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The ground state of the one-dimensional Kondo lattice model is examined in the strong-coupling re-
gime. An effective Hamiltonian is developed to describe low-energy processes. This leads to a ferromag-
netic ground state in this regime for all conduction electron densities. The spin excitations are those of a
squeezed spin chain with ferromagnetic Heisenberg exchange coupling. In addition there are quasiparti-
cle excitations, which are discussed in detail only for the case of half filling.

I. INTRODUCTION

The ground-state properties of various strongly corre-
lated electron systems is a very actively discussed topic at
present. One reason for this development is the discovery
of the class of heavy fermion materials. The standard
models for the description of heavy fermion systems is
the Kondo lattice model (KLM) or the more fundamental
periodic Anderson model (PAM).!

In this paper the one-dimensional (1D) KLM is dis-
cussed. It consists of a lattice of localized spins {S;} in-
teracting with otherwise free conduction electrons via a
local spin-exchange interaction. The corresponding
Hamiltonian has the well-known form

H=—t (E)EC,ZCI-S-FH.C. —J3S;s; , (1)
iLj?) s i
where
sp=L s fion p=t g oton )
i —E Efisass’ is' > S —E 2 CisOssCis' -
5,8’ s,s’

The operators ¢, (c;) and fi(f,) denote the conduc-
tion electron and localized electron operators, respective-
ly. Since charge fluctuations are not allowed for the lo-
calized electrons, the f operator satisfies the operator
identity, f,-TTf,-T-i-f,Tlfil:l for all sites i. For simplicity,
we assume that the hopping term connects only nearest-
neighbor sites i and j. The exchange-coupling constant is
chosen to be negative leading to antiferromagnetic cou-
pling between the localized and conduction electron
spins, S; and s;.

Various methods have been developed to treat this sys-
tem. Techniques, like the 1/N, expansion (N is the de-
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generacy of the localized orbitals in the PAM or the lo-
calized spins in the KLM),? slave-boson methods,’ or
variational treatments by Gutzwiller wave functions,*?
have been successful in explaining various properties of
these systems, e.g., the formation of a coherent band of
quasiparticles with a heavy effective mass. However,
these methods are not sufficient to determine the symme-
try of the ground state definitely.

Information about the ground-state symmetry is ob-
tained by both quantum Monte Carlo® and exact diago-
nalization”® which provide a bulk of significant results on
the 1D KLM and PAM. However, there are clear limita-
tions in these numerical studies due to the smallness of
the tractable systems and the restriction to one dimen-
sion.

Rigorous statements about the ground state are avail-
able only for some limiting cases yielding, however, reli-
able tests for approximate treatments. It can be proved
that the half-filled (symmetric) PAM has a spin singlet
ground state in any dimension, implying a similar result
for the KLM.? On the other hand, in the limit of vanish-
ing carrier concentration one can show rigorously that
the ground state of the KLM is ferromagnetic (with in-
completely saturated magnetization).'%!!

Various attempts have been undertaken to clarify the
ground-state phase diagram of both the KLM and the
PAM.!>13 Recently, Fazekas and Miiller-Hartmann gave
an extensive discussion of the phase diagram in the n -J
plane (n, is the conduction electron density) for the KLM
in 1D and 2D. They obtain the phase diagram by com-
paring the energies of several variational states using
Gutzwiller wave functions for a (Kondo) singlet state and
mean-field wave functions for various magnetically or-
dered states.!? Their result for the 1D system states that
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in the weak-coupling limit a region of ferromagnetic or-
der appears for small n, which evolves into a state with
spiral spin correlation as n, is increased. In the strong-
coupling regime the ground state forms a singlet which
describes the heavy fermion state.

Recently, Troyer and Wiirtz!* performed quantum
Monte Carlo calculations of the 1D KLM at intermediate
electron concentrations and found that the ferromagnetic
ground state occupies a far wider region of the phase dia-
gram than obtained by Fazekas and Miiller-Hartmann.'?
In this paper we will prove that the ground state is fer-
romagnetic for all electron concentrations n.(#1) in the
strong-coupling limit of the 1D KLM.

