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The role played by the correlations depending on the third component of spin, o.,-dependent correla-
tions, in the description of the ground state of liquid He is studied. With this aim, the competition
among this kind of correlations and central three-body and blackAow correlations has been analyzed.
This has been done using a generalization of Fermi hypernetted chain equations. Special attention has

been paid to the approximation of the elementary diagrams using the two most efficient approximations:
the scaling and the interpolating equation. The obtained results for the energy with both approxima-
tions are similar for all the cases studied. The increment of the energy supplied by o, -dependent corre-
laions is not modified by the inclusion of three-body correlations. However, this increment disappears
when blackAow correlations are introduced because of a strong competition between both mechanisms

of correlation.

I. INTRODUCTION

The theoretical description of the ground state of
liquid He has been studied using all methods developed
for the treatment of strongly interacting many-body sys-
tems. Among all the results, those obtained using the
Green's-function Monte Carlo (GFMC) method must be
emphasized because they are close to the exact ones. '

However, this procedure does not provide direct informa-
tion about the different mechanisms that determine the
dynamics of the system.

The generalization of Jastrow trial wave functions
within the variational approach is an option to the previ-
ous calculations with very acceptable results. This
method has allowed us to established that for an adequate
description of the ground state it must be included in the
wave-function central two- and three-body correlations,
backflow, and full-spin correlations. The inclusion of
a11 these correlations leads to a good agreement with the
experimental results.

The most important difficulty in using these trial wave
functions in the variational approach is the calculation of
the expectation values of the operators. Two basic tech-
niques are used nowadays for these calculations. The first
one, usually known as the variational Monte Carlo
(VMC) method, is based on methods of statistical sam-

pling of these expectation values, and it supplies the exact
result of the expectation value with a statistical error in-
trinsic to the method. The second one uses the Fermi
hypernetted chain (FHNC) equations. This last method
is based on a power expansion of the expectation value in
terms of some short-range functions directly related to
the correlation functions. After a classification of the
infinite addends, they are regrouped, generating a set of
coupled integral equations that can be numerically
solved. In order to do it accurately, it is necessary to ap-
proximate to the so-called elementary diagrams. There
are two main techniques for getting this: the scaling '

and the interpolating equation approximations. ' Both
are based on making consistent some quantities that may

be evaluated in two different ways.
The results from practical calculations where FHNC

and VMC can be applied without important simplifi-
cations, i.e., for central two- and three-body correlations,
are almost the same. This agreement is maintained for
trial wave functions, including correlations dependent on
the third component of spin and two-body central corre-
lations. ' We must also say that the agreement is
reasonable when the correlations have more complex
structure as backflow correlations, " ' although the
differences are more important in these cases. Because of
the noncornmutation of the correlations functions with
one common particle, there are no VMC calculations for
full-spin correlations, which allow one to value the accu-
racy of the FHNC —single-operator-chain (SOC) approxi-
mation used by Viviani et al.

The only advantage of the FHNC techniques corn-
pared with VMC is the possibility of analytic manipula-
tion of the elements to calculate and a greater freedom in
the choice of the correlating functions as they are not
limited by the size of the simulation cube. Its main disad-
vantage is that we have to approximate the contribution
of the elementary diagrams, important in the case of
liquid He. Moreover, we must remember that rough ap-
proximations must be done in FHNC equations if we
want to use operational correlations and that there are no
VMC calculations using full-spin-dependent correlations.
So, independently of using FHNC or VMC, it would be
desirable to exclude operational correlations in the wave
function if possible. We must search for alternative
mechanisms of correlations to operational correlations
that avoid their difficulties.

As we have mentioned above, a partial option to full-

spin correlations are correlations depending on the third
component of spin, henceforth to be called o.,-dependent
correlations. The inclusion of these correlations does not
modify too much the procedures used in the FHNC
method for central two-body correlations. The increment
of the bound energy provided by these correlations corn-

pared with central two-body correlations is about 0.2 K
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at the experimental equilibrium density. This is 40%%uo of
the increment provided by full-spin correlations. On the
other hand, the calculations with full-spin correlations
have shown an important competition among these corre-
lations, three-body, and specially backflow correlations.

I

One of the purposes of this work is to evaluate this be-
havior when we use o.,-dependent correlations.

