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The response of N x N underdamped Josephson-junction arrays to dc-current bias and dc-voltage
bias is studied numerically. The current-voltage (I — (V')) relation reveals a substantial hysteresis.
If a dc-current bias is applied to inhomogeneous underdamped arrays (i.e., arrays with a random
distribution of junction critical currents), the I — (V') curve exhibits many (but no more than N)
steplike increases of resistance, in agreement with experiments of Tighe, Johnson, and Tinkham.
These steps are shown to arise from row-switching behavior of the arrays, in which one or several
rows of junctions across the width of the array switch simultaneously from a supercurrent state to
a resistively dissipative state. If the array is voltage biased rather than current biased, this row-
switching behavior is observed even in homogeneous underdamped arrays, in qualitative agreement
with the experiments of van der Zant et al. The resistive steps persist in an applied magnetic field
and melt at sufficiently high temperature. We find no evidence for row switching in overdamped
arrays, whether they are current biased or voltage biased. We speculate briefly about the physical
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origins of this behavior.

The dynamical properties of two-dimensional
Josephson-junction arrays (2D JJA’s) have been exten-
sively studied in recent years.!~17 Most investigations
have focused on overdamped arrays and many!—%12-14
have been concerned primarily with Shapiro steps, that
is, with quantized voltage plateaus which occur when
a combined dc and ac current is applied. A recent
calculation!® has extended these studies to underdamped
arrays, and has investigated the conditions for the occur-
rence of chaotic dynamical states under the influence of
an ac drive.

Even in the presence of a dc drive, underdamped
Josephson-junction arrays sometimes exhibit a phe-
nomenon not observed in overdamped arrays, namely,
steplike increases of the resistance.!®~2! These steps are
thought to arise from the simultaneous switching of an
entire row of junctions from a “supercurrent state” (in
which the voltage drop across the row is zero) to a resis-
tively dissipative state. They are therefore apparently as-
sociated with the hysteresis long known to occur in single
underdamped junctions. Each junction in the switched
row is parallel to the applied current, but the row itself
is perpendicular to the direction of current flow. Thus,
on any given resistance step, the voltage drop across the
array is thought to be localized on several switched rows.

This article presents a calculation for both under-
damped and overdamped Josephson-junction arrays, in
which we numerically investigate the conditions for the
observation of resistance steps. We find that resis-
tance steps and row-switching behavior are associated
only with underdamped arrays. In current-biased under-
damped arrays (that is, arrays subjected to a fixed exter-
nal current), the row-switching behavior is observed only
in “inhomogeneous” arrays, that is, arrays with a ran-
dom distribution of junction critical currents. In voltage-
biased underdamped arrays, by contrast, we observe row
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switching even in homogeneous arrays. In both cases, the
row switching and resistance steps persist in an applied
magnetic field, and the resistance steps melt if the tem-
perature is increased sufficiently. For overdamped arrays,
whether current biased or voltage biased, and whether
homogeneous or inhomogeneous, we find no evidence for
row switching.

Our calculations are carried out for square Josephson-
junction networks. An external current or voltage is ap-
plied to the array by means of current or voltage buses
(i-e., lines of constant voltage) at two opposite edges of
the array. This boundary condition differs slightly from
the injection method used in our previous calculations,
but probably resembles more closely the typical exper-
imental arrangement. In the transverse direction, peri-
odic boundary conditions are usually imposed. Within
the array, each superconducting grain is coupled to its
four neighbors via Josephson links.

The system is described by the equations of a network
of resistively and capacitively shunted Josephson junc-
tions (the “RCSJ model”):

d Vij
Lij = Cij = Vij + o= + Iijsin(¢; — ¢; — Ajj)
J Jdt J Rij J 2 J
+I1;i5(2), (1)
h d
Vi =Vi— V= 52 (6 = ¢5), 2)
S5 + LV, = L (3)
_ (%) l’ldt 1 1;exty
J
A,,-:ZE/’A-dx. )
Do Jx,

