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Explanation of the barrier-depression efFect in ceramics undergoing microwave heating
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Thermal runaway observations on a variety of materials including strontium titanate, zinc oxide, iron
oxide, and alumina, have been explained successfully in terms of a recent theory, which involves absorb-

ing entities such as vacancies, bivacancies, or interstitials, which have to overcome an energy barrier in

order to absorb microwaves to a significant extent. However, there is a tendency, unexplained so far, for
the energy-barrier values extracted in this fashion to be slightly smaller than those obtained from
diffusion measurements. The source of this systematic discrepancy is discovered through the application
of a stochastic analysis of the mobility of the ceramic materials. New barrier values are obtained from
the thermal runaway observations and found to be in better agreement with diffusion experiments.

I. INTRODUCTION

Sintering of materials while under the action of mi-
crowaves has been reported by several investigators to
lower the sintering temperature by several hundreds of
degrees and shorten the sintering time by several
hours. ' This has understandably led to a lot of activi-
ty in the study of the effects of microwave sintering on
ceramics. Not only are microwaves expected to increase
the heating efficiency by concentrating the heating pro-
cess within the material rather than in the furnace in
which the material is placed, but they are also suspected
to have rather fundamental consequences such as more
efficient atomic diffusion within the material. Experi-
ment as well as theoretical investigations of these fun-
damental issues have ben undertaken, and a general pic-
ture ' has begun to emerge.

A recent theory ' of some of these phenomena has
provided what appears to be a satisfactory description of
thermal-runaway measurements in a large number of ma-
terials and dielectric-loss observations in some of them.
The positive aspects of the theory have been its simple ex-
planation of the qualitative features of the runaway
phenomenon, the diversity of time-temperature curves,
and the variety of materials, viz. , silica, zinc oxide, ferric
oxide, alumina, and strontium titanate, that it has been
able to address and the generally reasonable values of the
theoretical parameters that have come out of the analysis.
An interesting negative aspect has been the fact that the
values of the energy barriers, which the absorbing entities
(such as vacancies, bivacancies, or interstitials) have to
surmount in order to absorb microwaves to an apprecia-
ble extent, have turned out to be always smaller by a
small factor (such as 3) relative to barrier values extract-
ed from diffusion measurements. While not large, the
discrepancy is systematic. The source of the discrepancy
is, therefore, of definite interest and constitutes the sub-
ject of the present paper.

The theory of Refs. 7 and 9 is based on the idea that
the potential to which some of the absorbing entities
within the ceramic material are subjected possesses a
nonlinear nature which divides the phase space of the ab-
sorbing entities into two regions. One is a bound region
which contributes negligibly to microwave absorption.
The other is a free region whose contribution to absorp-
tion is substantial. The absorbers must cross an energy
barrier to pass from the bound region to the free region.
Thus, a nonlinear feedback is possible. Heating can pro-
vide the necessary energy to free the absorbing entities,
and the freeing of the absorbers can then result in
enhanced absorption and, consequently, in enhanced
heating. The ensuing temperature-time equation is given
b 7,9

dt
=[k„+kMf(T)]& &)T—

where P is the incident power, 0
&

is proportional to the
Stephan-Boltzmann constant, and kz and kM are related
to the absorption coefficients of two kinds of species of
absorbers present in the material. The first kind, labeled
by A, does not have the two-region phase space described
above. The second kind, labeled by M, does. As stated
above, when bound, the latter absorb negligibly. When
free, they make a contribution to the heating rate. The
fraction of the M absorbers which are free is itself depen-
dent on temperature, and is denoted by f ( T). Details of
(1.1) and its application may be found in Ref. 7.

