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The vibrational spectrum of a two-dimensional (2D) sheet of graphite is examined using a tight-

binding total-energy formalism. Motivation for this work is provided by the poor transferability of clas-

sical valence-force models for sp carbon. A major problem with such models is the neglect of m.-

electron polarizability. The full tight-binding formalism considered here includes both this effect and co-
valent o. bonding on the same footing. Atomic force constants of arbitrary range are calculated quantum

mechanically using a Green s-function approach. Long-range interactions, resulting from delocalized m.

bonding, are shown to be important for in-plane vibrations. The restoring forces for out-of-plane vibra-

tions are dominated by cr-m. mixing. The resulting phonon spectrum for 2D graphite is accurate only to
within 30%. This is considerably worse than previous tight-binding results for sp solids. Some possible

reasons for this are discussed. The difhculties encountered here may well impede our ability to under-

stand the vibrational properties of more complicated n.-bonded solids, particularly amorphous carbons
and fullerenes.

I. INTRODUCTION

It is well known among quantum chemists that delocal-
ized m bonding may give rise to long-range interactions
that contribute significantly to vibrational properties. '

This effect appears to have been appreciated only recently
by condensed matter physicists in the context of conduct-
ing polymers. Some methods for calculating the vi-

brational spectra of solids (e.g., "frozen-phonon" calcula-
tions within density-functional theory ) include this efFect
automatically. Most simpler methods (e.g. , valence force
calculations ' ) do not. A poor understanding of this
point may be in part responsible for the limited accuracy
of many early vibrational calculations for fullerenes.
The present work was stimulated more directly by the
rich, but largely unexplained, Raman spectra of amor-
phous carbons. ' '" Both fullerenes and amorphous car-
bons are composed entirely, or predominantly, of three-
fold coordinated, sp (or nearly sp ), n.-bonded carbon.
The present work focuses on the prototypical ~-bonded
solid, graphite, which is also composed of sp carbon.
Surprisingly, in all of the enormous literature on the lat-
tice dynamics of graphite, ' there does not appear to be
any explicit mention of the role of delocalized ~ bonding.

For the present study, it suffices to consider a single
two-dimensional (2D) graphitic layer. The weak inter-
layer interactions in crystalline graphite have minor
effects on the vibrational spectrum' and are thus reason-
ably ignored for simplicity. The theoretical approach
used here is that of tight-binding total-energy theory. '

This is the simplest method available for calculating pho-
non spectra that is fully quantum mechanical; its descrip-
tion of delocalized m. bonding is similar to that of the
well-known Huckel molecular orbital theory of quantum
chemistry. Tight-binding phonon calculations have been
performed previously both for bulk crystals (mostly tran-
sition metals' and semiconductors' ) and for crystalline

surfaces. ' Mazur and Pollmann' have recently given a
detailed exposition of this approach for the case of crys-
talline Si. The present formalism closely follows that of
Ref. 17 although it is convenient here to separate out the
effects of 0 and ~ bonding. For in-plane motions of the
carbon atoms in 2D graphite, the contributions of o (sp
orbital) and m. (p orbital l plane) electrons are completely
separable by symmetry. For out-of-plane motions, the 0.

and m. electrons mix; the restoring force to a planar struc-
ture is provided by the energy increase associated with
this mixing.

Most previous studies of the lattice dynamics of graph-
ite have been based on empirical force constant models. '

The most successful of these is generally believed to be
that of Al-Jishi and Dresselhaus' (AD), which includes
up to fourth neighbor in-plane interactions. The AD
model was fitted to an extensive data set composed of
elastic constants, optical frequencies, and inelastic
neutron-scattering results. The phonon dispersion curves
calculated from this model for 2D graphite' are shown
in Fig. 1 for reference. Also shown are the recent
electron-energy-loss results of Oshima et a/. ' ' The
curves along I -M are labeled as in Ref. 21: 0 and A
denote optic and acoustic branches and L and Z refer to
in-plane longitudinal and out-of-plane motion, respective-
ly; SH denotes shear horizontal modes which are neither
purely transverse nor purely longitudinal. The AD mod-
el provides a good overall fit to the data but is still
deficient in some respects, e.g., the crossing of the LA
and SH branches near 1250 cm '. The goal of the
present work is not to improve on the AD model, but
simply to explore the relationship between the vibrational
spectrum in Fig. 1 and the electronic structure. An un-
derstanding of this relationship is crucial for the develop-
ment of more transferable approaches that would provide
reasonable results not just for graphite, but for all sp
carbon environments.
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II. VALENCE FORCE MODELS
AND 17-ELECTRON POLARIZABILITY

The Kirkwood and Keating valence force models for
sp carbon may be defined ask„~ kiddo

HK;,„= g (~x, ~

—dp) + g (8;„—Op)
(ij & (ijk)
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FIG. 1. Phonon dispersions curves for 2D graphite calculat-
ed using the model of Al-Jishi and Dresselhaus (Ref. 18). The
dots are experimental data from Ref. 20. I, M, and K refer to
the center, edge, and corner of the hexagonal Brillouin zone.
The branch labels are described in the text.

where x, is the vector from site i to site j, 6, .
k is the an-

gle subtended by sites i and k about site j, do is the equi-
librium bond length, and HO=120' is the equilibrium
bond angle. The first sums in Eqs. (l) and (2) are over all
nearest-neighbor bonds and the second sums are over all
nearest-neighbor bond angles. In general, both of these
models yield similar results. The Kirkwood model was
employed by Beeman et al. in their pioneering study of
the vibrational properties of amorphous carbon net-
works. The Keating model gives slightly better results
for 2D graphite, but will be seen below to be equally
deficient in its transferability to benzene.

