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Mean-field expression for the characteristic Griineisen parameter of the Kondo lattice
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In addition to the enhanced specific heat coefficient and susceptibility, heavy fermion compounds also
exhibit a large characteristic Gruneisen parameter (I ) for different properties. We clarify the relevant
intrinsic energy scale in the presence of a magnetic field, and derive the analytic expression for I by use

of the slave-boson mean-field results. Our results are at variance with the belief that I is proportional to
the enhancement of the quasiparticle mass. We find instead that, besides the contribution from the sensi-

tive volume dependence of the hybridization matrix element, I roughly depends on the logarithm of the
mass enhancement.

I. INTRODUCTION

Experimentally, the Griineisen parameter' I of the
heavy-fermion compounds is about two orders of magni-
tude larger than in ordinary metals, which is similar to
the enhancement for the linear temperature coefficient y
of the specific heat at low temperatures and the zero-
temperature spin susceptibility go. In accordance with
the scaling behavior and a unique intrinsic energy
scale ' observed experimentally, I values obtained from
different properties are very nearly the same. Based on
these observations, there have been many theoretical
efforts, for example, the free-energy approach which in-
cludes the work by Takke et al. , who separated the elas-
tic part from that of the electron and electronic lattice
coupling, and the scaling approach by Thalmeier and
Fulde. But the actual dependence of I on the anoma-
lous density of states, due to the Kondo resonance,
remains unclear in comparison to other thermodynamic
quantities. It was conjectured by Jaccard and Flouquet
that I obeyed the same scaling law as y and go, i.e., I is
proportional to the enhanced quasiparticle mass or the
ratio of conduction bandwidth 8'and the Kondo temper-
ature.

In this paper we derive an analytic expression for the
Gruneisen parameter in the presence of external magnet-
ic field at zero temperature. Special attention is paid to
find out the contribution from the large density of states
and compare with the aforementioned conjecture. Our
analyses are based on the large-ground-state-degeneracy
expansion of the slave-boson approach' at the mean-field
level. There are already interesting new results at this
level without considering lattice anisotropy, crystal field,
and possible magnetic correlations in the compound (we
emphasize that these effects are crucial for a realistic I ).
Since the renormalized impurity-electron one-body ener-

gy Ef for the 1'-spin electrons is shifted differently by the
magnetic field from that of the $-spin ones, the conven-
tional definition of the Kondo temperature Tz —=Ef—p
(p, denotes the chemical potential) no longer seems to be a
good energy scale. It is then tempting to use the seem-
ingly more physical hybridization gap width Eg p

which
governs the interband charge excitations. This, however,

will turn out later not to be the right energy scale for
describing the density-of-states effect. We analyze in this
paper what the relevant energy scale is and derive an ana-
lytic expression for the heavy-fermion Gruneisen parame-
ter. Since the generalization of the slave-boson mean-
field results to finite magnetic fields has been made in a
previous paper, " some of the results will be quoted
without further derivations. In accordance with the ex-
istence of crystal-field splitting in most compounds, we
assume a doublet ground state. The total number of elec-
trons per unit cell participating in the hybridization ( n ) is

set to be slightly less than 2 so that the density of states at
the chemical potential is enhanced' at zero field.

II. DEFINING THE CHARACTERISTIC ENERGY SCALE

The effect of a large I is of particular interest to recent
studies of the metamagnetic-like transition in heavy-
fermion compounds, ' ' for example, in CeRuzSi2 there
is an enormous 50% drop in the elastic constant c33 (Ref.
15) and a sharp peak in the magnetostriction which cor-
responds to an abrupt increase in the volume by 10
(Ref. 16). As mentioned above, I values obtained from
different properties are similar in these compounds; e.g. ,

if the entropy obeys the scaling law, then a related
Gruneisen parameter can be defined as

or

3aV
I =

Kf

B lnE'
t} ln(volume)

where a comes from the thermal expansion coefficient
(=3aT at low temperatures T), V is the molar volume, ic

is the isothermal compressibility, and E* is the charac-
teristic energy under strain, E. It is expected from Eq. (1)
that a should be enhanced more than y. But detailed
theoretical expressions for the thermal expansion
coefFicient of heavy-fermion compounds are not available,
therefore we shall determine I from the characteristic
energy.

Within the mean-field treatments, ' the quasiparticle
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dispersion relations for the Kondo lattice are

E+(Ek ) =—2[ek+E&+Q(ck E—
& } +4V (1 n—&)], (2)

E

where E+(E ) is for the upper (lower) hybridization
band, ck is the bare conduction-band energy, and V is the
root-mean-square value of the hybridization matrix ele-
ment averaged over the Fermi surface. In the presence of
magnetic field H, it is easy to show from Eq. (2) that the
hybridization gap width is roughly independent of H:

f + fV (1 n—) V (1 n—)

8 +E~+H 8' —Eg+H
2V (1 n/—)

8'
where the approximate sign is justified by the fact that 8'
is much bigger than the magnitudes of E& and H. The
average number of impurity electrons per impurity site is
denoted by n&, and the +( —

) sign is for the $-(1-) spin
electrons. Note that we have set the product of the
impurity-electron angular momentum J and its Lande g
factor to unity for convenience (caution is required in cal-
culating the magnetization, since the g values are
different" for the conduction electron and the impurity
electron).