Of special relevance to the understanding of thermal
runaway observations via (1.1) is the dependence off (T)
on the temperature. At small temperatures, this quantity
is negligible. Therefore, the contribution made to the
heating rate is also negligible. As the temperature rises,
f (T), and with it the heating rate, increases. This in-
crease is sharp at first, but tends to saturate: Eventually,
f ( T) attains the value 1. The physics behind this
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"switching" behavior of f ( T) is the existence of the po-
tential barrier mentioned above, which the absorbing
charges have to surmount to make a significant contribu-
tion to microwave absorption. The theory of Refs. 7 and
9 uses two forms off ( T): a simple expression based on a
two-state description of the system, viz. ,

—6/kT
—5, /kTf(T}=2 (1.2}

6 being the energy barrier and k the Boltzmann constant,
and a more complex expression based on phase-space
considerations, viz. ,

dXdpe [p p/2m+U(x)]IkT

dx dp e [p p /2m +U(x)]/kT

f ( T)
free region

entire region

f dx e "' " erfcI [U(x)/kT]'
entire region

f —U(x) IkT
entire region

(1.3)

where p and x denote the momentum and position coor-
dinates, respectively, U(x) is the potential to which the
surrounding lattice subjects the absorber, and the last ex-
pression is valid for a representative one-dimensional sys-
tem. Both forms (1.2) and (1.3) were based on a static
analysis of the problem. A theory of f (T) based on dy-
namic, in particular stochastic, considerations is now
available. ' The expression for f (T) provided by this dy-
namic theory, and its comparison with the two-state ex-
pression used in Ref. 7 for extracting energy-barrier
values, will form our point of departure in the present pa-
per. In Sec. II we discuss the physics underlying the old-
er forms (1.2) and (1.3) of f (T) as well as the general ex-
pression (valid for arbitrary potentials) provided by the
recent analysis of Ref. 10, along with arguments support-
ing that analysis. In Sec. III we compare the new result
with the older ones and thereby provide an explanation of
the barrier-depression e6'ect. Concluding comments in-
cluding the statement of explicit relations between the pa-
rameters k„,kM of (1.1) and microscopic quantities form
Sec. IV.

II. EXPRESSIONS
FOR THE SWITCHING FUNCTION f ( T)

potential in terms of an energy barrier, a length, and a
period:

0 for Ix I

~ (a/2)g,
U(x)= '

for Ix I

~ (a /2)g,

U(x+a)=U(x) . (2.1)

The switching function is then given by '
re ~" + erfc(&b, /kT )

—AlkT+ 1
(2.2)

U(x) = ——1+ cos
2

(2.3)

In this case, (1.3) can be shown ' to lead to the following
f(T):

where the so-called free/bound ratio is r =(1—g)/g. A
more realistic representation of potentials such as the one
in Fig. 1 is given by the sinusoidal form

Figure 1 shows the bare essentials of the potential to
which absorbing entities such as vacancies and intersti-
tials are subjected within a ceramic material. Ab initio
calculations of such potentials have been performed re-
cently" for materials such as MgO. The basic feature of
the potential is that it is spatially periodic and possesses
the characteristic nonlinearity which separates the phase
space of the absorber into two regions. For energies
which are low enough, the absorber is trapped within one
of the wells and, as can be shown, absorbs negligibly.
For energies which are large enough, the absorber can
overcome the barrier between wells and absorb
significantly. The switching function f (T) can then be
said to be proportional to the relevant Boltzmann factor
and is at once given by (1.2) if no further attention is
given to the differences in the amount of phase space as-
sociated with the two regions. If, on the other hand, the
amount of phase space is calculated by working out in-
tegrals such as (1.3), a different expression results. As
two examples of such an expression, we cite the cases of a
rectangular potential and a sinusoidal potential. Clearly,
the former is one of the simplest representations of the
situation encountered in Fig. 1. One characterizes the

3
Ctf

D

I

2
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FIG. 1. Essential features of the potential seen by the ab-

sorbers in a ceramic material as exemplified by the result of
ab initio calculations carried out in Ref. 11 for MgO. Because

the calculational procedure in Ref. 11 produces reliable relative

(but not absolute) values of the ordinate, we display the latter

here in arbitrary units. The values of the distance x and the

shape of the potential U(x) are reliable and are seen to corre-

spond very closely to the sinusoidal potential of Eq. (2.3). The

latter is represented by the solid line, and the circles depict cal-

culated values.
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f dx expj(h/2kT) cosx] erfc[&(b, /2kT)(1+ cosx)]
T =

2mI0(b /2kT) (2.4)

where I0 denotes the modified Bessel function and erfc is
the complementary error function. Further simplifica-
tions of (2.4) are presented in the Appendix.