14 005



14 006

Here I;; is the total current from grain ¢ to grain j; Cj;
and R;; are the shunt capacitance and shunt resistance
between grains 7 and j; C;; is the capacitance between
grain ¢ and the potential ground; V; is the voltage of
grain 4; I;; is the critical current of the ijth junction;
¢; is the phase of grain i; A is the vector potential;
@ = hc/2e is the magnetic flux quantum; x; is the posi-
tion of the center of grain ¢; and Iz,;;(t) is the Langevin
noise current which vanishes at zero temperature. Equa-
tion (1) expresses the total current I;; from grain i to
grain j as a sum of four contributions: the Ohmic current
Vij/Ri; through the shunt resistance; the charging cur-
rent C; %Vij through the shunt capacitance; the Joseph-
son supercurrent; and the Langevin noise current Ir;;(t).
Equation (2) is the Josephson relation; and Eq. (3) is
Kirchhoff’s Law, which expresses current conservation at
each grain ¢. Finally, I;;ext is the external current injected
into or extracted from each grain i: I ey = 0 on an in-
ternal grain, and I;exs equals the external bias current
per grain on the input and output buses.
Equations (1), (2), and (3) can be combined to give
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where V and S are the column vectors corresponding to
the grain voltages V;(t) and the sums S;(t). The coupled
equations (6) and (7) are solved by a straightforward Eu-
ler iteration, as described previously,38 with time step
At. At is usually chosen as 0.04tp, but occasionally
as small as 0.01ty to 0.02ty, where to = h/(2eRI.) is
the characteristic damping time. A second-order Runge-
Kutta method leads to little changes in the results. In
the calculations, we always start the iterations from zero-
applied external current or voltage. The initial phase of
each grain is independently chosen from a uniform dis-
tribution of random numbers on (0, 27), but the initial
voltage of each grain is set equal to zero, consistent with
the likely experimental conditions. When increasing or
decreasing the applied bias current or voltage, we use
the final phase and voltage configurations of the array
at the previous bias as the initial conditions for the new
bias. Usually we discard the values for the first time in-
terval of 200ty and carry out averages over the next 600t
time interval (but occasionally over as long as 1000t to
1200tp).

In all calculations in this paper, we set all the diagonal
capacitances Cj; equal to the same constant Cz, while
the off-diagonal capacitances are taken to vanish except
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for the nearest-neighbor ones, which are set equal to C..
The Langevin noise current I7;;(t) is taken to satisfy??

(IL;i5(t)) =0,
(8)

2kgT
Rij

(T @) L (t') = 8(t — t')6ijik,
where kp is the Boltzmann constant, T is the tempera-
ture, and ( --- ) denotes the ensemble average. We have
generally selected Ir;;(t) for each bond from a Gaussian
distribution of random numbers which obeys Eq. (8).
Figure 1 shows a typical current-biased calculated
I — (V) characteristic for a homogeneous array at tem-
perature T = 0 and several different values of the frustra-
tion parameter f = ®/®q (P is the flux through a single
plaquette). In all cases shown, the diagonal McCumber-
Stewart parameter?® (g = 2eC4R2I./h is taken as 0.1,
while the off-diagonal parameter (3, = 2eC.R?I./h = 10.
This choice of parameters seems reasonable for some of
the experimentally studied underdamped arrays, since
the off-diagonal capacitance is expected to be signifi-
cantly larger than the capacitance to ground.?* As ex-
pected for this range of parameters, there is a noticeable
hysteresis on the I — (V') characteristics,?® the voltage
remaining on the (upper) resistive branch when the cur-
rent is decreasing. We have checked that this hysteresis
is insensitive to the rate at which the current is ramped
up or down and the time interval over which the voltage
is averaged. The area between the two branches of the
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FIG.1. Calculated time-averaged voltage drop (V') across

an N x N homogeneous underdamped array (N = 10) as a
function of dc bias current I at several values of the perpen-
dicular magnetic flux f, assuming temperature 7' = 0 and
periodic boundary conditions. The field is expressed in terms
of f = &/®,, where ®¢ = hc/(2e) is the flux quantum, and ®
is the flux through a unit cell. The curves are offset horizon-
tally by 1.5 units. R and I. are the shunt resistance and crit-
ical current of each junction. B4 and 3. are the McCumber-
Stewart parameters for the grain-to-ground capacitance and
the intergrain capacitance. Free boundary conditions yield
similar results. Arrows denote plots for increasing and de-
creasing current. Note that I is the total current injected
into the array.
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I — (V') characteristic is reduced by a magnetic field, as
is the critical current.

Figure 2(a) shows the calculated I — (V) character-
istics of a 10 x 10 inhomogeneous array at temperature
T = 0 and various values of the frustration. The crit-
ical current on each bond I;; is taken to be a ran-
dom value between 0.5I, and 1.5I;, but the product
Ii;R;j is assumed the same for each junction, as ex-
pected from the Ambegaokar-Baratoff expression for the
critical current.?6 The parameters 3. and (3, are taken as
the same for each junction and equal to 10 and 0.1 as in
Fig. 1.