Figure 2 shows dispersion curves resulting from the
Keating (solid) and Kirkwood (dashed) models for the

This desire for transferability, of course, lies at the
heart of classical valence force methods. The so-called
Kirkwood and Keating models (two-parameter bond-
stretching and bond-bending models) work very well for
sp -bonded solids, but less well for sp carbon. Section
II of this paper illustrates this problem by considering the
extreme cases of 2D graphite and benzene. Transferabili-
ty between these limits is essential for a successful model-
ing of amorphous carbons, which are believed to contain
2D graphitic islands of varying sizes. ' ' The calcula-
tions in Sec. II show that Kirkwood and Keating parame-
trizations for 2D graphite lead to large errors in benzene,
including an incorrect ordering of the normal modes.
The failure of these models is attributed in large part to
the neglect of m-electron polarizability. ' A simple model
of this effect' is examined in Sec. II which corrects the
qualitative errors in the calculated in-plane C-C vibra-
tions in benzene. This example suggests an even larger
role for quantum-mechanical effects in graphite and other
sp carbons with smaller m.-electron band gaps.

The full tight-binding formalism for 2D graphite is de-
scribed in Sec. III. The parametrization and results are
given in Sec. IV. The main conclusions of this study are
that (l) long-range ~-electron interactions are important
for the in-plane vibrations of 2D graphite, and (2) the
tight-binding total-energy method is less successful here
than in sp bonded systems. The significance of these re-
sults is discussed in Sec. V. Some formal details are given
in the appendix.
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FIG. 2. Dispersion curves for the in-plane vibrations in 2D
graphite calculated using the Keating (solid) and Kirkwood
(dashed) models with the parameters of Table I.
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TABLE I. Valence force parameters and comparison to experiment (Refs. 12, 25, and 26) of predict-
ed in-plane elastic constants for graphite and in-plane C-C vibrational frequencies for benzene. The
final entry for benzene is the rrns average of the six modes.

Force constants

"Stretch"
"Bend"

Kirk wood
(mdyn/A)

k, =2.527
k0 =0.565

Keatiny
(mdyn/A)

k, =4.409
kb =0.754

Expt.

Graphite

Benzene

E
A2g

Bi„
Bq„
El„
E
( ~2 ) 1/2

(Mbar)

4.7
2.5

(cm ')

512
575
942
996
779

1058
829

(Mbar)

9.6
4.5

(cm

585
822
942

1315
921

1222
981

(Mbar)

10.6
4.4

(cm ')

606
922

1010
1311
1480
1585
1241

TABLE II. Relationship between tensor force constants for
2D graphite in the notation of Sec. IV and Kirkwood and Keat-
ing valence force parameters.

P „(0,1)
Pyy(0, 1)

Kirk wood

—k
—6k'

Keating

—k, +kb
—3kb

P„„(0,2)
P.y(&, 2) = —Qy„(O, 2)
$~~(0,2)

3kg/4
—&3k0/4—k0/4

kb /4
—&3kb /4
—3kb/4

in-plane vibrations in 2D graphite. Both models were
constrained to give a zone-center optic mode frequency of
1585 cm ' and a SH mode at M of 800 cm '. The
SH(M) mode is a pure bending motion whose frequency
in these models is determined entirely by the parameters
kz and kb. The Kirkwood and Keating parameters used
in Fig. 2 are listed in Table I along with the predicted and
experimental' in-plane elastic constants for graphite [c»
and cs6 = (c» —c &2 )/2). Explicit relationships between
these parameters and the tensor force constants that will
be introduced in Secs. III and IV of this paper are given
in Table II. The Keating model reproduces the experi-
mental elastic constants very well, while the Kirkwood
model underestimates both c» and c66 by about a factor
of 2. This difference between the two models is also
rejected in the different low-frequency slopes in Fig. 2.
A comparison of Figs. 1 and 2 shows that the Keating
model provides a reasonable fit at all frequencies, while
the Kirkwood model is highly inaccurate [e.g., the
LA(M) mode is off by over 400 cm 'j. Neither model
reproduces the initial upward curvature of the LO branch
away from I that is seen in both the experimental data
and the AD model. Equations (1) and (2) also ignore the

out-of plane branches in Fig. 1, which may be modeled
within a valence force approach by the addition of a
four-body "puckering" interaction.

The predictions of these same Kirkwood and Keating
models for the in-plane C-C vibrations of a single benzene
ring are given at the bottom of Table I. For simplicity,
these results were obtained by assuming that each C-H
unit in benzene (C6H6) acts as a single entity with a mass
of 13 amu. The calculated frequencies are compared in
Table I to the observed frequencies ' for benzene
modes in which the bonded C and H atoms move in
phase. Some quantitative disagreement is expected here
in view of the neglect of interactions with out-of-phase
modes. The actual discrepancies, however, are too large
to be explained by this approximation. The Keating and
Kirkwood models underestimate the rms value of the ex-
perimental frequencies by over 20% and over 30%, re-
spectively. These errors are also too large to be attribut-
ed to changes in force constants resulting from the small
reduction in C-C bond length from graphite (1.42 A) to
benzene (1.39 A). The two valence force models do not
even give a correct ordering of the benzene modes. It is
clear from this example that the transferability of a given
valence force model for sp carbon must not be taken for
granted.

The basic problem is that valence force models ignore
the nonlocal character of m bonding. In benzene, the ~
electrons are delocalized around a single sixfold ring,
whereas in graphite, they are delocalized over an entire
2D layer. Bonding and antibonding m. states are thus well
separated in benzene ( —6 eV) while the corresponding
bandgap for an isolated 2D graphitic layer vanishes at
certain points in k space (cf., Sec. IV). It would be re-
markable if such a large difference in electronic structure
had no effect on the interactions between atoms. The
transferability of any classical potential for sp carbon is
thus equally suspect. Note that the case of sp bonding
differs in that the relevant electronic states are effectively
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localized and there is less sensitivity to the extended envi-
ronment. As long as the local coordination remains close
to tetrahedral, the transferability of valence force param-
eters for sp bonded solids does not appear to be an is-