II. THE EFFECTIVE HAMILTONIAN IN
THE STRONG-COUPLING LIMIT

In the infinitely strong-coupling case (J=— ) the
conduction electrons form an on-site spin-singlet
configuration together with the localized spin of the same
site. The nearest-neighbor transfer of the conduction
electrons allows these on-site singlet pairs (OSSP) to
move accompanied with a backflow of localized spins,
just like the motion of holes in the U — «« Hubbard mod-
el. In the 1D system this leads to the peculiar situation
that the available spin degrees of freedom are degenerate.
Like in the 1D U=« Hubbard model only the charge
but not the spin configuration can be changed through
the motion of an OSSP. A partial lifting of the complete
spin degeneracy occurs through cyclic permutation if the
chain forms a closed ring of finite length with periodic,
antiperiodic, or twisted boundary condition."® (This
point is considered also briefly in Sec. IV). We will, how-
ever, neglect this point and consider the spin degeneracy
to be complete as it would be for open chains or infinite
systems. Then the question arises which spin configura-
tion would be favored, if we take into account the first-
order corrections in a ¢t /J expansion around the infinite
coupling point. Introducing a new effective Hamiltonian
to describe the strong-coupling limit, we can show that
this ground state is ferromagnetic, polarizing all unpaired
localized spins.

To obtain this effective Hamiltonian we integrate out
the virtual processes which yield configurations contain-
ing an on-site spin triplet pair (OSTP) or a site occupied
by two conduction electrons with a cost in exchange en-
ergy of [J| and 3|J| /2, respectively. The resulting Ham-
iltonian operates in a reduced Hilbert space which con-
tains only sites occupied by an OSSP or by a single local-
ized spin (for a detailed derivation see the Appendix).

Introducing the new creation (annihilation) operators
f:: =(1—n; )flS [715 =1—ng)f;] with n,; =3 ¢;c;; we
can write this Hamiltonian as
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where 7,=3, 17, L is the system size, and the f
operators are restricted to it i1/, lf, ,=0 for all sites,
i.e., no double occupancy of f states is allowed. In this
Hamiltonian the half-filled Kondo lattice corresponds to
the system with no f electrons, i.e., the f-electron vacu-
um. If all sites are occupied by one f electron the origi-
nal KLM contains no conduction electrons, again yield-
ing complete spin degeneracy.

The part H, of the effective Hamiltonian contains the
contributions of the order ¢t and J, the nearest-neighbor
hopping and the chemical potential. If we restrict our-
selves to H, the charge and spin degrees of freedom are
decoupled in the Hilbert space. The wave function fac-
torizes into charge and spin part as shown by Ogata and
Shiba for the U= Hubbard model.!® This feature is
very important for our treatment below.

Introducing now corrections of the order ¢/J we ob-
tain a series of new processes. The three site terms in H,,
H,, and H, describe next-nearest-neighbor hopping pro-
cesses by overhopping an f electron on the intermediate
site with and without spin flip given by H, and H,, re-
spectively, and by overhopping an empty intermediate
site in H,. Among these terms H, is the only one which
changes the spin configuration. The terms in Hj
represent a repulsive interaction between f electrons on
nearest-neighbor sites and a ¢ /J correction of the chemi-
cal potential. In this form the Hamiltonian corresponds
essentially to the U= o0 Hubbard model including the
three-site and the nearest-neighbor interaction terms.

III. LIFTING OF SPIN DEGENERACY

In this section we analyze the symmetry of the ground
state when the spin degeneracy of H, is lifted by the
terms of the order ¢ /J.

A. Rigorous statement

In the leading order of 7/J it is possible to prove that
the ground state of H is ferromagnetic for any concentra-

H= Ig H, 3 tion of f electrons. In this order we can use the property
- of the Hamiltonian H, that the wave function can be

with | written in the product form
|w>=. 2 2 Tyl in)®ls, sy 4)
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where [i},...,iy) and [s,...,sy) represent basis states of the charge and spin configurations for N f-electrons.
The eigenstates |n ) of the charge part which are independent of the spin configuration can be given by
= = (n) rdlval rdi
I\I/n(sh"'?SN)) ln>®|s1""’sN>_i - <2 » Fi?,iz,...,iNfil‘slfiz,sz "‘f"jv,levaC) H 5)
| <iy< e <iy

where |vac) denotes the f-electron vacuum and N is the number of f electrons (free spins). The wave function

E’T,)iz» ...,i, can be represented by a Slater determinant for the charge degrees of freedom only.

