very small.
We also predict that the largest principal axes of the
hyperfine tensors are slightly oriented from the
tetrahedral bonding directions of the corresponding sil-
icon atoms. In addition, we have also derived the
hyperfine-interaction parameters arising from the
paramagnetic spin of the wave function of the gap state
for the (VH,)! ™ defect. The results should be useful for
confirming the assignment of the defect in the DLTS
study of Ref. 13 and for further characterizing the defect.

The remaining hydrogen-vacancy complex studied in
this paper is VH;. The defect has the C;, point group
symmetry and a relatively simple electronic structure.
We predicted that the defect can only introduce an a;
state into the fundamental gap and, thus, no Jahn-Teller
distortion can occur for the defect. We have shown that
the gap state is silicon-dangling-bond-like and about 60%
of its wave function is localized on the only dangling or-
bital of the defect. The atomic orbitals associated with
the three Si-H atomic pairs of the defect make nearly
zero contributions to the gap state. Accordingly, a
strong hyperfine interaction at the nonhydrogen-
saturated neighboring silicon nucleus of the defect is pre-
dicted.

We have thus been able to predict a number of impor-
tant features for the electronic structure of the
hydrogen-vacancy complexes in silicon. The primary
conclusions of this study are as follows. A silicon dan-
gling bond can be well passivated by a hydrogen atom,
whether or not there are any other silicon dangling bonds
or Si-H atomic pairs in the vacancy region. The remain-
ing electrical activity of the defects can all simply be ac-
counted for by the nonhydrogenated silicon dangling
bonds. In a forthcoming paper*’ we will show that if the
nonhydrogenated silicon atoms in the defects are all re-

placed by phosphorus atoms, which results in the
hydrogen-phosphorus-vacancy complex defects, all the
electrically active states will be removed from the funda-
mental band gap. It is hoped that the results of this
theoretical study can be used as a guideline for further in-
vestigations of the hydrogen-vacancy-related defects in
silicon.
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APPENDIX

In the calculations for the defects involving interstitial
impurities in semiconductors, the basis set of the host
crystal in the tight-binding approximation needs to be
augmented by introducing the localized orbitals centered
on the interstitial sites, in order to describe the perturba-
tion potential due to the impurities effectively. This is
just the reverse of the usual procedure in the calculations
for vacancies in semiconductors (see, for instance, Ref.
46). Thus, in the calculations for, for instance, an impuri-
ty in a semiconductor, the Hamiltonian of the host crys-
tal plus the interstitial in a localized orbital basis is given
by

H° w

WT HI ’ (Al)

-

where H° consists of the tight-binding parameters of the
host atoms, H' consists of only the tight-binding parame-
ters of the interstitial atom, and W is the matrix that cou-
ples the interstitial atom with the host atoms. In an sp?
basis, H° is an 8N X8N square matrix, where N is the
number of unit cells, while H” is a diagonal 4 X4 matrix.
In our approach, the diagonal elements of H® and H' will
be calculated self-consistently in the procedure described
in Sec. IIIC. The off-diagonal elements of H® and the
elements of W are taken to be the corresponding elements
of the tight-binding Hamiltonian of the perfect crystal,
scaled with distance and orbital energies according to the
Wolfsberg-Helmholz formula [see Eq. (3) in Sec. III B].
We believe that the Wolfsberg-Helmholz formula should
be more appropriate for the calculations for the defects
involving interstitial impurities than Harrison’s d ~2 rule
(where d is the distance between two atoms),*’” because
Harrison’s d ~? rule was derived for the equilibrium sepa-
rations in crystals and should work mainly for the atoms
in the neighborhood of the corresponding equilibrium po-
sitions.*8
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