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%e study the string correlation functions proposed by den Nijs and Rommelse for the S=1 XXZ
Hamiltonian by an exact diagonalization method. Using a Anite size analysis, we estimate values of the
string order parameters in the thermodynamic limit. Using the extrapolated values of the string order
parameter we investigate the phase boundary between the two expected phases of the model, namely, the
massive Haldane phase and the x-y-like massless phase. In the massless phase the exponent of the string
correlation functions on the periodic system seems to be given by dimensions, which normally occur in

the operator content of the chain when antiperiodic boundary condition is imposed.

I. INTRODUCTION

An extensive study of one-dimensional quantum spin
chains describing the dynamics of spin S larger than 1/2
has been done in recent years. Let us focus our attention
on the Heisenberg model in one dimension. In 1983, Hal-
dane conjectured that the ground-state wave function of
the isotropic Heisenberg model, or XXX chain, exhibits
different behavior depending on whether the spin is in-

teger or half integer. ' In the case of half-integer spins,
the ground state is disordered but has correlation func-
tions that decay as power laws due to the existence of
gapless excitations and the model is in a critical (mass-
less) phase. On the other hand, in the case of integer
spins, although the model is still disordered, the quantum
fluctuations are sufBciently strong to destroy the massless
excitations (spin waves) appearing in the former case,
producing a finite energy gap and rendering the system
off critical.

After the conjecture was enunciated, many studies
were performed both analytically and numerically to
test these ideas. Although the above conjecture was de-
rived based on the large spin-S arguments, it has been
confirmed for the S = 1 case experimentally and numeri-
cally (see Ref. 10 for a review). An important step in the
direction of understanding the physics of these models
was achieved by the introduction of an exactly solvable
model by AfHeck, Kennedy, Lieb, and Tasaki (AKLT
model ). This is a rotational invariant spin-1 model but
in order to ensure an exact integrability, other terms are
included in the Hamiltonian beyond that of the standard
Heisenberg chains. This model has the virtue that many
of Haldane's conjectures can be proved exactly. Conse-
quently, many of the Haldane conjectures would be
proved if both models are in the same universality class.
The exact ground-state wave function of the AKLT mod-
el, although disordered like the Heisenberg model, has a
hidden order characterized by alternating signs in the
successive nonzero spins (take for example, the S' basis).
den Nijs and Rommelse" proposed an order parameter
that takes a nonzero value in the phase with the above
mentioned hidden symmetry. This operator is of nonlo-
cal nature and is called the string order parameter.

Several studies of the string order operator and some
extensions of this order parameter for higher spin can be
found in recent literature. ' ' In Ref. 9, Kennedy and
Tasaki found that the long-range order of this string or-
der is related to the break down of a discrete Z2XZ2
symmetry. Hatsugai and Kohmoto' numerically inves-
tigated this string order parameter in an extended param-
eter space, which include the uniaxial anisotropy
+Dg~(Sf ) This o.rder parameter was shown to be
quite useful in distinguishing the three phases of the mod-
el, namely, the large-D phase, the Haldane phase, and the
Neel phase.

In this paper, we are going to study the spin-1 aniso-
tropic Heisenberg model or XXZ chain, with anisotropy
constant k. We expect the massive Haldane phase to ex-
tend into a region of xy anisotropy X)k, and for
—1&k&A,, a disordered massless phase with no hidden
symmetry will occur. Recently Alcaraz and Moreo, ' by
exploring the conformal invariance of the model in the
gapless regime, conjectured that k, is exactly 0 and the
entire gapless phase could be described by a c = 1 confor-
mal field theory of the Gaussian type. ' ' In this paper,
we report an independent calculation of the phase dia-
gram obtained by evaluating directly the string order pa-
rameter. Our results (A,, =O) are in favor of the above
conjecture. We also show that in the massless regime, the
string order parameter has a power-law decay with ex-
ponents given by the Coulomb gas picture, obtained in
Ref. 17, but with half-integer spin-wave index.