We analyze now the lifting of the spin degeneracy by means of first-order perturbation for the ground states
{10)®1s,55,...,5y )} where we take the spin configuration to label the different degenerate states, in short notation,
Isy,82, . ..,5y ). Then the Hamiltonian matrix is given by
SSn ) =AW(81,80, - oy Sy)HWo(sT],85, ..., 58)) . (6)

(51,85, .. .,sy|Hls',s5, . ..

Apart from H,, all other terms in H lead to diagonal elements of this matrix and are, for the moment, not of interest

for us. The off-diagonal terms have the form

T PR S AN N7 2 CECTTRE S SR S
= 2 7t gt t oz
_<ox -5 ;(ffj+1,sjfi,,sj+1f,-j,sj+lf,.ﬁm]_+H.C.)10)
J
:—tz— > rox* T
2J < < <ip e Gop Gt LG 20 iyt
"j42<’/+2< s <y
0
+,l<...<%l<,'j , Fil,)’.k..,:]flfj 20—l g iy
ij<ij 5 < <iy

for any j between 1 and N —1. We claim now that all
these off-diagonal matrix elements are negative (J <O0).
To show this we first return to the Hamiltonian H,
describing the charge degrees of freedom only. In the
real-space basis all off-diagonal matrix elements of the
corresponding Hamiltonian matrix are nonpositive
(—t <0). A straightforward application of the Perron-
Frobenius theorem leads to the well-known result that
the state with lowest energy of this Hamiltonian has a
strictly positive (nodeless) wave function in the real space
basis (F‘,-?)).”’,-N >0 for all i; < - -+ <iy apart from a glo-

bal gauge). This ground state is unique since the Hamil-
tonian matrix in real-space representation is completely
connected, i.e., any charge configuration can be obtained
starting from an arbitrary configuration by successive ap-
plication of the Hamiltonian (for the Perron-Frobenius
theorem see, for example, Ref. 17). This property
confirms that the sums in Eq. (7) are strictly positive giv-
ing together with the prefactor ¢2/2J strictly negative
matrix elements.

Thus, the Hamiltonian matrix of Eq. (6) also has no
positive off-diagonal elements. This fact allows the appli-
cation of the Perron-Frobenius theorem to this matrix
too. Since the off-diagonal elements correspond each to
an exchange (transposition) of two neighboring spins in
the spin configuration, all permutations of spins can be
reached by successive operation of the Hamiltonian.
Hence, this Hamiltonian is completely connected if we
restrict to a subspace with fixed Si,. Since the Hamil-
tonian is obviously rotationally invariant in spin space
the ground state has definite spin quantum numbers S 2

and SZ,. As a result the state with lowest energy is

(7)

Iunique and has a strictly positive wave function in the
spin-configuration Hilbert space.

In each Hilbert subspace with fixed S§ the spin state
with maximal S, has one representative with a wave
function which is constant in the spin configuration basis.
Thus this state has a finite overlap with the ground state
in this subspace. Consequently, the ground state of the
Hamiltonian matrix [Eq. (6)] is ferromagnetic with the
largest possible total spin, S, =N /2, leading to the fol-
lowing statement:

The spin degeneracy of 1D KLM at J = — o is lifted in
a perturbative sense towards a ferromagnetic state for
any concentration n, of conduction electrons with a total
spin per site (1—n,)/2.

This statement is valid for sufficiently small values of
|t /J|. For |t/J| of the order one, however, corrections
not taken into account in the proof will be important.
Especially, H; and H, introduce frustrations which be-
come obvious by noticing that they act on the charge
configurations leading to off-diagonal matrix elements of
H in the complete Hilbert space with their sign opposite
to the ones originating from H,. The Perron-Frobenius
theorem cannot be applied in this case. Eventually, these
frustrations lead to a qualitative change of the ground-
state properties when |z/J| grows to the order of one.
This behavior is observed in numerical calculations for
finite-size systems which will be discussed elsewhere.

B. The effective spin Hamiltonian

This subsection is devoted to the derivation of the
Hamiltonian in the truncated Hilbert space containing



46 FERROMAGNETISM IN THE STRONG-COUPLING REGIME OF . . .

only the spin degrees of freedom. This Hamiltonian has
the structure of a Heisenberg model for a spin chain
squeezed to the length N compared with the original
chain with L lattice sites.

spm 2 (e— Jeﬁs ‘+l) ’ (8)

j=1

where we assume periodic boundary conditions, i.e.,
Sy+1=S,. The exchange coupling J 4 is isotropic, since
the system has the complete rotational symmetry in spin
space. The constant € is a spin configuration independent
energy shift.