Sue.
Before abandoning a valence force description com-

pletely, it is instructive to consider a hybrid approach for
sp carbon in which a Kirkwood or Keating model is re-
tained for the o bonds while the ~ electrons are treated
quantum mechanically. This approach of Coulson and
Longuet-Higgins' has recently been applied extensively
to polyene chains. ' The ~ electrons are conveniently
described by the simple tight-binding (Hiickel) Hamil-
tonian,
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where li ) represents a m. orbital on site i and

I

2 4

a (eV/4)

t; =t —a(lx, l

—d ) (4)

is the hopping integral between nearest-neighbor sites i
and j. The second term in Eq. (3) has no effect on vibra-
tional frequencies but prevents the collapse of m bonds;
for benzene, I =4+/3 ensures that do is the equilibrium
bond length. The quantity a that appears both here and
in Eq. (4) is a measure of the electron-phonon interac-
tion. It is this interaction, of course, that couples the m

electronic structure to both static and dynamic lattice
properties. Let

ln)= gc,„li)

denote an electronic eigenstate with energy E„at equilib-

rium. The electronic contribution to the dynamical ma-
trix, 5D &(r,s), which is the second derivative of the to-
tal electronic energy with respect to the displacements
u„and u, &

(the first and second indices represent the site
and direction, respectively), is then'

5D s(r, s ) =2a
&ij & |,'kl) « ~P

where

(C;„~J~;m j„)(Ck„CI~+CkmCl„)
~jkl=2 g

n occ m unocc n m

is the "mutual polarizability" of bonds ij and kl; "occ"
and "unocc" in Eq. (7) refer to occupied and unoccupied
states, respectively.

The relevant mutual polarizabilities for benzene are
easily calculated and are given in Ref. 1. Figure 3 shows
the resulting in-plane C-C vibrational frequencies for ben-
zene (again with a C mass of 13 amu and neglecting H) as

FIG. 3. In-plane C-C vibrations of a benzene ring calculated
with a Keating model for o. bonds and Eqs. (3j and (4) for m.

0

electrons. The parameters used are k, =7.3 mdyn/A, kb = 1.03
a

mdyn/A, and to=3 eV. a is the electron-phonon interaction.
The inset shows the displacement pattern for the B2„mode.

a function of n. A Keating model was assumed here for
the 0. bond contribution, with the force constants
k, =7.3 and kb=1.03 mdyn/A taken from Mele; ' to
was assumed to be 3 eV. The most striking aspect of the

figure is the pronounced softening of the Bz„mode with
increasing a. The displacement pattern shown for this
mode indicates an oscillation between two possible bond
alternations of the sixfold ring. %ithin a pure valence
force approach (a=0 here), the B&„mode has the

highest, or close to the highest, frequency of any C-C vi-

bration. Electronic effects, however, lower the frequency
of this mode dramatically since an alternating-single-
double-bond structure becomes increasingly favorable
with increasing a. Experimentally, the B2„mode is only
the third highest of the modes shown, with a frequency of
1311 cm ' (cf. Table I). A qualitatively reasonable
description of benzene according to Fig. 3 would thus re-
quire an n of approximately 4—6 eV/A. This range of a
is in good agreement with that claimed for the ~ elec-
trons in polyacetylene.

The energy denominator in Eq. (7) implies that elec-
tronic effects should be even more important in systems
with a smaller band gap than benzene. Of particular in-

terest for an understanding of amorphous carbons are the
trends as a function of cluster size from benzene to 2D
graphite. Robertson and O'Reilly showed that the
bandgap in the most compact of such clusters decreases
an N ', where X is the number of fused sixfold
rings. ' ' It can be seen from Fig. 1 and Table I that the
highest C-C vibrational frequency is roughly the same

( —1600 cm ) in the limiting cases of benzene and

graphite. Simple valence force models, on the other
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III. FULL TIGHT-BINDING FORMALISM
FOR 2D GRAPHITE

The full tight-binding total energy method for phonons
is described in detail in Ref. 17. The present section sum-
marizes the essential features of this formalism and out-
lines the separation between 0. and m. contributions in 2D
graphite.

The fundamental ansatz of this method is that the total
energy of a solid may be divided as

stot Bs + rep ~ (8)

where EBs is the electronic band-structure energy and

Ere is an empirical interatomic repulsion. ' EBs is the
sum of the energies of the occupied one-electron states
which result from an empirical tight-binding Hamiltoni-
an, H. E„corrects for the double counting of electron-
electron interactions in EBs and for additional contribu-
tions to the total energy, such as the Coulomb interaction
between ions. Here, as in most previous work, E„ is as-rep
sumed to be describable in terms of a nearest-neighbor
pair potential. ' ' Phonon states are then affected only
by the coefficients of the harmonic expansion,

hand, predict that the modes in graphite extend to higher
frequencies because of the larger number of C neighbors
(cf. Fig. 2 and Table I). The observed near equivalence of
the upper cutoffs in benzene and graphite is thus most
likely a coincidence that results from a cancellation be-
tween this coordination effect and a greater softening of
the graphite modes due to a larger m-electron polarizabil-
ity. Calculations based on the hybrid approach just
presented are suggestive of such a cancellation, but the
resulting description of graphite is quite poor. ' It is thus
of interest to consider a fully quantum-mechanical treat-
ment of 2D graphite in which no approximations are
made a priori about the form of the 0. interactions.

s, p, p~, and p, at each site. For 2D graphite lying per-
pendicular to the z axis, the first three of these functions
form sp (o) hybrid orbitals, while the p, functions
represent the m. electrons. Within the empirical tight-
binding method, only the matrix elements of H and their
dependences on atomic coordinates need to be specified
explicitly. ' The present work assumes that (1) intera-
tomic interactions are restricted to first-nearest neigh-
bors, (2) only two-center integrals contribute to the ma-
trix elements of H, and (3) the two-center parameters
( V„, V,z, V~~, and V„) scale as d, where d is the
bond length. This leaves only six empirical parameters
(the four Vs plus the on-site s- and p-level energies),
which are required to reproduce the band structure of 2D
graphite. The procedure for constructing the 8X8 k-
space Hamiltonian matrix from these parameters is well
known; ' the general form of the 4X4 nearest-neighbor
hopping matrix is reviewed in the Appendix.