II. MODEL AND STRING CORRELATION FUNCTION

In this paper, we study the anisotropic Heisenberg
spin-1 model, or XXZ chain, defined by the Hamiltonian

H =I+(S"S"+,+SrSs+, +iLS'S'+, ),
l

where S, S», and S' (j =0, 1,2, . . . ) are spin-1 operators
at site j, and A, is the anisotropy constant. At A, = 1 (iso-

tropic), this model is expected to be in the massive Hal-
dane phase where the usual spin-spin correlation func-
tions of Neel type
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6;„(j)=(—1)' '&S,s, &, ( =,y, ) (2.2}

decay exponentially as a function of the distance
(j —1). ' ' In contrast, in the other limit where
—1(A, and A, = —1, we do expect massless behavior,
since, as A,~—1 the sector of Hilbert space characterized
by different z components of the total spin S'= Q.s' be-
come degenerate producing gapless excitations around
this point. Consequently, we should expect the existence
of a critical value A, =A,, separating the Haldane phase
and the massless phase.

As shown by previous works, ' the Haldane phase for
the S = 1 model, although does not have long-range order
of the Neel type [6N;„(j}=0,j p oo ] it still has a hidden
antiferromagnetic order. This can be characterized by
the string correlation functions

e j—1

ip'(j)=(S;exp iz+Se S', u x,y, z,
k=i

(2.3)

where

C +)=S'+S".+) —1 . (2.6)

This Hamiltonian, although di6'erent from the usual fer-
romagnetic Hamiltonian by the factor C +, given by
(2.6), still has the virtue of inducing a ferromagnetic or-
der. It is also interesting to observe that the explicit sym-
metry of this transformed Hamiltonian H is not a usual
continuous U(1) but the discrete Z2XZz, which corre-
sponds to global rotations around the z and x axis. This
symmetry arises due to the independent commutation of
H with the nonlocal Zz operators Q, =expimgks„' and
Q =expingksk. The important properties of this trans-
formation is that the string order parameters (2.3) along x
and z directions are transformed into the usual spin-spin
correlation functions in the transformed Hamiltonian H,

6 (J)=&s,s, ) —, (2.7)

Consequently, the long-range order of the strong correla-

where & A )H means an expectation of A in the ground
state of H. The above string correlation functions were
first introduced by den Nijs and Rommelse. "Subsequent
works ' showed that the Haldane phase can be charac-
terized by a long-range order in these string correlation
functions,

lim 6 (j)%0, (a =x,y, z ) (2.4)
J —+ oo

Recently Kennedy and Tasaki made an important ob-
servation about the long-range order of the string type
given in (2 4). They showed that the long-range order of
the string order parameters is related to a breakdown of a
discrete Z2 XZ2 symmetry of the model. In order to see
this, they introduced a nonlocal unitary transformation
U, which transforms the Hamiltonian (2.1) into a local
ferromagnetic Hamiltonian H given by

H = UH U ' = —Jg [S'S'+,
J

tion function implies a ferromagnetic order in H, and we
should expect a breakdown of the above described Z2
symmetry. In the Haldane phase, we do expect long-
range order in the string order parameters along x,y, z
directions. This implies full breakdown of the Z2XZ2
symmetry in the Haldane phase.

In this paper, we are interested in the phase boundary
between the Haldane phase and the massless phase.
Since the massless phase should have full Zz XZ2 sym-
metry, it is enough, for our purposes, to investigate the
correlation function

j—1

ip* = (s*, exp iz X se s,*) .
k=1

(2.7')

Before closing this section, let us consider the particular
case of (2.1) where A, =O. By making the canonical trans-
formation

S," S, Sy S, , S, -Sy

we obtain

H = g(—sj"SJ"+)+SJ'Sj'+) ) .
J

(2.8)

If we now make the same nonlocal unitary transforma-
tion U described above [see (2.5)j, we obtain the
transformed Hamiltonian H= H. Usin—g (2.7), we ob-
tain

and

6 (J ) = & s"s,"& „=( —I }
—'

& s"s,"&„

6 (J)=&s's'& =( —l)J-'&s*s*)

(2.9a)

(2.9b)

where in the last equations we have made the canonical
transformation

III. NUMERICAL RESULTS

%e calculate numerically the ground-state wave func-
tion of (2.1) with periodic boundary conditions using the
Lanczos method, supplemented by hashing techniques,
for the lattice sizes up to N = 14.