We will now derive J4 and € from the Hamiltonian
matrix in Eq. (6). Note that a similar treatment was
given by Shiba and Ogata for the 1D ¢-J model.'® First,
let us define the wave function of the system with infinite
coupling. As mentioned above they can be written as
Slater determinants.

My={s,,.. TS/ S

s Sj 1Sy e Syl —

+S S +1)/2|S1, .o
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(i) d,(iy)
ri% . =Det| : P, ©)
énliy) énliy)

where i) <i, < -+ <iy and ¢,(i;) is a one-particle wave
function with the moment k; satisfying the boundary
conditions. Since in the infinite system the boundary
condition is irrelevant we choose here for convenience
the periodic boundary condition, keeping in mind the
problem mentioned earlier and in Ref. 15. Thus
1] .
¢1(ij)=—‘7lz—e kil (10)
with k;=2m/ /L with [ an integer —L /2=<I/=<L/2—1 (L
is the system size).
The exchange coupling is obtained from the off-
diagonal matrix element M 4 [Eq. (7)], via the relation

2SSt 2Sy)

In the calculation of this off-diagonal matrix element a difficulty occurs by fixing j, i.e., calculating the matrix element
for the exchange of the jth and the (j + 1)th spin. However, if we average over all j the calculation is actually rather

simple,'®

Mod_——_— _E(Olz(f,ﬂsﬂf' s.?t si(

'} l’sj +1

It is convenient to change now from the real to the
momentum representation ( fk =3, ¢k(t)f ) resulting
into the form

—p2

M,=— > A, f[cos(2k)

J NL2 K~k
where 7, is the ground-state momentum distribution
function, 7, =0(kp—|k|) with 6 as the step function.
The Fermi momentum kj of the f electrons is given by
kp=m(N—1)/L, i.e., the Fermi momentum for spinless
Fermions. In the limit of infinite L, fixing the density
p=N /L, we obtain

—cos(k+k')], (12)

GopSj+r) ips;

7 Tis i )l0) . (11)

,+1v5,+1

Note that 1—p corresponds to the density of conduction
electrons, n,, in the original KLM.

Thus, J.4 as a function of the f-electron density is now
given by J4(p)=—2M_4(p) as plotted in Fig. 1. The
effective exchange coupling J.; is positive so that the
ground state exhibits ferromagnetic order as expected
from the previous subsection. In the limiting case of half
filling for the conduction electrons (n,—1, p—0) the
effective interaction behaves as J 5z — (2¢2/3J)7%p°® and in
the low concentration limit (p—1), Jg— (4m22/J)(1
—p).

The constant € is obtained from the diagonal part of

2 |2 the Hamiltonian matrix [Eq. (7)], which is obtained in the
M= 3T —;sm (mp)—sin(27p) (13) same way as M.
|
M, t 3 201 |2 1 sin(2mp) 5 1 2
% —___° + 2 J+—-—— | — | “—sin? — i _ismemp)  w _ om |\ 1 .2 T
N P sin(7p) 4p w7 |12 |7p sin“(7p) —sin(27p) 6 o + 6 s |P o sin“(7p) 3

which is the diagonal matrix element per spin in the sys-
tem leading to e(p)=M,(p)/N.

The ground-state energy per lattice site for the fully
spin-polarized state is obtained immediately,

(P
Ep)=p |e(p)+ 2] (15)

(14)

T
In Fig. 2 we plot the corrections in the order z/J to the
ground-state energy of H,. In the limit p—0 (half filling
of the KLM) the ground-state energy goes continuously
to the value 3J /4+2t2/3J per lattice site. On each site
there is one OSSP with the binding energy 3J /4 for the
singlet formation and its polarization energy 2¢2/3J.

Using the expression for the energy E(p), it is easy to
calculate the compressibility of the system « !
=p?3’E(p)/3p?,



13 842

0.3 T T T T
o2l ]
y L _
< L _
- - =
_;5 H |
0.1 ~
0 i 1 L 1 ! \
0 0.2 0.4 0.6 0.8 1

FIG. 1. Effective spin-exchange coupling as function of the
f-electron concentration.