The atomic force constants of interest for lattice dy-
namics are given by

(1O)

+
a Erep

au. (I, )au, (I', ') ' (12)

where u (l, v) is the displacement of the atom on sublat-
tice v in the lth unit cell in the direction a. The contribu-
tion from EBs in Eq. (8) may be expressed in terms of the
unperturbed electronic Green's function,

Go(E) =(E+i0+ H)—
yielding'

(I v'I v') $Bs,sR(I v'I v )+yBs, LR(I v. l v )

E„, = g (U, e; +U2e&), (9)
where

EBS,SR( ~

where e;~ =(d;J —do)/do is the fractional change in the
ijth bond length relative to the equilibrium spacing, do.
The choice of parameters, U, and U2, is discussed in Sec.
IV.

Electronic eigenstates are constructed from an ortho-
normal set of atomiclike basis functions with symmetries

I

and

EF aH
Im Tr Go(E) dE

77 oo au. (I,v)au, (l', v')

(13)

E
P &'" (I,v;I', v')= ——f Im Tr Go(E) Go(E), , dE .

00
(14)

[The factors of 2 in Eqs. (13) and (14) are for spin; the
traces are computed for a single spin orientation. ] Equa-
tion (13) is a short-ranged (SR) interaction since the
second derivative vanishes unless the sites l, v and l', v'

are directly coupled by H (i.e., are nearest neighbors).
Equation (14), on the other hand, represents a potentially
long-ranged (LR) contribution whose decay is determined

by that of the bulk Green's function. The traces in Eqs.
(13) and (14) may be evaluated in either real or reciprocal
space. The latter choice has been shown previously to
clarify the connection between the LR term and the elec-
tronic polarizability. ' For the simple a-electron model
of Eqs. (3) and (4), Eq. (14) reduces to Eq. (6). In general,
the required derivatives in Eqs. (13) and (14) are easily
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Tr[GH" ]=Tr[G H ]+Tr[G H ], (15)

calculated analytically. Results for the first derivatives of
H, which are essential for what follows, are given in the
Appendix.

By symmetry, all force constants of the form P „P„
P,„, and P, are strictly zero for 2D graphite. Also by
symmetry, the unperturbed Green's function Go(E) does
not couple o and vr orbitals. The trace in Eq. (13) may
thus be expanded schematically as

20

E
0

—20

EBs

which allows the separation of o. and m contributions to
for both in-plane and out-of-plane displacements.

The situation is more complicated for P
' . It is shown

in the Appendix that BH/Bu (Iv) does not couple cr and
~ orbitals for a=x or y; the trace in Eq. (14) is thus also
separable into 0. and ~ contributions for in-plane dis-
placements:

Tr[GH'GH'];„„j,„,=Tr[G H' G H' ]

Q
C

LLI —40

—60
'l .2

tot

1.4
0

Bond Length (A)

1.6

+Tr[G H' G H' „] . (16)

+G„H' G H' ], (17)

is a consequence of the rehybridization that occurs at
each carbon site during out-of-plane motion.

IV. PARAMETRIZATION AND RESULTS

Several tight-binding parametrizations for carbon have
been reported in the literature. The most suitable
for the present purposes is that of Tomanek and Louie,
which has recently been used in a tight-binding total-
energy study of carbon clusters. The diagonal s- and p-
level energies in this parametrization are E, = —7.3 eV
and Ep =0.0 eV, respectively. At the graphite equilibri-
um spacing, the off-diagonal, two-center parameters are
V 4 30 eV Vp 4 98 eV Vpp

=6.38 eV, and

Vpp
—2 .66 eV . These val ues were al 1 determined from

a global fit to density-functional theory predictions for
carbon dimers, 2D graphite and diamond over a range of
nearest-neighbor distances. A d scaling of off-

diagonal parameters was built directly into the parame-
trization.

The resulting energy band structure for 2D graphite at
equilibrium consists of bonding and antibonding o. bands
separated by over 10 eV and bonding and antibonding ~
bands that are degenerate at the K point. These degen-
erate states lie at the Fermi level (EF ) and are split in real
graphite by interlayer interactions. Larger-scale features
of the tight-binding bands are in reasonable agreement
with experimental results for graphite. ' ' The main
discrepancies lie in the antibonding bands, which are too
narrow in the tight-binding model. This is particularly
apparent for the antibonding m. band; experimentally, this
band is broader than the bonding a band but, with only
nearest-neighbor tight-binding interactions, the two

The derivative aH eau, (1v), on the other hand, couples
only dissimilar orbitals; the resulting mixing of cr and ~
contributions,

Tr[GH'GH'], „,,r „„,=Tr[G H' G H'„

FIG. 4. Tight-binding total energy and its various contribu-
tions for 2D graphite as a function of the nearest-neighbor bond
length. Ezs, EBs and E„~ are the o. and ~ band-structure ener-
gies and the repulsive energy, respectively.

bands are symmetric about EF.
Band-structure contributions to the total energy were

calculated separately for 0. and m electrons for a range of
nearest-neighbor bond lengths. These, and all other
Brillouin-zone integrations in this paper, were performed
using a set of 45 special k points in the irreducible Bril-
louin zone. The results for EBs and E~s are shown in

Fig. 4 along with the empirically determined repulsive

12

/
12

FIG. 5. Portion of 2D graphite lattice with x and y axes
defined and first 12 nearest-neighbor shells about the origin (site
0) labeled.
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TABLE III. Nearest-neighbor information corresponding to Fig. 6 for an A sublattice site at the ori-
gin. The first four columns give the shell number, the sublattice on which the shell lies (A or B), the
number of neighbors in the shell, and the distance from the origin, respectively. The last column gives
the coordinates of the reference sites for which force constants were calculated directly. The last two
columns are in units of the nearest-neighbor distance.