Our aim is to study the ground state of liquid He with
a Jastrow trial wave function, which may be written as

%(1,2, . . ., A)= g f (x;,x,. )
Ig(r. . )r, [k(I)—fC(J)]f (r, , r, «",r «) P e " " 4(1,2, . .., A),

i j,k =1 i,j =1
i &j&k i&j

where 4(1,2, ... , A) is the Slater determinant that
represents the noncorrelated Fermi sea, with a Fermi
momentum kz=(6np/v)'~, p represents the density of
the system, and v is the degeneration of the spin states.
The cr, -dependent two-body correlation can be written as

shall pay special attention to this function, which is
defined as

A(A —1)f ~%(x„.. . , x„)~ dx3 . dx„
g(x»xz)=

(p/v) f i%(x„.. . , x„)i dx, . dx„

f (x;,xj )=f,(r 1 )+o,(i)o,(j)f (r, ) .

The three-body correlation has the form

f3(r;, , r;«, r,«)= exp gg( r)g( ;r)«;,rr;«
eye

(2)

(3)

This function can be written in terms of the FHNC ele-
ments as

g ( x t q xz )=gdd ( x ~ q xz )+gd& ( x ]~ xz )

where cyc represents a sum over the three terms obtained
replacing ijk with jki and kij, and E(i) is an operator
acting over 4(1,2, .. . , A) as

A A

K(i)exp i gk r =k exp i gk r . (4)j I jj=1 j=1

We shall use McMillan correlation for the central f, part
and the semioptimized function for the spin f part of
the O.,-dependent correlation and the same parametriza-
tion as Manousakis et al. for the functions of the three-
body g(r) and backflow ri(r) correlations:

—[(r —r, )/co, ]r =e
[(f rb ) /Gab ]

z)(r) =A,,e

(5)

II. FHNC EQUATIONS
FOR THE TAO-BODY DISTRIBUTION FUNCTION

The calculation of the expectation value of the energy
requires knowledge of the two- and three-body distribu-
tion functions related to the trial wave function proposed.
These quantities can be calculated using the FHNC tech-
niques. These techniques generate a set of integral and
algebraic equations that involve different classes of dia-
grams. The distribution functions and the expectation
value of any operator can be expressed in terms of these
diagrams. The basic quantities needed to build the two-
and three-body distributions already appear in the expan-
sion of the two-body distribution function. Therefore we

Apart from these choices, we shall use other parameteri-
zations in order to compare with VMC calculations. So
we shall use the forms of Schmidt et al. " for the three-
body and backflow correlations. These can be obtained
multiplying the previous functions by [(r —R ) /R ]3 for
r (R and are equal to zero for r & R; this is essential for
an adequate sampling in the VMC calculation.

+g,d (x» xz) +g„(x»xz ),
where g „(x„xz) are the different contributions to
g(x„xz) with rnn =dd, de, ed, ee, corresponding to dia-
grams with (e) or without (d) two statistical lines in par-
ticles 1 and 2, and x; represents the spatial and spin coor-
dinates of the particle I',. In order to build some of the ee
diagrams, we must introduce some new quantities called
cc diagrams. These are diagrams with only one statistical
line in particles 1 and 2.

It is important to point out that if the backflow term is
not included in the wave function, the construction of the
FHNC equations is exact and there is no need of making
any approximation, apart from the elementary diagrams.
The noncommutation of backflow correlations makes the
cluster expansion not irreducible, and we have to do
some approximations summing up only the simplest dia-
grams. We shall follow Manousakis et al. in this case.

The FHNC equations were first obtained by Fantoni
and Rosati for central two-body correlations. After this,
these equations were generalized by Schmidt and Pan-
dharipande in order to include three-body correlations.
The inclusion of O, -depend correlations does not modify
drastically the FHNC equations in both cases. The first
one was studied by Kiirten and Campbell. ' The general-
ization to include three-body correlations is quite
straightforward, following the same line as the two-body
case, and it will not be discussed here.