Assuming a constant density of states 2) for the con-
duction band, the resulting density for the hybridization
bands can be obtained from Eq. (2) as

V (1 n)—
1+

W (Ef E+)2—
where the quantity 1 in the last expression is negligible
when 2) is large. This enhancement happens when the
chemical potential lies close to the narrow Kondo reso-
nance, which then equals, relative to the bare 2) of
1/W, V (1 n&)/(E& —p) or —W/~E& —p, ~

at zero mag-
netic field. ' The latter expression shows that the Kondo
temperature, defined as ~E&

—p~, is a useful energy scale
for the 2)-related physical quantities at zero field. How-
ever, the validity of this energy scale is not clear in the
presence of magnetic field because the hybridized bands
are shifted differently for each spin. For small fields, p
remains in the lower 1-band which we shall call region I
(see Fig. 1), and we find the density of states 2) is given by

(region III). Note that the chemical potential remains in
the lower $-spin band for all fields. For region III, p, is
further away from the dense states accumulated at the
lower $-spin band edge, and the density of states comes
mainly from the 1'-spin electrons:

p'2

W(p E/+H)—
IE I V' W'

X (2—n) — + In
W 2W VT (H)

(6)

FIG. 1. Three regions are distinguished for the isotropic hy-
bridization case according to the re1ative position of the chemi-
cal potential to the dispersion bands (the f'-spin bands are on
the right).

where a simple expression as Eqs. (4) or (5},valid only for
small fields, is not applicable.

It has been shown" that(4)

V (1 n/)—
8'p= W(n —

n&
—1)+0But, when p enters the 1-spin gap (region II), there is no

state for the 1-spin electrons, and we obtain

1 1 1x=- +
2 (E/ H) p(E/+H—) p— —

T~(H)

T~(H) H—
1 1

2 (E/+H) —p

Finally, for large fields, p moves into the upper 1'-band

for all fields,

and for region I:

T~(H) =Q Tx (0)+H



13 864 T. M. HONG

12"

10"

8"

6"

3500.-

3000-.

2500-

2000"

1500.-

4-- 1000"

500.-

10 15 20 25 0.5

&/Tx (o)

1.5

FIG. 2. Field dependence of T&(H) —=Ef —p (solid line) and
Eg p /2 (grey line). We set X =2, n = 1 .95, 8' =50 000 K,
V /&=1000 K, and E, = —10000 K, which give Tz(0)=13.5
K. The crossovers between regions are at 0.7 and 14 K.

FIG. 3. Field dependence of W/E*, which equals the
enhancement of the density of states at p (for the same parame-
ters as in Fig. 2).

2TK(0)

Tir
(9)

Similarly for region II:

Tx(H) = Tg(0) H, —

E, =2TE(0),

(13)

(14)
This last approximation in Eq. (9) is made because the
crossover field at which p enters region II is and, from Eq. (5):

H, ii =(2—n)Tz(0) . (10)
E*= T2x(0) . (15)

While the factor 2 —n, being small compared to unity for
heavy-fermion compounds, ' the term Tx.(0) in Eq. (8) is
much bigger than Hi », and Tz(H) = Tir(0) in region I.
From Eq. (4), the characteristic energy is defined as

Tx(0)E'= =Tx(0) .
T~(H)

Note that the Kondo temperature

y2 1 —n

II, III

which is roughly half of the gap energy.
Finally, for region III, we obtain

The reason why T~(H) in Eq. (8) appears to be discon-
tinuous at, tlie boundary with the result of Eq. (13) is that
we have neglected terms of order HI II. The critical field

at which p goes into region III equals

Tx(0)
(16)

n 1

Tz(0)= Wexp
W(p+ IE, I }

p'2 (12)

is roughly independent of H because the H-dependent
chemical potential is much smaller than the magnitude of
the bare impurity-electron one-body energy, E, .

Tx(H)= —,'[ —V /W+[(V /W) +4H ]'

V2 W
2 n — + — ln

W W 2W V Tx(H)

and, from Eq. (6)

(17)

W [H —Tx (H))
V [(2 n) —iE—, i/W+( V /2W )ln[W /V T&(H)]]

(18)

From the diminished role of Tz(0) in the expressions for
region III, we expect the Kondo effect to have been large-
ly disrupted. Therefore, this region is not of interest to
us, where a single energy scale and the scaling law are ex-
pected not to be observed.

Numerical results for the field dependence of Tz(H)
and E, /2 are plotted in Fig. 2. Figure 3 shows the field
dependence of 8'/E, which equals the enhancement of
the density of states at the chemical potential. The sharp
contrast between region II and the other two regions is
expected to be rounded off when lattice anisotropy, " fluc-
tuations beyond the mean field, or finite-temperature
effect are considered.