Shell no. Sublattice No. in shell Distance Reference site

1

3
4
5

6
7
8

9
10
11
12

B
A

B
B
A

A

B
B
B
A

B
A

3
6
3
6
6
6
6
3
6

12
3
6

1

v'3
2

v'7
3

2&3

4
&19
&21

5
3&3

(1,0)
(0,~3)
( —2,0)

(5/2, &3/2)
(3,0)

(0,2&3)
(5/2, 3v'3/2)

(4,0)
(4, &3)
(3,2&3)
( —5,0)
(0,3&3)

TABLE IV. Contributions to the nearest-neighbor force con-
0 2

stants {in eV/A ) from the repulsive pair potential and the o
and m. short-ranged band-structure terms.

P„„(0,I )

/AY(0, 1)
P„(0,1)

Rep.

—118.136
23.213
23.213

o,SR

61.328
—38.850
—36.341

n.,SR

8.309
—2.770

—12.182

energy and the total energy. The coefficients U, and Uz

in Eq. (9) were constrained to give an equilibrium spacing
of 1.42 A and an upward curvature in E„,at equilibrium

that reproduces the in-plane area modulus, c»+c&2, in

crystalline graphite. The fitted values are U, = —46. 806
eV and Uz = 119.105 eV. Figure 4 shows that E„~main-

ly balances the strong attraction of the 0 electrons, al-

though the ~-electron attraction is also important. Un-

like some tight-binding total-energy calculations in
which the entire range of the curves in Fig. 4 is relevant
(or even a wider range ), the present lattice dynamical
study is influenced only by the first and second deriva-
tives of these curves at equilibrium.

Once the tight-binding parameters and U& and U2 are
specified, it is straightforward, albeit tedious, to calculate
the atomic force constants. Figure 5 shows a portion of
the 2D graphite lattice and coordinate axes used for
reference. The labels represent the nearest-neighbor shell
number of a given site relative to the origin (0). For each
shell, it is sufficient to calculate the atomic force con-
stants between the origin and one member of the shell;
the corresponding force constants for other members of
the shell may then be obtained by group theory. The
solid dots in Fig. 5 indicate the particular sites chosen to
represent their shells. The coordinates of these sites and
other information on the first 12 nearest-neighbor shells
is given in Table III. In what follows, the simplified nota-

tion P &(O, N) will be used to denote the force constants
between the origin and the representative site in the ¹h
neighbor shell. Although suppressed here, the sublattice
information in Table III is important, of course, for con-
structing the dynamical matrix. '

Both the repulsive pair potential and the SR term in
Eq. (12) contribute only to the nearest-neighbor force
constants, P &(0, 1), which are diagonal by symmetry.
The repulsive contribution is easily calculated analytical-
ly' and the results are given in the first column of Table
IV. The remaining two columns give the 0 and m SR
band-structure contributions, respectively, as separated
in Eq. (15). The traces in Eq. (15) are evaluated in real
space, as are those in Eqs. (16) and (17) which are needed
for the LR terms below. In both the SR and LR calcula-
tions, the integrand is first evaluated off the real energy
axis and then analytically continued back to this axis be-
fore performing the integration. This procedure en-
sures rapid convergence in the number of k points used to
evaluate the required Green's-function matrix elements.
These matrix elements were evaluated in terms of the cr
and m eigenstates at the above-mentioned set of 45 special
k points in the irreducible Brillouin zone and equivalent
larger sets in cases of lower symmetry.

The LR term is more complicated to evaluate because
of the many paths that contribute to the trace in Eq. (14)
in a real-space approach. ' Group theory is again helpful
for restricting the number of Green's-function matrix ele-
ments that need to be calculated for a given nearest-
neighbor shell. The required range of the Green's func-
tion is longer than that of the force constant being calcu-
lated. For example, even in the simple case of P &(0, 1),
the trace in Eq. (14) involves Green's-function matrix ele-
ments out to the fourth-nearest neighbor.

The calculated o contributions to the in-plane LR
force constants for the first 12 nearest neighbors are listed
in Table V. Blank entries are zero by symmetry. (This
was confirmed numerically in each case as a test of the
computer code. ) The last two columns in Table V give
information relevant to the range of force constants de-
rived from 0 electrons. Mazur and Pollmann' suggested
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0
TABLE V. Contributions to the near-neighbor, in-plane force constants (in eV/A ) from the cr

long-ranged band-structure term. X„„(N)is the partial sum of the right-hand side of Eq. (18) (xx com-
ponent) out to shell N. The value in parentheses at the bottom of this column is the directly calculated
value of P„„(0,0). The last column gives the deviation of X„„(N)from this value (in %).

1

2
3
4
5

6
7
8

9
10
11
12

41„„(O,N)

6.271
1 ~ 827
0.510
0.149

—0.041
0.067

—0.002
0.005
0.004

—0.001
0.000

—0.005

Q„y(O, N)

—0.907

0.631

—0.031
0.013

0.003
0.002

—0.004

0 „(O,N)

0.907

0.631

0.031
0.013

0.003
—0.005

0.004

Pyy(O, N)

8.724
—1.758
—0.318
—0.417

0.061
—0.028

0.001
—0.015
—0.018
—0.003
—0.003
—0.009

X (N)

22.493
22.700
22.988
22. 184
22.244
22.361
22.358
22.343
22.301
22.277
22.272
22.230

(22.313)

Deviation

+0.8
+ 1.7
+3.0
—0.6
—0.3
+0.2
+0.2
+0.1
—0.6
—0.2
—0.2
—0.4

this convergence test based on the relationship

P p(0;0)= —g P p(0;t, v) .
Iv/0

(18)

The sixth column in Table V gives the contribution to the
right-hand side of Eq. (18) from the o contributions to
P„„' "(0;I,v) for the first N nearest-neighbor shells. The
value in parentheses at the bottom of the column is the
calculated result for tt,„' (0;0) based on Eq. (14). The
last column in the table shows how well the partial sum
agrees with this value. [Note that when constructing the
dynamical matrix, (t &(0;0) is obtained from the sum in

Eq. (18) out to the range at which the force constants are
truncated. j Convergence to within 1% is already
achieved by the fourth-nearest-neighbor shell and is not
improved substantially by the inclusion of more distant
neighbors. This is similar to the range of a. interactions
found by Mazur and Pollmann' for diamond-structure
Si.