The corresponding current-resistance characteristic is
shown in Fig. 2(b). In contrast to Fig. 1, there are now
many steps on the current-resistance characteristic when
f = 0, consistent with experiments.!® The steps are un-
evenly spaced, presumably because the shunt resistances
vary from junction to junction. The number of steps
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FIG. 2. (a) Same as Fig. 1 at 84 = 0.1, 8. = 10, and
T = 0, but for an inhomogeneous array, in which the indi-
vidual junction critical currents are uniformly and randomly
distributed between 0.5I. and 1.5I.. The curves are offset
horizontally by two units. (b) Calculated average array resis-
tance R = (V)/I (in units of R) for the curves in (a), plotted
as functions of dc bias current I. The curves are offset hori-
zontally as in (a).
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never exceeds the number of rows of junctions in the ar-
ray. We have calculated the time-averaged voltage of
each grain in the array, as a function of external cur-
rent, and have verified that the resistance steps arise
from “row-switching” behavior: one or several rows of
junctions across the width of the array simultaneously
switch from a supercurrent state to a resistively dissipa-
tive state. The time-averaged voltage is found to be the
same for each grain on a given line perpendicular to the
direction of current flow. The steps persist in the pres-
ence of an applied magnetic field, as does the hysteresis
(which is again insensitive to the rate at which the cur-
rent is ramped up and down, and the time interval over
which the voltage is averaged). These results are gener-
ally in agreement with the experimental results of Tighe
et al.,® who use current-driven underdamped arrays with
critical current distributions probably comparable to our
own.

If, instead of a current bias, we apply a voltage bias
to the array, we observe “row-switching” behavior even
in homogeneous arrays.!® Figure 3 shows our calculated
V — (I) characteristics for an N x N voltage-biased ho-
mogeneous array (N = 10) at T = 0 and at two differ-
ent values of the frustration. The corresponding voltage-
resistance (V — R) curves are shown in the insets, where
R =V/(I). When f =0, we find 9 steps on the V — R
curves, while exactly 10 steps appear at f = 0.2. As
previously, the number of steps is never greater than the
number of rows in the array. At f = 0.2 but not at
f = 0, the steps are unevenly spaced, with resistance
jumps sometimes less than the value 0.1R expected when
a single row switches at f = 0.

We now speculate why row-switching behavior is ob-
served even in homogeneous voltage-biased arrays, but
only in nonhomogeneous current-biased arrays. In our
homogeneous arrays, if an individual junction is suffi-
ciently underdamped, it can have a resistance (V)/I = 0
or R, depending on which branch of the I — (V) charac-
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FIG. 3. Calculated time-averaged current (I) vs dc bias
voltage V for a 10 x 10 homogeneous voltage-biased array at
two values of f at T' = 0. Other parameters as in Fig. 1.
The curves are offset horizontally by 1.5 units. Insets: array
resistance R = V/(I) (in unit of R) vs bias voltage V.
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teristic it follows. Now consider a homogeneous current-
biased array of such junctions. If the applied current is
smaller than those of the individual junctions, then Egs.
(5)—(7) can all be satisfied with zero voltage through each
junction. While these equations would also be satisfied
if one or several rows switched into a resistive state, ev-
idently this switching is not stabilized for current-biased
homogeneous arrays, unless all the rows switch into a re-
sistive state. On the other hand, if a homogeneous array
is voltage biased, then in the range 0 < (V) < NRI, the
differential equations cannot be satisfied if all the rows
switch. Hence, in effect, the voltage bias is a boundary
condition which forces individual row switching to oc-
cur. By contrast, when a homogeneous array is current
biased, such row switching is not forced by the bound-
ary conditions, and hence, need not occur (although we
do not understand why it never seems to occur under
current-biased conditions). Similarly, for an inhomoge-
neous current-biased array, there is a range of applied
currents which exceeds the average critical current of
some rows but not others. In that range of currents, it is
reasonable that some rows should switch into a resistive
state but not others. Since the individual shunt resis-
tances in such arrays are unequal, we expect unevenly
spaced resistance steps under such circumstances, as we
find numerically.