In order to calculate the kinetic energy, it is necessary
to know not only the tow- but also the three-body distri-
bution functions. Almost all the diagrammatic elements
needed to build this distribution function are present in
the two-body distribution function. We have to add the
so-called Abe diagrams' A „I, which are diagrams with
three external points. In all the previous calculations,
only A&dd has been taken into account. We shall use the
same approximation, and then the three-body distribu-
tion function g3(x, , xz, x3) can be written as
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g3(x]px2yx3) f3(r]2yr]3y123)[1 Addd(x]y X2p X3) j
2

'll ~'mm ~'nn g'lm(X]'X2)gl'n(x]'X3)gm n''(X2~X3) 2gcc(x]'X2)gcc(x]~X3)gcc(X2~X3)
11'mm'nn'

where l(l'), m(m'), n(n') =d, e and

11' ~11',dd +~ll', de +~ll', ee (10)

A(x, , x )= A, (r, )+A "(r, )cr, (i)o, (j") .

The second one separates the contribution of particles
with parallel third components of spin, the parallel part,
from the contribution of particles with antiparallel third
components of spin, the antiparallel part:

A(x, , x )=A (r; )P (ij)+A, (r, )P, (ij)", (12)

611 „ is 1 or 0 if 1l'=mn, or not. We must note that all
the quantities built depend on the spatial coordinates of
the particles and on their third component of spin. This
last fact obliges us to decompose the functions for calcu-
lations. ' This may be done in two different ways. The
first one separates the part without spin dependence,
called the central part, from that with spin dependence,
known as the spin part. This is

1+o,(i)o, (j )
P (ij)=

1 a—,(i)o,(j)
p, (ij)=

(13)

It must be noted that A„, p=c, o,p, a, depends only on
the distance between the particles. The three-body distri-
bution function and an Abe diagram can be decomposed
in a similar way.

The inclusion of backflow correlations in the wave
function complicates the diagrammatic analysis for the
two-body distribution function. The approximation used
by Schmidt and Pandharipande includes only the two-
and three-body clusters. This is a crude approximation,
but it looks adequate for calculating with these correla-
tions. ' The extension of this approximation for o.,-

dependent correlations is quite straightforward and the
modifications parallel to those performed for two- and
three-body correlations. The most important effect of
backflow is to modify the argument of the Slater function!(kFr;, ), which is a cc diagram, to

X(kFr, , ) =l(kFt(r, , ))
where we have written P and P, for the projectors over
states with parallel and antiparallel third components of
spin. This is

=l(kFr ~[1+2'(r, )+Z (r, )]),""
where Z is the parallel part of

(14)

2p A. A, 2Z(x] x2) g'll' dx3r]2 r]3r]3n(r]3)f 3(r 12 "13 "23)gdl(x] X3)gdl'(x2 x3)
VP12 1, 1'

(15)

Apart from the modification of the Slater function, the
backflow correlations generate new diagrams which must
be included.

The FHNC method does not provide a way for sum-
ming up all the elementary and Abe diagrams. Then we
shall have to use different approximations for these kinds
of diagrams. In our calculation we have used and extend-
ed both the scaling approximation FHNC/s (Refs. 3 and
6) and the interpolating equation approximation
FHNC/a(r)

The first one has been applied following the same
scheme as Manousakis et al. , neglecting the elementary
diagrams caused by the spin and backflow correlations
and only including the elementary diagrams produced by
central two- and three-body correlations. The free pa-
rameter, the scaling constant s, is fixed, equating the ki-
netic energy calculated using the Jackson-Feenberg
form' with the Pandharipande-Bethe form' only when
central two-body correlations are included.

In the case of the interpolating equation approxima-
tion, we have generalized the equations obtained for
two-body central and o.,-dependent correlations.
Backflow elementary diagrams are neglected, but the

III. EXPECTATION VALUE
OF THE HAMILTONIAN

The Hamiltonian which describes the system of A
atoms of He is quite simple because the interaction de-
pends only on the relative distance among the particles.
Then

g2 A A

H(1, . . . , A)= — g V, + g V(r,, ).i=1 ij =1
(16)

We shall use as interaction the HFDHE2 potential of
Aziz et al. ,

' which is the best parametrization of the in-

influence of the spin correlations is included using ap-
proximation II described in Ref. 9. The three-body ele-
mentary diagrams are included using the extensions de-
scribed in Refs. 4 and 12. We must remember that apart
from the interpolating parameter, which is fixed using the
bosonic system in this last case, we must use a scaling
constant for the Abe diagrams that is fixed in the same
ways as that for the scaling approximation. In this case
this constant does not scale the elementary diagrams.