Table VI gives the corresponding results for the vr con-
tributions to the in-plane LR force constants. The con-
vergence is much slower than for the o contributions.

Inclusion of the first six nearest-neighbor shells is re-
quired for even 5% convergence and 1% convergence is
not even achieved by the 12th shell. The magnitudes and
signs of the errors exhibit no clear pattern as more neigh-
bors are included. The results in Table VI confirm the
existence of long-ranged interactions in 2D graphite due
to m-electron delocalization. The in-plane vibrations in
graphite are thus clearly affected by nearly metallic m

bonding as well as covalent cr bonding.
Table VII lists the remaining LR force constants that

give rise to out-of-plane vibrations that mix 0. and m elec-
trons [cf. Eq. (17)]. The convergence here is similar to
that for the pure-o. , in-plane interactions in Table V.

The dynamical matrix ' was constructed from the
force constants in Tables IV —VII out to the 12th nearest
neighbor. Longer-ranged, in-plane m interactions may
still contribute at the 2% level, but are unlikely to change
things significantly. The resulting tight-binding phonon
spectrum for 2D graphite is shown in Fig. 6 along with
the experimental data from Fig. 1. The tight-binding
results are clearly inferior to those of the AD model. '

Along I -M, the two highest branches in Fig. 6 are too
high by 15 Jo, the ZO branch is too low by 20%, and the

0
TABLE VI. Contributions to the near-neighbor, in-plane force constants (in eV/A ) from the m

long-ranged band-structure term. The setup is the same as in Table V.

1

2
3
4
5

6

8

9
10
11
12

P„(O,N)

5.752
0.867
0.508
0.339

—0.388
0.113
0.096
0.252

—0.024
—0.018

0.058
—0.013

P,y(O, N)

1.078

—0.121

—0.002
0.094

0.049
—0.108

—0.003

(O, N)

—1.078

—0.121

0.002
0.094

0.049
0.009

0.003

Pyy(O, N)

—0.525
—1 ~ 118
—1.157

0.006
—0.061
—0.007
—0.066
—0.047

0.008
0.010

—0.082
—0.044

X„„(N)

7.841
6.878
5.904
6.939
5.742
6.060
6.150
6.458
6.410
6.362
6.326
6.155

(6.287)

Deviation

+24.7
+9.4
—6.1

+ 10.4
—8.7
—3.6
—2.2
+2.7
+ 1.9
+ 1.2
+0.6
—2.1



46 TIGHT-BINDING STUDY OF THE LA I I'ICE DYNAMICS OF. . . 147

TABLE VII. Contributions to the near-neighbor, out-of-
0 2

plane force constants (in eV/A ) from the long-ranged band-
structure term. The setup of the last two columns is the same as
in Tables V and VI but for the zz component.

1

2
3
4
5

6
7
8
9

10
11
12

0„(O,N)

21 ~ 183
0.088

—0.371
0.534

—0.090
0.017
0.008

—0.073
—0.026

0.001
—0.065

0.016

X (N)

63.549
64.077
62.964
66.168
65.628
65.730
65.778
65.559
65.403
65.415
65.220
65.316

(65.494)

Deviation

—3.0
—2.2
—3.9
+ 1.0
+0.2
+0.4
+0.4
+0.1
—0.1
—0.1
—0.4
—0.3

lower SH branch is too low by as much as 30%, com-
pared to experiment. The tight-binding predictions near
K are likely to be even less reliable given their larger de-
viation there from the AD model.

The overestimate of the phonon bandwidth in Fig. 6
appears to be a general feature of tight-binding calcula-
tions in which the repulsive pair potential is fit to the
bulk modulus' ' (or its equivalent here, c&&+ctz). The
value of U2 may be adjusted to give the proper band-
width at the expense of a poorer description of elastic
properties. ' This will not be shown here since it simply

lowers all of the high-frequency branches without chang-
ing anything qualitatively.

One additional feature of the tight-binding results that
deserves comment is the slight upward curvature of the
highest-frequency branch in Fig. 6 along I -M and I -E.
This behavior, which is also seen in the AD model and
the experimental results, is impossible to describe within
the Kirkwood or Keating models. A similar upward cur-
vature at I is predicted by tight-binding phonon calcula-
tions for polyacetylene.

The tight-binding predictions for the LO(I') and
ZO(I ) modes were checked by independent frozen-
phonon calculations. This approach is computationally
much simpler than the calculation of atomic force con-
stants, but is useful only at high-symmetry points. '

For each of the two modes, the total energy was calculat-
ed directly from Eq. (8) as a function of the amplitude of
the phonon distortion. The results are plotted in Fig. 7
along with various contributions to the total energy; u
represents either the in-plane (top) or out-of-plane (bot-
tom) displacement of the two sublattices. The mode fre-
quencies are easily extracted from the curvatures of the
hE vs u curves. This yields 1789 and 696 cm ' for
LO(I') and ZO(I ), respectively, in excellent agreement
with Fig. 6.

Figure 7 also shows that the band-structure and repul-
sive contributions to the total energy behave in opposite
manners for the in-plane and out-of-plane modes. For
the LO(I ) distortion, both the 0 and n band-structure
energies are destabilizing and the restoring force is pro-
vided by the repulsive potential. For the ZO(I ) distor-
tion, on the other hand, the band-structure energy pro-
vides the restoring force because of the energy increase
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FIG. 6. Phonon dispersion curves for 2D graphite calculated
from tight-binding force constants in Table IV-VII. The dots
are experimental data from Ref. 20.