2
=p? |7t sin(7rp)+;—J{(2+p)7rsin(27rp)

Rl»—-

—5[1—cos(2mp)1} | , (16)

giving the correction

, M

~ __Zi 2+ —_ S
K=Kgp 37 (2+p)cos(mp) ;sm(vp)

where kg is the compressibility of noninteracting spinless

Fermions. In the limit of p—0, the compressibility
diverges as
- t{1+=—=1, 18
K—-)p m 37 (18)

whereas it is clear that in the insulating state at half
filling x must vanish due to the existence of a gap in the
charge excitation spectrum.!® This type of divergence of
x was noticed also for metal-insulator transitions in other
systems like the Hubbard model.?°

IV. ELEMENTARY EXCITATIONS

In this section we study among the possible elementary
excitations of the system only the following two cases.
The first one is the collective mode of the ferromagneti-
cally ordered ground state, the spin-wave excitation. As
J

_ 1

i< <iy j

The charge configuration is considered to be unaffected
because we are still treating the system in the framework

of first-order perturbation as done above. Thus, Ff?’ iy

is the Slater determinant in Eq. (9) for the ground state of
the charge configuration in H,;. Under this condition this
state [Eq. (21)] is not an eigenstate of the translation
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FIG. 2. Energy gain of the ferromagnetic ground state rela-
tive to the ground state of H, with an energy E, as a function of
the f-electron concentration.

a second case we consider the quasiparticle excitation of
the strong-coupling KLM at half filling where the
effective Hamiltonian in Eq. (3) allows a very simple
treatment. The discussion of quasiparticle excitations for
arbitrary filling is more complicated and will be discussed
here only on a qualitative level.

A. Spin-wave excitation

The effective spin Hamiltonian [Eq. (8)] introduced in
the previous section allows a very simple treatment of the
spin-wave excitation on the squeezed spin chain. Howev-
er, we have to clarify the relation of these excitations to
the ones in the original system containing L lattice sites.
Especially, we have to define the spectrum of the one-
magnon spin-wave excitations in this system.

Under the assumption of periodic boundary conditions
the eigenstates in the one-magnon subspace of the
squeezed spin chain are given by

-1 S Laig—r...
) =% Ele STt 1) (19)

with an excitation energy
E,=J4(1—cosq) . (20

The momentum in the squeezed spin chain has the quant-
ization ¢ =2l /N, | an integer with —N/2=<I <N /2.

In the original system the one-magnon state is written
as

i - =t
S ST e WF P P lvae) @1

f

operator T which denotes the shift of complete chain by
one lattice constant. A phase factor e’ is occurring each
time a particle is shifted through the boundary (N<«>1)
and a factor 1 otherwise. Consequently, the total
momentum of this state is not well defined. However, we
can define the momentum in an averaged way which will
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lead to the appropriate behavior in the thermodynamic
limit. We operate T m times where L/N <<m <<L
—L /N,

TV, ) =e™N/Hw, ) (22)

This approximate result is obtained by observing that the
number of particles passing the boundary after the
translation by m lattice sites is approximately mN /L
=mp. In the thermodynamic limit (L — o and p fixed)
this becomes exact so that the momentum @ of the spin-
wave state |¥,) is related to the momentum in the
squeezed chain by § =¢p.

In the thermodynamic limit the same relation between
g and gq is obtained if the phase ¢ in the state in Eq. (21)
is interpreted to be due to the presence of a fictitious flux
threading the closed chain. This type of analysis was
done in detail for the one-dimensional U= oo Hubbard
model to describe the partial lift of the spin degeneracy
via cyclic permutation of the spin configuration.?! Con-
sequently, the momenta entering in the Slater deter-
minant are shifted accordingly, i.e., k;=(27n;+q)/L for
N odd and k;=[m(2n;+1)+q]/L for N even, and the
matrix elements and the energy are changed slightly,
since they depend on the set of momenta {k,,...,ky]}.
Nevertheless, in the thermodynamic limit these changes
disappear and the total momentum satisfies § =gp.