46 0,-DEPENDENT CORRELATIONS WITH OTHER CORRELATION. . . 13 937

teraction between two helium atoms. Moreover, there is
strong evidence that it is close to the exact one. '

The expectation value of the Hamiltonian per particle
may be divided in two parts corresponding to the poten-
tial and kinetic energies. The first one is easily expressed
in terms of the two-body distribution function

2

( V)/A = f dx, dx2V(r, 2)g(x„x2) .
v2A

(17)

The expectation value of the kinetic energy is not so
straightforward as the last one because the action of the
Laplacian modifies the elements in the wave function.
This forces the generation of new diagrammatic elements
to describe these modifications. On the other hand, there
are different forms of calculating the kinetic energy de-
pending on whether the Laplacian acts over the "bra" or
"ket." Obviously, any of the options would supply the

I

same value for an exact calculation, but as we must do
approximations, the values may be different. This fact is
used for fixing the scaling constant of the elementary and
Abe diagrams in the scaling approximation, as we have
already mentioned.

There are three options that are the most used for the
calculation of the kinetic energy per particle. They are
the Jackson-Feenberg, ' Pandharipande-Bethe, ' and
Clark-Westhaus' forms. The last two forms are useful
only for two-body correlations, because for three-body
correlations they both depend on the four- and five-body
distribution functions. ' The expression for these form
when only central two-body correlations are present can
be found in Ref. 6 and can be easily generalized for 0.,-

dependent correlations.
We shall analyze the Jackson-Feenberg form. This can

be written in a general case as

g2 A

TJ„= g f dx, . dx„[(V,C)')F F4+4*F F(V, 4)+(V,4') [(V,F )F F(V,F—)]4
4m A 'P )P

+4'[Ft(V;F) (V;F )F—] (V;4) ,'V'; c(4—'F—tF4)

+ ,'4'[(V;F—)F+F(V;F) 2(V;F )
—(V;F)]4], (18)

where we have supposed that the correlating factor F is not self-adjoint, this being only necessary if we include backflow
correlations, and V,. ~ means that the gradients only act over 4 and 4*.

The two first terms correspond to the energy per particle of the Fermi gas T~ =3A' k~/10m. The third and the fourth
terms only are different from zero when backflow correlations are present. If three-body parts are neglected, this can be
written as

/2k 2p2

Tz = fdx(dx2[r)2''(r, 2)+32)(r)2)][gd„(x„x2)+gd,(x„x2)] .
5mAv2

The fifth term has two- and three-body contributions, but this last one can be neglected, and so we can write

(19)

$2 2

W~ =
2 dx)dx2[g„(x„x2)V, („)X(k~r(2)5 (, ) (2)

4mAv 12 Z Z

—gdd(x(»2)[&'(Vr)2)fi. ()). (2)]'—&cc(x»x2)V)~«rr)2)fi. ,()).,(2)] (20)

where

Bl[krt(r, )]X'( ~kr,, ) =
dt(r, )

The last term is the only term that will hold for a bosonic fluid and, if three-body backflow terms are neglected, is

(21)

2 2

Ts = f dx, dx2g*(x„x2)[f(x„x2)V',f (x„x2)—[V)f(x„x2)] ]4mAv

2 3—Ap 2 2X
3 dx)dx2dx3g3 (x, , x2, x3)[f3(r(2, r)3, r23)V)f3(r(2, r», r23) —[V,f3(r, 2, r, 3, r23)] ]8mAv

g2 2

2 f dx)dx2[r(2'rl (r(2)+4)) (r(2)]g„(x),x2)X (k~r(2)5(r (1)cr (2)2mAv Z Z

A kFp+,f dx(dx2[ [r(2n'(r(2)+ g(r(2) ]'+2m'(r(2) ] [gdd(x(, x2)+gd, (x(,x2) ],
5mAv

(22)
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where we have defined

g(x, ,x2)=f (x„x2)g'(x, ,x~),
2g3(x] x2 x3) f3(rf 2 P]3 123 )g3 (x] xp x3)

IV. RESULTS

The factorized structure of our trial wave function (l)
makes it possible to introduce the different mechanisms
of correlation independently. This allows us to study
their mutual influence and competition separately. Be-
cause of the approximations performed with backflow
correlations and the elementary and Abe diagrams, it
necessary to establish their validity. The approximations
used here are not new and have been compared with
VMC calculations of the energy per particle with func-
tions that include central two- and three-body correla-
tions and backflow correlations" and with functions that
include only central two-body and O.,-dependent correla-
tions. ' These VMC results are in good agreement with
those provided by FHNC/a(r) (Ref. 4) and FHNC/s
(Ref. 6) for densities around the experimental equilibrium
density. In Table I we compare our results at p
=0.237o. using both approximations with the VMC
calculations of Schmidt et at. " For higher densities '

the agreement worsens slightly when three-body and
backflow are introduced. It must be noted that the most
important differences appear when backflow correlations
are included.