In Fig. 1, we plot for two values of A, (A, = —0.5 and
A, =1.0) the spin-spin correlation function for the lattice
size N =14. As we clearly see, this correlation function
shows di8'erent behavior at A, =1 and A, = —0.5. At A, =1,
it alternates in sign, while at A, = —0.5 the sign is fixed.
Using the conformal invariance2' of (2.1) in the massless
regime, we can show that the above nonalternating be-
havior at A, = —0.5 is consistent with the Gaussian pic-

S" ( —1) S" S' (
—1) S' S S

The above relations state that the string correlation func-
tions 6"(j) and 6'(j) will have long-range order only if
the models also have an antiferromagnetic order of the
Neel type. Since we expect no antiferromagnetic order of
Neel type in the Haldane phase, (2.9a and b) imply that
the particular point A, =O (XY model) should be in the
massless disordered regime with no hidden antiferromag-
netic order.
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FIG. 4. The extrapolated (N~ ~) values of the string order
parameter as a function of the anisotropy A, .

a surprise, since the string correlation function is in fact
two point correlation function of the nonlocal operators,

j—1

SJ =exp in+Sk . SJ'. (3.4)
k=1

Since this operator is nonlocal, in order to estimate its di-
mensions, or the exponent a in (3.2) by conformal invari-
ance, we should consider (2.1) not only with periodic
boundary condition, but also with other toroidal bound-
ary conditions. Nonlocal operators, in general, may con-
nect sectors of the Hilbert space corresponding to
different boundary conditions. Using the Gaussian pic-
ture of Ref. 17 a similar calculation as that of Ref. 23
show us that the exponent a in (3.2) should be related
with the lowest dimension appearing in (2.1) when an-
tiperiodic boundary condition are imposed. The dimen-
sions of (2.1) in the antiperiodic case are given by (3.3)
where now n =0,+1,k2, but m =+1/2, +3/2,
and, consequently

a =2x 0, 1/2 n /( 2ncos'
In Fig. 5 we also show these results. Although the agree-
ment is not complete, it is consistent with the analytical
results taking into account the finite-size effects neglected
when fitting the correlation function by (3.2).

IV. SUMMARY AND CONCLUSION

In this paper we have investigated the phase diagram
of the spin-1 anisotropic Heisenberg model or XXZ
chain, given in (2.1). Our study was done by calculating
numerically the string correlation functions introduced

FIG. 5. Exponents of the string order parameter as a func-
tion of the anisotropy A, . The theoretical predictions is given by

0, 1/2 in Eq. (3.3).

by den Nijs and Rommelse. We show that the asymptot-
ic behavior of these correlation functions are good order
parameters to distinguish the massless phase and the
massive Haldane phase.

In Sec. II, we presented the string correlation and also
gave some arguments, which imply that the Haldane
phase should start in a non-negative value of the anisot-
ropy A. =A, In Sec. III, our numerical calculations (see
Fig. 4) indicate that A,,=0, which is consistent with the
conjectured value of A,,=0.

Our results for the string correlation functions in the
massless phase are in agreement with the Gaussian pic-
ture proposed for this model in the Ref. 17. We also cal-
culate the exponent governing the power-law behavior of
the string function (2.7) in the massless phase. These re-
sults indicate that these exponents are given by the anom-
alous dimensions of the Gaussian operator with spin-
wave index equal to 1/2, normally obtained by studying
(2.1) with antiperiodic boundary condition.
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