On the other hand, the charge excitations correspond
to the creation of particle-hole pairs of f electrons. Since
in the ground state all f electrons have the same spin,
they are nothing but the particle-hole excitations of spin-
less fermions. These excitations are gapless at momen-
tum O and 2kr. Note that 2k [=2m(1—n,)] for the
spinless fermions corresponds to 4kg (kg =mn_/2), the
Fermi momentum of the conduction electrons in the
KLM. Within the first-order perturbation a qualitative
picture of the low-energy excitations of the ferromagnetic
state is summarized in Fig. 3. The one-magnon energy is
zero at the same momentum, §=0 and ZEF, as the
particle-hole excitations. The energy scale of the spin-
wave modes, J 4, is much smaller than that of the charge

“

FIG. 3. Qualitative behavior of the low-energy excitation
spectrum of the ferromagnetic state. The solid line marks the
one-magnon spin-wave mode, whereas the dashed line stands
for the lowest particle-hole excitations for a fixed momentum.
The shaded areas denote the continuum of excitations, spin
wave, particle hole, or both together.
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excitations, t. Hence the one-magnon spin-wave branch
does not enter the region of particle-hole excitations.

B. Quasiparticle excitation of the half-filled KLM

The ground state at half filling is forming an insulating
state with total spin singlet, whose energy up to first or-
der in perturbation with respect to t/J is 3J/4+2t2/3J
per lattice site.!® In the formulation of our effective
Hamiltonian [Eq. (3)], this state represents nothing but
the f-electron vacuum. Hence, the quasiparticle excita-
tion of this state is easily obtained from the one-particle
eigenvalue problem

(EFL—[A,FLDlvac)=0, (23)

where A =H —uN with N the particle number operator.
We fix the chemical potential u to zero because the half-
filled system has an energy gap and zero corresponds to
the center of this gap. Consequently, the quasiparticle
excitation spectrum is obtained easily as

2
E,=—t cosk—éjcos(Zk)-f-A , (24)

where A=3|J|/4+7t*/12|J| is the charge excitation
gap. This excitation is well defined in the sense that there
are no modes into which it could decay. A simple quanti-
ty we can calculate immediately is the effective mass as
the curvature of the quasiparticle band bottom

m*___ 1
m  1+4t/3]°

where m =2t ! denotes the mass of the spinless Fer-
mions at J = — o, which is twice the electron mass of the
original KLM. A clear enhancement of the mass can be
seen with increasing value of |¢ /J|. This feature was also
observed by White using results from numerical diagonal-
ization of the KLM.® His and our result agree rather
well for the strong-coupling regime (see Fig. 4). The de-
viations can be mainly attributed to finite-size effects,
since White’s systems are maximally 8 sites in size.

(It is easy to extend the result for the effective mass to
higher dimensions by considering the number of possible
paths contributing to the one-particle energy up to the

(25)

order t/J in a simple hypercubic lattice. The mass
enhancement is larger for higher dimensions.
*
m . 26)

m  1+4td /3]’

where d denotes the dimension.)

Finally, we note that quasiparticle and quasihole exci-
tations show the same spectrum at half filling. Adding a
conduction electron to the half-filled strong-coupling
KLM leads to the break of one OSSP, since on one site
two conduction electrons will form a singlet giving the lo-
calized spin free to behave as an f electron described by
the effective Hamilitonian in Eq. (3). It is easy to verify
that the effective Hamiltonian has the same form above
as below half filling.
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FIG. 4. Effective mass of the charge excitation at half filling.
The numerical results denoted by the crosses are taken from
Ref. 8. The arrow below the cross at ¢ /J= —0.5 indicates that
the finite-size scaling is tending towards smaller values. Howev-
er, the small size of the systems does not allow a clear finite-size
extrapolation in this case.

V. CONCLUSION

In this paper we introduced an effective Hamiltonian
for the strong-coupling regime of the KLM, which allows
one to reduce the number of degrees of freedom drastical-
ly. This Hamiltonian describes the regime in which the
system consists essentially of fermions with infinitely
strong on-site repulsion. We found the surprising result
that the strong-coupling regime of the 1D KLM has a
ferromagnetic ground state for all electron concentra-
tions (n.7#1).