However, we must keep in mind that VMC calcula-
tions cannot be carried for any correlation function be-
cause the range of the correlations must be limited by the
size of the box where the sampling is performed. This
limitation disappears when we use FHNC method and al-
lows a better optimization of the whole wave function.
The change of the correlation functions makes the test
with VMC calculations not possible. So the only possible
test is to compare the FHNC/a(r) results with the
FHNC/s ones because the elementary diagrams are gen-
erated in two different ways. On the other hand, as we
are mainly interested in the role of O.,-dependent correla-

TABLE I. Comparison of our results with the VMC results
from Ref. 11. In this case the o.,-dependent correlations are not
present. J (Jastrow) is written when central two-body correla-
tions are included, T (triplet) when three-body are present, and
B (backflow) when these correlations are in the wave function.
The calculation is at p=0. 237o. ' and with use of the Aziz po-
tential. For more details in the wave function, see Ref. 11.

E (VMC)

1.5

1.0

I
is

li
II

II ~~'& aSW+e a 'w ~

0.5

0.0
2

tions, we shall keep the central two-body function in the
McMillan form. This correlation function does not in-
clude long-range effects, but this omission has an effect
only on the total bound energy and it is independent of
the correlation mechanisms included. In order to include
long-range correlations, it is also necessary to change the
criterion for fixing the interpolating constant. ' All these
facts and the possibility of comparing with VMC calcula-
tions have led us to use McMillan correlation. As we
have already mentioned, we have used for the three-body
and backflow correlations the form and values of the pa-
rameters from Usmani, Fantoni, and Pandharipande. '

This choice allows an indirect comparison with their re-
sults because the difference between the energies will be
caused by the inclusion in their calculations of long-range
central two-body correlations. For the spin part of the
o.,-dependent correlation, we have solved the variational
problem for this correlation function when all the central
diagrams have been included, but only the two-body dia-
grams for the spin part. This is a generalization of the
spin part obtained when we only use two-body correla-
tions. The equations are listed in the Appendix. The re-
sults for these wave functions are collected in Table II for
FHNC/s and FHNC/a(r) and using the Aziz potential.

The most remarkable thing in the results is the good
agreement between the results provided by the two ap-
proximation used. This agreement is maintained for the
potential and kinetic energies. It is also remarkable that
the comparison without O.,-dependent correlations corn-
pare well with those of Manousakis et al. ' and Viviani
et an't. , and the differences are caused because they use
optimized central two-body correlations that include
long-range effects. These differences remain almost con-
stant when the other mechanisms of correlation are taken
into account.

The inclusion of the dependence of spin introduces an

FHNC/s —11.99 —1.36
—1.38+0.02

J+T

J+T+B

FHNC/a( r )

FHNC/s

—12.02
—12.01

—1.38
—1.66

FHNC/a( r ) —12.03 —1.65
FHNC/s —11.84 —1.89

FHNC/o. '( r ) —11.86 —1.92

—1.68+0.02

—1.99+0.02

FIG. 1. Dotted and solid lines are the parallel parts of the
two-body distribution function with and without o.,-dependent

correlations, respectively. Dot-dashed and dashed lines are the

antiparallel parts of the two-body distribution function with and

without o.,-dependent correlations, respectively. These func-

tions correspond to a calculation with central two- and three-

body correlations using an interpolating approximation at
p=0. 277o '. The energies can be seen in Table II ~
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1.5 1.5

1.0— 1.0 —~erytr

0.5 0.5

0.0
2

0.0
0

FIG. 2. Same as Fig. 1, but backflow correlations are also in-
cluded in this case.

increment of the bound energy between 0.1 and 0.15, in-
creasing slightly for higher densities when backflow
correlations are not present. When backflow correlations
are present, the inclusion of o.,-dependent correlations
does not supply any appreciable increment of the bound
energy for all the densities studied. The graphics of the
parallel and antiparallel parts of the two-body correlation
functions shown in Figs. 1 and 2 can clarify something
about the competition between O.,-dependent and
backflow correlations. Figure 1 shows the results for cen-
tral two- and three-body correlations compared with the
case when o.,-dependent correlations are also included.