To shed further light on the resistance steps, we have
studied the time-averaged voltage of each grain and find
that, for any given dc bias voltage V, each grain on
a given row (such as the ith row) has the same time-
averaged voltage V; at any value of f. As V is increased,
we find discontinuous jumps in each V;, clearly revealing
the row-switching behavior of the array. When f = 0, for
our particular choice of (random) initial phases, the 8th
step of Fig. 3 results from the simultaneous switching of
two rows; hence, the total number of steps in this case is
one fewer than the number of rows. We have also carried
out simulations for larger arrays, and obtained similar
results, including the occasional simultaneous switching
of two or more rows.

In general, it is difficult to predict the exact number of
steps, except to know that it cannot exceed the number of
rows. The number of steps appears to depend on many
factors, including the physical parameters of the array
(Be, B4, R, I..), the frustration f, the temperature T', and
the initial conditions of the calculation. When there is no
magnetic field, each jump occurs at an integer multiple
of RI., but this need not be true at nonzero f, or in in-
homogeneous arrays. It is also difficult to predict in the
simulations which row will switch first in homogeneous
arrays. This order also seems to depend on the same un-
predictable factors which apparently determine the total
number of steps. In a physical array, which can never
be perfectly ordered, the switching presumably occurs
first at the weakest part of the array, that is, the portion
where the critical current of the junction is the lowest.
Our simulations for inhomogeneous underdamped arrays
confirm this prediction.

At finite temperatures, the behavior of the array can
be understood in terms of thermally generated vortices.
At low temperatures, these vortices are localized in
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FIG. 4. Calculated time-averaged resistance R = V/(I)
(in units of R) vs dc bias voltage V' for a 10 x 10 homogeneous
array at f = 0 and several values of temperature T [shown
in units of hl./(2ekg)]. Other parameters as in Fig. 1. The
curves are offset horizontally by one unit.

a two-dimensional periodic potential (the “egg-carton”
potential?”28) and the corresponding voltage is zero. At
higher temperatures, a vortex can be thermally activated
from one well to another of the egg-carton potential.
The thermal activation tends to wash out and finally
to melt the resistance steps. This can be seen in Fig.
4, which shows the results of a finite-temperature sim-
ulation on a 10 x 10 array at f = 0, using the same
parameters as in Fig. 3. The melting temperature ap-
pears to be about 0.3hI,/(2¢ekg), substantially below the
expected Kosterlitz-Thouless transition temperature of
about 0.95A1.(T.)/(2ek),%° presumably because our cal-
culations are carried out at finite currents and voltages.

In order to investigate the relation between the resis-
tance steps and the McCumber-Stewart parameters of
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FIG. 5. Calculated time-averaged current (I) vs dc bias

voltage V for a 10 x 10 homogeneous array at several values
of the intergrain McCumber-Stewart parameter 3. at f = 0
and T = 0. The curves are offset horizontally by 1.5 units.
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the array, we have also carried out simulations for differ-
ent values of B.. Our results are shown in Fig. 5, which
corresponds to a voltage-driven homogeneous array at
T = 0 and f = 0. The row-switching behavior evidently
becomes weaker and weaker as 3. is reduced. In the over-
damped limit (8. = B4 = 0), there is no evidence at all
for row-switching behavior. We conclude tentatively that
the observed row-switching behavior, and corresponding
resistance steps, are characteristics of underdamped ar-
rays only.

The (3. dependence of Fig. 5 is physically reasonable.
In an individual underdamped junction, as noted earlier,
the resistance (V') /I is nearly bimodal at sufficiently large
B. (i.e., equal to either 0 or R on the two branches).
By contrast, in an overdamped junction, (V'), and hence
(V)/1, increase smoothly with I for I > I.. Since indi-
vidual overdamped junctions thus do not have resistance
plateaus, we would not expect such plateaus in arrays
either.

To summarize, we have numerically studied the re-
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sponse of underdamped Josephson-junction arrays to an
applied dc bias current and dc bias voltage. The result-
ing I — V curves exhibit substantial hysteresis. Current-
biased inhomogeneous arrays display many steps on a
plot of resistance versus current. These steps result from
the simultaneous switching of one or several rows across
the width of the array from a supercurrent state to a re-
sistively dissipative state. In voltage-biased arrays, this
row-switching behavior is found even in homogeneous ar-
rays. The numerical simulations reveal that these steps
persist in an applied magnetic field and at finite temper-
atures. There is no evidence for row switching or resis-
tance steps in overdamped arrays. Our calculations are
generally consistent with experiments.
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