A similar discussion of the weak-coupling regime of
the KLM is considerably more difficult. The simple map-
ping of the KLM to a Ruderman-Kittel-Kasuya-Yosida
(RKKY) system, given by

Hgxxy = 24(5j“j'l)sj'sj' ) 27
B’

in order to describe the lifting of the degeneracy of the lo-
calized spins at J =0 is not allowed in the 1D system.
The analysis of the Fourier component of & shows a loga-
rithmic singularity at g¢=%2kg[kp=mn./2; J&(q)
«(J2/q)In|(g—2kg,)/(g+2kg)|]. No matter how
small J is chosen, the ground-state energy has no lower
bound in this Hamiltonian. This indicates clearly that in
weak-coupling 1D the conduction electron degrees of
freedom cannot be discussed independently from that of
the localized spins. Nevertheless, the 2kp. oscillation
leading in the RKKY Hamiltonian may actually dom-
inate the spin correlation in the weak-coupling regime for
all finite conduction electron concentrations n.. Hence,
the ground state can only be ferromagnetic for vanishing-
ly small n, in the very weak-coupling regime. A singlet
state with a strong 2kj, correlation in spin and charge
was also observed by Troyer and Wiirtz in their quantum
Monte Carlo calculation.!* Similarly, Fazekas and
Miiller-Hartmann describe this regime by a spin spiral
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phase with a wave vector Q =2kg.."* In both studies no
evidence was found for the formation of a large Fermi
surface including conduction and localized electrons in
the weak-coupling regime. However, a clear understand-
ing of the properties of the spin singlet ground state in
this regime is still missing and it is a matter of discussion
whether the large Fermi surface is eventually formed at
very low temperatures.

On the basis of this arguments, we conclude that the
phase diagram of the 1D KLM consists of at least two
phases, the ferromagnetic phase in the strong coupling
limit and a spin singlet phase probably dominated by
2k, correlation in charge and spin in the weak-coupling
limit in the KLM. Furthermore, it was shown recently
that the half-filled KLM has a spin-liquid ground state
for all finite couplings J."°

The extension of the ferromagnetic phase into the
strong-coupling region contradicts the phase diagram re-
cently proposed by Fazekas and Miiller-Hartmann, who
suggest a spin singlet state in this limit exhibiting Kondo
or heavy fermion state character.'> This singlet state is
described by a Gutzwiller variational wave function.
Within this scheme a ferromagnetic state might appear if
spin polarization as an additional degree of freedom is in-
cluded into the Gutzwiller variational wave function. As
far as we know this has not been examined yet.

Clearly this ferromagnetic phase in the strong-coupling
regime is a special feature of the 1D system. It is well
known that even on the level of the Hamiltonian H, [Eq.
(3)] a clear difference exists between the 1D and higher-
dimensional systems, for that in the latter the spin degen-
eracy is lifted for any band filling away from half filling
(n,#1), e.g., favoring the Nagaoka state for L —1 f elec-
trons in an L-site lattice.’? Concerning the extension of
the ferromagnetic (Nagaoka) region in the phase diagram
of higher-dimensional systems, it seems that only partial-
ly polarized ferromagnetic states might be realized for a
certain range of hole concentrations.”? Otherwise, the
ground state is a total spin singlet.

On the other side, in 2D and 3D a ferromagnetic re-
gion may be more extended in the weak-coupling limit
for small electron concentrations than in the 1D system.
This is recognized by considering the effect of the RKKY
interaction for the low-concentration limit. The oscilla-
tory feature of this interaction is only gradually suppress-
ing ferromagnetic order as is discussed for the 3D KLM
in Ref. 11.

The effective Hamiltonian introduced in Sec. II can
easily be extended to higher dimensions allowing to dis-
cuss various properties of the KLM more easily by start-
ing from the strong-coupling regime. As a simple exam-
ple we demonstrated the enhancement of the effective
quasiparticle mass close to half filling. As we expect that
the higher-dimensional KLM exhibits a richer phase dia-
gram, the strong-coupling limit may provide a good start-
ing point to approach the weak-coupling region.
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APPENDIX

For the derivation of the effective Hamiltonian it is
convenient to introduce an appropriate set of operators
which allow one to diagonalize the exchange part of the
Hamiltonian [Eq. (1)]. We define the following operators.

fchll fiTlciTT ) ’
b] 1i =fmcn ’
+_ 1
bli=5hel+rhel) 28)
bli=fhel
dl=flelel ]
Hg =—t3 C,sC,s +H.c.
iyj,s
=—1 ! (ef e +eiel ) |e
2 2 fislfisl 2 Ciszcts2 clS2C1S2 ts js
i, j,s 5 S,

FERROMAGNETISM IN THE STRONG-COUPLING REGIME OF . . .
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where s=1 or |. The operators b ; create an OSSP for
©=0 and an OSTP for u=1, 2, or 3 and d,s denotes the
operator creating two electrons on the same site forming

together a spin singlet and a localized spin s. These
operators should be used with the constraint
> pt f t
S bubut ¥ (fisfistdidi)=1 (29)
pn=0 s=1,1

for each site i. Note that these operators do not com-
mute among each other in a simple way. Thus we will
avoid any operation using their commutation relation.