FIG. 7. Tight-binding results for the change in total energy
and its various contributions as a function of the relative dis-
placement between the two sublattices (u) for the in-plane
LO(I ) and out-of-plane ZO(I ) modes.
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associated with o.-~ mixing. The repulsive contribution
to ZO(I ) is destabilizing because all nearest-neighbor
bonds are stretched. The out-of-plane motion (perpendic-
ular to the bonds) in this case is affected only by the U,
parameter in Eq. (9). The suggested adjustment of Uz
above to reduce the phonon bandwidth in Fig. 6 would
thus leave the ZO(I ) frequency unchanged.

V. DISCUSSION

In general, the present tight-binding description of the
lattice dynamics of 2D graphite is much less successful
than previous applications of this approach to sp -bonded
solids. ' ' There is no obvious reason why this should
be so since the quality of the parametrized electronic
band structure in each case is comparable. The problem
may be fundamental in nature or it may be an artifact of
the chosen parametrization. One can certainly question
whether a nearest-neighbor hopping model is sufficient
here for the m electrons since it is known that a second-
neighbor interaction is required to describe the asym-
metry between the m and ~* bands. ' ' Other generaliza-
tions that might improve matters include using a different
nearest-neighbor V interaction for cr and ~ electrons,
a different F. value in the two cases, or a scaling law oth-
er than d . Some preliminary tests were made of all of
these effects, but none seemed particularly promising.

On a more fundamental level, the problem may have to
do with an inadequate treatment of electron-electron in-

teractions. The addition of Coulomb interactions to the
tight-binding Hamiltonian, for example, would alter the
resulting force constants due to screening effects. '

Whether such interactions are important in 2D graphite
is unclear. On the one hand, Coulomb effects do tend to
be more pronounced in lower dimensional systems. On
the other, the importance of Coulomb interactions even
in one-dimensional conducting polymers is still highly
controversial.

It may simply be that an accurate, simultaneous
description of both delocalized, nearly metallic ~ bonding
and localized, covalent 0. bonding is too much to ask of a
semiempirical approach. Springborg has argued that,
because of subtleties in the electron-electron interaction,
it may not be formally possible to divide the total energy
up into o. and m contributions, as was essentially done
here for in-plane vibrations. Both Figs. 4 and 7 show
that the behavior of the total energy in the tight-binding
approach results from a near cancellation of competing
effects. Since these individual effects themselves behave
differently for different phonon modes (Fig. 7), it is
perhaps remarkable that the tight-bonding approach does
as well as it does. After all, Fig. 6 does get the much-
different bandwidths of in-plane and out-of-plane modes
correct to within 20%, despite the much different physics
involved. The greater success of the tight-binding ap-
proach in sp -bonded solids may not be a fair compar-
ison, given that valence force models are also more suc-
cessful in that case.

One may conclude from the present study that the
modeling of the vibrational properties of ~-bonded solids

is much more difficult than has been generally appreciat-
ed. Long-range ~-electron interactions are clearly impor-
tant in graphite as well as polyene chains. Such in-

teractions are highly nonlocal, which makes the transfer-
ability of any simple approach highly questionable. Un-
fortunately, the present tight-binding study has done
more to identify these problems than to solve them. It is
hoped that this work will stimulate further discussion of
these issues and new ideas on how to proceed. Progress
in this area would be particularly valuable for modeling
the vibrational properties of amorphous carbons and ful-

lerenes.

APPENDIX: NEAREST-NEIGHBOR
HOPPING MATRIX AND ITS DERIVATIVE

Let H; (r, r') be the 4X4 matrix block of the tight-
binding Hamiltonian that couples ~ orbitals on site i with
r' orbitals on nearest-neighbor site j. If (1„,1,1, ) are the
direction cosines from i to j, then

H J(s, s) =0„

HQ (s,p„)= H;J (p„,s—) =1„VR

H;, (s,p» ) = H, (p, s )
—=1 V,

H; (s,p, )= H; (p„s)=—1, V,

H;, (p„,p„)=I„V~ +( I —1„)V»„,

H;, (p,p )=1 V +(l —1 )V

HJ(p„p, )=l, V» +(I—1, )V

H;, (p„,p» ) =H;, (p», p„)=1 1»( V»p V), —

H, (p„,p, ) =H; (p„p ) =1„1,( V —V» ),

v p»»p ) i p»»» ~ V»» ~pp ~.

Recall that the o. orbitals are s, p, and p and the ~ or-
bital is p, .

Equations (13) and (14) in the text require the first and
second derivatives of the Hamiltonian, which are most
conveniently evaluated in real space. The result will sim-

ply be stated here for the first derivative of the H,- block
defined above. Let

BH;

BQ;

The matrix elements of H' are
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H' (s, s ) = —21 ( V„ /do ),
H' (s,p, ) = H—'

(p„,s ) =(5„—31„1 )( V, /do ),
H' (s,p )= H—' (p, s)=(5» —31„1 )(V» /do),
H' (s,p, )= H—' (p„s)=5, (V, /do),

H'(p„,p„)=21„(5, —21„1 )(V /do) —2(l 21„—1 +5„1„)(V„/do),
H' (p», p»)=21»(5» —21 I )(V»» /do) —2(1 —21 1 +5 1 )(V /do),

H'(p„p, )=—21 (V»p /do),

H (p p ) H (p»p ) (15 +15 4111 )(V V )/do

H' (p„p, )=H' (p„p„)=1„5,(V —V )/do,
H' (p,p, ) =H' (p„p ) =1 5, ( V —V )/do,

where do is the bond length and use has been made of the fact that I, =0 at equilibrium. Note that only the 4th, 10th,
and 11th lines here couple cr and ~ orbitals. For a=x or y, these lines vanish and there is no mixing of 0. and m. states.
For a =z, all lines other than these vanish and the o-m. mixing is all that remains.