FIG. 3. Structure function obtained in a calculation with all
the mechanisms of correlation included is compared with the
experimental data at the equilibrium density. Squares are data
from Ref. 24 at T=0.41 K, and circles are from Ref. 23 at
T=0.56 K.

We watch a displacement to the right in the parallel
channel and to the left in the antiparallel channel when
O.,-dependent correlations are introduced. Moreover, the
parallel component increases and the antiparallel de-
creases around the first maximum when u, -dependent
correlations are present. We must stress that the central
part is not modified. In Fig. 2 we represent the same
quantities those in Fig. 1, but when backflow correlations

TABLE II. Calculation with scaling (FHNC/s) and interpolating equation [FHNC/a(r)] approxi-
mation. We use the same notation that in Table I. We use f %0 to say that o, -dependent correlations
are present.

f 40

P(0. ')

0.200

0.237

0.277

0.300

0.330

0.360

J
J+B
J+T

J+T+B
J

J+B
J+T

J+T+B
J

J+B
J+T

J+T+B
J

J+B
J+T

J+T+B
J

J+B
J+T

J+T+B
J

J+B
J+T

J+T+B

—9.83
—9.77
—9.84
—9.78

—12.02
—11.92
—12.06
—11.95
—14.34
—14.16
—14.39
—14.21
—15.61
—15.39
—15.66
—15.42
—17.17
—16.89
—17.19
—16.87
—18.58
—18.24
—18.50
—18.09

—1.36
—1.69
—1.56
—1.89
—1.38
—1.79
—1.75
—2.15
—1.10
—1.57
—1.70
—2.15
—0.75
—1.26
—1.50
—1.98
—0.06
—0.61
—1.00
—1.50

0.93
0.36

—0.15
—0.65

FHNC/a(r)
V E

—9.80
—9.75
—9.81
—9.76

—11.99
—11.90
—12.03
—11.93
—14.32
—14.16
—14.38
—14.19
—15.61
—15.41
—15.67
—15.42
—17.22
—16.96
—17.25
—16.90
—18.74
—18.41
—18.66
—18.21

—1.33
—1.69
—1.54
—1.87
—1.36
—1.79
—1.73
—2.13
—1.08
—1.59
—1.69
—2.14
—0.75
—1.30
—1.52
—1.97
—0.13
—0.71
—1.08
—1.54

0.73
0.13

—0.36
—0.78

FHNC/s
V E

—9.87
—9.76
—9.88
—9.78

—12.10
—11.92
—12.13
—11.96
—14.45
—14.18
—14.50
—14.22
—15.76
—15.41
—15.80
—15.45
—17.36
—16.93
—17.36
—16.91
—18.81
—18.29
—18.71
—17.96

—1.42
—1.70
—1.62
—1.91
—1.47
—1.81
—1.82
—2.16
—1.21
—1.59
—1.79
—2.16
—0.88
—1.28
—1.60
—1.99
—0.22
—0.63
—1.13
—1.51

0.76
0.33

—0.31
—0.65

FHNC/a( r)
V E

—9.84
—9.74
—9.85
—9.76

—12.08
—11.91
—12.11
—11.94
—14.45
—14.18
—14.49
—14.22
—15.77
—15.44
—15.81
—15.46
—17.42
—17.01
—17.43
—16.96
—18.97
—18.47
—18.87
—18.28

—1.40
—1.70
—1.59
—1.89
—1.44
—1.81
—1.80
—2.14
—1.19
—1.60
—1.78
—2.15
—0.88
—1.32
—1.62
—1.99
—0.27
—0.72
—1.20
—1.55

0.57
0.11

—0.50
—0.81

FHNC/s
V E
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TABLE III. Position of the equilibrium density (po) and energy (Eo), sound velocity (c), and
compressibility (K) at this equilibrium density for the different kinds of correlations employed in the
work. We use the same notation that in Tables I and II. All these quantities are almost independent of
the approximation for the elementary diagrams used.