By the use of these operators the exchange term can be
written in the diagonal form

12 2 bl .

i p=1

= —Z—J S bhiboi— (30)

Obviously, the exchange term is zero in the case of an
empty or doubly occupied site. For this simplicity in the

exchange term we have to pay with a more complicated
structure of the hopping term.

pACEIN 31)

53

2

1-‘3 153 154

+H.c. J R

where we multiplied several unities to the original Hamiltonian. Proceeding by appropriate commutation of f and ¢

operators #f,;, reaches the form

Hkin =-t 2 2 [ 2 Cis* CIS ](ftsz is, )flS2 st]fjss) [2 cis”ciz" ]
i,j 51,855,853 s"
+sgn(s1 )(fsz isy 1 =5 Clslftsz )fjs ] —s fjs {2' Cis'ciI’
s
+Sgn(sl [2% clS ](fuz i,—s5, ftsz(f]t3 ])L )(cj s, ]s fjs
H(fhed el Nei fi W foek Nej —s ejo f)FHC | (32)
where sgn(s)=+1 for s=1 and =—1 for s=1. In this expression we can replace the combination in the brackets by
the new operators keeping the imposed constraint in Eq. (29).
1 o
Hg=—t3 [5 S [b3—sgn(s)by; 1FiuFh by +sgn(s)bo; 1+ b1, FinFlrby; +b1ifiuf b
ij s
+2 F T Tl by —boy)+ —=(b L+ 61T Flb
‘/2 11 Tf_/l 2j 0j ‘/5 0i 2i it jlY3j
=+ 1 =~
— |@but gl by —ba) | [Tibyy+ 5 T by +b3))
Lt 7t 1 =
+ | 5 bo+bo)+ by f”b,j+7§fjl(b2j—bo,>
1 1
+ diTTbli+7£diTl(b2i‘b0i) bu it V—E(b;j_bgj)djl
1 1
+ —\/—_z—d,.*r(bo,.+b2,-)+d,-ﬁb3,- b3jdjl ‘/—E(bgj—f-sz )dy ]-I—H.c. ] , (33)
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where we Jrintroduced f operators for the sites with a localized spin but no conduction electron, fﬂ; =(1—ny)f ,I with
n,; =3, C;isCis. Although the structure of these hopping terms is much more complicated than that of the original one,

this form is often more convenient for various types of calculations, for example, cluster expansions.
We derive now an effective Hamiltonian for the strong-coupling limit by a canonical transformation

H=e¢ SHeS

(34)

to eliminate all terms containing operators other than bg) and ]"’,?f’. This is equivalent to a perturbation with Hy;, as
the perturbative Hamiltonian to lift the degeneracy of the lowest-energy eigenstates of H,, in charge and spin
configuration space. The result of this straightforward procedure is

ITI:_LEbg'f'f‘TH b0‘+1+i
2 = 1J IsJ 1 »S 1 2J

i,s,s'

t? - =t 3t2
+€J' % bg,i—lfi—l,sbgibOifi+1,sb0,i+l +‘H ; bgibOI—

2
o oF 7t oz Ft t t 7 =t = =t
2bO,i—lfi—l,sfi,s‘fi,s’fi+1,s'b0,i+1_B zbo,iﬂfiﬂ,sfis'fis' i+1,sb0,i+1

i,s,s’
5¢2
12J

S biboibditiboi+1 +'34l 3 boibo +Hee., (39

i

where we keep the constraint 3, f",z Fis +b:§,-b0i =1 for all sites i. Since the operators b, can be understood as a hole in a
system of f electrons only, they can be dropped in this Hamiltonian, keeping the f operators only with the constraint
that no double occupancy is allowed for the f electrons. This leads to the effective Hamiltonian given in Eq. (3).
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