All of the above results for f( T), whether the simple
two-state expression (1.2) or the more detailed forms (2.2)
or (2.4), are obtained from static considerations. As stat-
ed in the Introduction, their application to experiments
seems to suffer from the fact that the extracted values of
the barrier energy b, are consistently smaller than the
corresponding values obtained from diffusion measure-
ments. The point of departure in the present paper is our
recently developed dynamic theory of the switching func-
tion f ( T). The basic idea of the theory' is to consider
the full evolution equation for the absorbing particle,

m +my + =qE costvt+R(t), (2 5)
d x dx dU(x)

dt dx

where m and q are, respectively, the mass and charge of
the particle moving in an applied microwave field
E cosset, x being the coordinate of the particle. Absorber
particles interact with the rest of the lattice via the sys-
tematic force corresponding to the potential U(x), and
via the stochastic force R ( t } which stems from thermal
fluctuations. The strength of R(t) is connected with the
effective damping constant y through the Auctuation-
dissipation theorem. Since the instantaneous power ab-
sorbed is proportional to the product of the velocity
u =dx/dt of the particle and the applied electric field E,
our aim is to calculate the mean velocity (v(t)) of the
absorber particle. The exact solution of this problem is
not known. Fortunately, typical values of the parameters
involved allow reasonable approximations to be made,
which reduce the problem to a soluble one. One of these
helpful features is that the friction coeScient y is typical-
ly much larger than the characteristic frequency of the
potential, i.e.,

f(T)= 1+4((1—g) sinh (2.7)

and

(T)= 1

I()(h/2kT)
(2.8)

In Sec. III we compare these forms to the respective
phase-space counterparts (2.2) and (2.4) and to the two-
state expression (1.2), and show how the differences can
account for the barrier-depression effect.

III. COMPARISON
WITH PREVIOUS THEORETICAL RESULTS

AND WITH EXPERIMENT

The comparison of the two-state, phase-space, and sto-
chastic switching functions for the above considered po-
tentials is shown in Fig. 2. By the phrase "stochastic
switching function" we mean here (2.7) and (2.8), which
are calculated analytically from the fully stochastic point
of departure (2.5). While the qualitative behavior is the
same for all three curves, we note that the actual switch-
ing function as given by our recent theory' is steeper
than the two-state or phase-space approximations.
Herein lies the source of the depression effect which is the
subject of the present paper. We will restrict our discus-
sion to the comparison of the exact f(T} with the two-
state result (1.2) in the following because the latter is the
basis of previous analyses ' of experimental data. It is
possible to prove explicitly' that, for an arbitrary poten-
tial U(x), we always have

I

The specific cases mentioned above, viz. , those of the rec-
tangular potential (2.1) and sinusoidal potential (2.3), can
be shown to result' in the following explicit forms of
f ( T), respectively:

' 1/2
1 d2P

y ))CO0=
m dx

—b, /k T

t/(r '-1 +e
—6/kT (3.1)

This allows the reduction of the Fokker-Planck equation
corresponding to (2.5) to a Smoluchowsky form. ' Also,
the frequency of the microwave field m is rather small
compared with other characteristic frequencies in the sys-
tern. This allows the solution of the Smoluchowsky equa-
tion in the time-independent form. Thus we can reduce
the problem to that of the calculation of the dc mobility
of a particle in a spatially periodic potential and solve it
explicitly. ' Similar problems have arisen and been
solved in various other physical contexts. ' The result for
the switching function for an arbitrary periodic potential
U(x) = U(x +a ) with a period a is

f( T) 2 f dx e
—()/kT)U(x) f dx e(1/kT)U(x)

0 0

(2.6)