J+T+8

f =0
f WO

f =0
f %0
f =0
f WO

=0
f %0

po (~ ')

0.221
0.226
0.232
0.232
0.251
0.253
0.258
0.258

Eo (K)

—1.40
—1.48
—1.79
—1.80
—1.79
—1.86
—2.15
—2.16

c {m/s)

153.0
159.0
170.0
170.0
192.0
193.0
207.0
207.0

~ (atm ')

0.052
0.048
0.042
0.042
0.033
0.033
0.028
0.028

are also present now. The fundamental difference be-
tween both figures is that the displacement observed in
Fig. 1 disappears in Fig. 2. This indicates that a similar
displacement is caused by backflow, and it generates the
increase in the bound energy due to o, -dependent corre-
lations in the other cases. Finally, we must also point out
that this behavior is maintained when the three-body
correlations are not included in the calculations and that
the only difference in the parts of the distribution func-
tion when three-body correlations are present is a small
displacement in the first maximum to greater relative dis-
tances.

Another important aspect to be studied is the behavior
of the energy per particle as a function of the density and
especially the position of the minimum when the different
mechanisms are included. The results are similar to
those obtained in other works and are collected in Table
III. The inclusion of triplet correlations moves appreci-
ably the minimum to higher densities compared with
when only central two-body correlations are present.
The backflow correlation generates the same effect, but
quite smaller compared with triplet correlations. The
effect of o.,-dependent correlations is very small and does
not modify the position of the minimum. In Table III we
have also calculated the sound velocity and compressibili-
ty in every case. The agreement with the experimental
sound velocity 182.90 m/s (Ref. 22) is reasonable.

Figure 3 shows the structure function S(k), which is
the Fourier transform of the central part of the two-body
correlation function when all the correlations are includ-
ed and compared with the experimental data. ' It is
evident that the agreement is not good for small momen-
ta because the long-range behavior is not included in our
wave functions. However, the agreement improves for
higher rnomenta.

APPENDIX

Here we give the equations obtained from the process
of minimization for the spin part of the correlation func-
tion following the process described in Ref. 9 when
backflow correlations are included. We shall use the
same notation as Ref. 9, which must be consulted for fur-
ther explanations.

The spin part of the correlation f (r} is the solution of
the differential equation

y" + G, — y+G~=O,
2gc

(A1)

mentary diagrams, which is one of the most important
problems in this kind of calculation. We must stress the
good resemblance of the results in all the studied cases
between the FHNC/s and FHNC/a(r), not only for the
total energy, but also for the kinetic and potential ener-
gies. Nevertheless, this agreement worsens when the den-
sity increases. It is also important to point out that this
is the first time that both approximations have been ap-
plied using the same programs.

The second and most important aspect is how backflow
correlations absorb the increment of the energy provided
by o.,-dependent correlations, although this increment
had not been modified by the inclusion of three-body
correlations. This shows that the effect introduced by
o.,-dependent correlations is already present in the
backflow correlations. However, as it can be seen in Fig.
2, the inclusion of o.,-dependent correlations modifies the
form of the two-body distribution function even when the
backflow is present. We must remember that this kind of
competition is also watched when full-spin correlations
are used.

V. CONCLUSIONS

We must emphasize two aspects in this work. The first
one is the attention given to the approximation of the ele-

with the contour conditions

f (0)=f (d )=f'(d )=0,
where d is a variational parameter and

(A2)

(A3}
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+2g 4

G)= — V — +
fi 4g,'

Vg,
*

2gc
+, exp(Nd'd+Edd )[(X') Iv —(V,X)(N;, +D;, +E;,—X/v)]

2gc

+, exp(Nd'd +End )(N,', +D;, +E;, X l—v)X'(re" +4'')
gc

2k
exp(Ndd+Edd )(1+Nd, +Ed, +Dd, )[(re) +2rriq'+3r) +rq'+3q],

5g,*

7G2=
(go )1/2 f2, ~f,g.'+g.'V'f, +Vf, Vg.'+ f,V—'g.'

+ f, ex—p(Ndd+Edd )[(X') Iv —(V,X)(N;, +D;, +E;,—Xlv)]C

+f, exp(Ndd+Edd )(¹,+D,', +E;, Xlv)J'—(rri" +4'')

g,'= exp(Ndd+Edd )[(1+Nd, +Ed, +Dd, ) +N;, +E,', +D,', v(N,', —+E,', +D;, —X/v) ],
g' = exp(Nd'd+Edd )[D,'," v(N;, +—E;,+D;, Xlv)'—] .

(A4)
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