C. A. Coulson and H. C. Longuet-Higgins, Proc. R. Soc. Lon-
don, Ser. A 191,38 (1947); A j.93, 456 (1948).

T. Kakitani, Prog. Theor. Phys. 51, 656 (1974).
3E. J. Mele and M. J. Rice, Solid State Commun. 34, 339 (1980).
4E. J. Mele, Mol. Cryst. Liq. Cryst. 77, 25 (1981).
L. Piseri, R. Tubino, and G. Dellepiane, Solid State Commun.

44, 1589 (1982).
For example, C. T. Chan, K. M. Ho, and W. A. Kamitakahara,

Phys. Rev. B 36, 3499 (1987).
7J. G. Kirkwood, J. Chem. Phys. 7, 506 (1939).
P. N. Keating, Phys. Rev. 145, 637 (1966).
R. L. Capelletti, J. R. D. Copley, W. A. Kamitakahara, F. Li,
J. S. Lannin, and D. Ramage, Phys. Rev. Lett. 66, 3261
(1991),and references therein.
J. Robertson, Adv. Phys. 35, 317 (1986), and references
therein.
M. A. Tamor, J. A. Haire, C. H. Wu, and K. C. Hass, Appl.
Phys. Lett. 54, 123 (1989).

' See M. S. Dresselhaus and G. Dresselhaus, in Light Scattering
in Solids III, edited by M. Cardona and G. Guntherodt, To-
pics in Applied Physics Vol. 51 (Springer, Berlin, 1982), p. 3,
for a review of the earlier literature.
D. J. Chadi, Phys. Rev. Lett. 41, 1062 (1978).

' For example, M. W. Finnis, K. L. Lear, and D. G. Pettifor,
Phys. Rev. Lett. 52, 291 (1984).

~5For example, D. H. Lee and J. D. Joannopoulos, Phys. Rev.
Lett. 48, 1846 (1982).
For example, O. L. Allerhand, D. G. Allan, and E. G. Mele,
Phys. Rev. Lett. 55, 2700 (1985).

' A. Mazur and J. Pollmann, Phys. Rev. B 39, 5261 (1989).
~8R. Al-Jishi and G. Dresselhaus, Phys. Rev. B 26, 4514 (1982).

P. Lespade, R. Al-Jishi, and M.S. Dresselhaus, Carbon 20, 427
{1982).
C. Oshima, T. Aizawa, R. Souda, Y. Ishizawa, and Y. Sumi-
yoshi, Solid State Commun. 65, 1601 (1988).

~T. Aizawa, R. Souda, S. Otani, Y. Ishizawa, and C. Oshima,
Phys. Rev. B 42, 11469 (1990);43, 12060, (1991).
For example, R. Alben, D. Weaire, J. E. Smith, and M. H.
Brodsky, Phys. Rev. B 11,2271 (1975).

D. Beeman, J. Silverman, R. Lynds, and M. R. Anderson
[Phys. Rev. B 30, 870 (1984)] examined the vibrational prop-
erties of various amorphous carbon networks using a Kirk-
wood model.

24A. Yoshimori and Y. Kitano, J. Phys. Soc. Jpn. 11, 352 (1956).
R. D. Mair and D. F. Hornig, J. Chem. Phys. 1.7, 1236 (1949).

2sG. Herzberg, Infrared and Raman Spectra of Polyatomic Mol
ecules {Van Nostrand, New York, 1945).
For example, J. Tersoff, Phys. Rev. Lett. 61, 2879 (1988).
While this potential has not been extensively tested for vibra-
tional properties, it is unlikely to do any better than the Kirk-
wood and Keating models. For 2D graphite, it predicts a
zone-center optic mode of 2540 cm ', nearly 60% higher
than experiment.
A. J. Heeger, S. Kivelson, J. R. Schrieffer, W.-P. Su, Rev.
Mod. Phys. 60, 781 (1988).
Note that the stretching force constant here is significantly
larger than in Table I. For a =0, the Mele parameters give a
zone-center optic mode in 2D graphite of 1994 cm ', about
26% too large.

3OJ. Robertson and E. P. O'Reilly, Phys. Rev. B 35, 2946 (1987).
A nonzero a within this mendel does soften the zone-center op-
tic mode in graphite but it also produces a much larger, un-
physical, softening of one of the nondegenerate E-point
modes.

32J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
33W. A. Harrison, Electronic Structure and the Properties of

Solids (Freeman, San Francisco, 1980).
D. J. Chadi, J. Vac. Sci. Technol. A 2, 948 (1984).
J. Robertson, Philos. Mag. 47, L33 (1983).

36D. Tomanek and S. G. Louie, Phys. Rev. B 37, 8327 (1988).
L. Goodwin, J. Phys. : Condens. Matter 3, 3869 (1991).
D. Tomanek and M. A. Schluter, Phys. Rev. Lett. 67, 2331
(1991).
S. L. Cunningham, Phys. Rev. B 10, 4988 (1974).

4oM. A. Tamor and K. C. Hass, J. Mater. Res. 5, 2273 (1990).
4~A. A. Maradudin, E. W. Montroll, G. H. Weiss, and I. P. Ipa-

tova, Theory ofLattice Dynamics in the Harmonic Approxima
tion (Academic, New York, 1971).



150 K. C. HASS

K. C. Hass, B. Velicky, and H. Ehrenreich, Phys. Rev. B 29,
3697 (1984).
C. H. Xu, C. Z. Wang, C. T. Chan, and K. M. Ho, Phys. Rev.
B 43, 5024 (1991).

~D. J. Chadi and R. M. Martin, Solid State Commun. 19, 643
(1976).

45M. Springborg, Phys. Scr. T13, 306 (1986).
D. W. Brenner, Phys. Rev. B 42, 9458 (1990), for example, de-
scribes a classical potential for carbon that incorporates some
nonlocal ~-electron effects, although this potential is not in-
tended for use in vibrational calculations.