III. DERIVING THE HEAVY-FERMION GRUNEISEN
PARAMETER

By use of Eqs. (9), (14), and (3), the chemical potential
in Eq. (7) can be rewritten as

p= W(n —2)+ T~(0)W /V

for regions I and II. The Kondo temperature, being the
characteristic energy scale in both regions, and its deriva-
tive with respect to the strain can be obtained from Eq.
(12) as



46 MEAN-FIELD EXPRESSION FOR THE CHARACTERISTIC. . . 13 865

aT, (0) 2W(~Z. ~+P, ) W3 aT (0)= Tx(0} 2
A,

—
Bc p4 Bc

Tx(0) 2W(IE, I+@)&

V [1+Tx(0)W /V ]
(19)

where A,
—:(8 lnV/B e) is estimated to be of order 10. Ac-

cording to our previous definition in Eq. (1), the
Gruneisen parameter for regions I and II is then of the
same value:

BlnTx(0) 2A, ln[W/Tx(0)]
1+Tx(0) W /V

(20)

In general, the two terms in the denominator of Eq. (20)
are comparable, and the expression in Eq. (20) cannot be
reduced to the form suggested by Jaccard and Flouquet:
I ~1/Tx(0).

In comparison, for the Kondo-impurity case when only
one impurity electron is hybridizing with all the conduc-
tion electrons, valence fluctuations in n& can hardly affect
the energy level of the chemical potential. Therefore, we
do not have the second term in Eq. (19) which comes
from differentiating the chemical potential, and the re-
sulting expression for the Gruneisen parameter is

I =2k, ln
8'

Tx 0
(21)

Both expressions, Eqs. (20) and (21), indicate that the
anomalous Griineisen parameter for the heavy-fermion
compounds does not derive solely from the large density
of states at the chemical potential, but the sensitive
volume dependence of the hybridization matrix element
is equally important in enhancing I .

Roughly speaking, since the thermal fluctuations tend
to disrupt the Kondo coherence, we expect a lower chem-
ical potential at small nonzero temperatures [due to the
increase of nI in Eq. (7) toward unity] which increases
the Kondo temperature because of Eq. (12}. Therefore,
according to the expression in Eqs. (20) and (1), the
Griineisen parameter decreases at low temperatures.
This is in line with most experimental data, e.g., for
CeSn3 (Ref. 7), CeCu6 and CeCu2Si2 (Ref. 6), and
CeRu2Si2, UPt3, and UBe» (Ref. 2). However, it is
diScult from the low-temperature variation to distin-
guish whether the dependence of the Gruneisen parame-
ter on Tz is linear or logarithmic.

Assuming that the Kondo temperature is the only en-
ergy scale at low temperatures, ' the scaling law observed
experimentally can be derived from the Griineisen param-
eter. We notice that Zieglowski et al. have deduced the
same Tz dependence for I as conjectured by Jaccard and
Flouquet. They combined the prediction in Ref. 7 with

the observed scaling law to obtain

I 1
I cc—

X (T+&)
where 8 is a constant chosen to fit the scaling law. As-
suming 8 to be the same as the T& appearing in the high-
temperature susceptibility, y —( T + TI ) ', the
1 -(T+TI} ' conclusion is thus reached. There are
two problems with this deduction: firstly, from their
data 8 is noticeably difFerent from TI for CeCu6 (8=12
K while TI =6 K); secondly, the susceptibility is known

to exhibit Fermi-liquid behavior at low temperatures for
Kondo lattices, i.e., y(T) —go~ T . Therefore, their con-
clusion is not convincing in our view, especially for Kon-
do lattices at low temperatures (of course, the experimen-
tally observed scaling law is not in doubt here which we

emphasize is consistent with our expression).

IV. CONCLUSIONS

We have clarified the intrinsic energy scale characteriz-
ing the Kondo lattices in the presence of small magnetic
fields. From it we derive an analytic expression for the
heavy-fermion Griineisen parameter, the same for
different physical properties. Provided the energy scale is

unique, our results are consistent with the scaling behav-
ior observed experimentally. ' However, these are no
longer valid above the field at which the chemical poten-
tial moves into the upper 1-spin band, when the Kondo
effect is expected to be largely disrupted. Our expression
for the heavy-fermion Gruneisen parameter is at variance
with the previous belief that I is proportional to the
enhancement of the quasiparticle mass. We obtain in-
stead only a roughly logarithmic dependence, therefore
the largeness of the Gruneisen parameter comes partly
from the sensitive volume dependence of the hybridiza-
tion matrix element. Although our mean-field analyses
have been able to cast doubt upon the previous conjec-
ture for I, a realistic expression will have to include lat-
tice anisotropy, crystal field, and possible magnetic corre-
lations in the compound. For instance, in the heavy-
fermion alloys U(Pt, Pd)3, increasing Pd content has been
known to cause an inversion of I (see Ref. 19},which is
surely beyond the scope of this paper.
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