Thus, the actual f ( T) is always steeper than the two-state
approximation. While we are certainly in possession of
the mathematical proof' of this statement, it is not easy
to provide a simple physical interpretation for it. One
could argue that a heat reservoir performs two tasks: (i)
providing phase-space (Boltzmann) weights according to
the energies of different states and (ii) allowing fluctua-
tions which could, for instance, cause escape from lower-
energy states. Static arguments such as those leading to
the two-state f( T) take only (i} into account, whereas the
dynamic derivation caters also to (ii). As the carrier es-
capes to the high-energy high-mobility states, it contrib-
utes more to the mobility. At any given temperature, the
mobility or f (T) is thus larger (steeper) than that calcu-
lated from the static approximation.

In Fig. 3 we take the actual switching functions, as
given by (2.7) and (2.8), as data, and fit them with the
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TABLE I. Parameters of the temperature-time equation (1.1) deduced from the application of the
present theory to thermal-runaway observations on several materials. Fits are shown in Figs. 4 and 5.
Two forms of the switching function are used: (2.7) which corresponds to a sinusoidal potential and
(3.4) which is a "universal" approximate form involving the parameter u defined in (2.11).

Two-state
Sinusoidal
Universal

Pk „(K/s)

13.30
0.78
1.28

Pk (K/s)

Ferric oxide
8.0

10.3
16.8

5/k (K)

0.0017
0.0020
0.0020

(K
—3 —1)

0.5 x10-"
5.2x10-"
5.2X 10 0.60

Two-state
Sinusoidal
Universal

1.1x 10-'
9.6x 10-'
6.7x 10

Strontium titanate
230 3600

37 4575
23 4020

Alumina

4. 1X10
2.7x 10-"
2.5x10 0.30

Two-state
Sinusoidal
Universal

Two-state
Sinusoidal
Universal

0.08
0.66
0.63

0.75
2.07
1.53

72
30
18

250
220
535

Zinc oxide

2600
4350
3800

2800
2650
2835

1.9x 10-"
2.3x 10-"
1.9X 10

0.46x10-"
296.00X10 "
157.00x10-"

0.32

0.68

IV. CONCLUDING REMARKS
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In Refs. 7, 9, and 12, we presented a successful theory
of microwave interactions with ceramics. Using a fully
stochastic development of the ideas introduced in that
theory, we provided a justification for qualitative aspects
of the central conjecture of the theory in Ref. 10. In the
present paper, we have carried out a quantitative devel-
opment of the formalism in Ref. 10 and have extended
the previous work by applying the new results to resolve
the energy-barrier-depression problem. In order to com-

piete our presentation of these ideas, we give below an ex-
plicit prescription for an ab initio calculation of quanti-
ties such as k~, kM, and o, appearing in the
temperature-time equation (1.1), which we introduced in

Ref. 7.
The energy hc absorbed by the ceramic material as its

temperature increases by 5T is given by

hc=pVC hT, (4.&)

where V is the volume of the sample, p its density, and C
the specific heat per unit mass. On dividing this absorbed
energy by ht and taking the limit as b, t tends to 0, we get
the average power absorbed from the microwaves. Ac-
cording to the Stephan-Boltzmann law, radiative losses
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FIG. 4. Thermal-runaway observations in several ceramic
materials fitted with the theory of Ref. 7 with the help of the
stochastic switching function (2.6) rather than the two-state
switching function (1.2) used in Ref. 7. The specific form of
(2.6) corresponds to a sinusoidal potential and is given by (2.7).
The data are from Refs. 1 and 4.
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FIG. 5. Thermal-runaway observations fitted by our theory
as in Fig. 4, but with the "universal" approximation to the
switching function given by (3.4).
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are proportional to the surface S of the sample, so that

dE =P,b,
—So.T

dt
(4.2}

where o. is the Stephan-Boltzmann constant. The sample
mass pV does not change during heating. Nor is the
value of C influenced considerably by changes of temper-
ature. It is important to observe here that C is the
specific heat of the lattice rather than of the absorber par-
ticles. The latter do change their specific heat during
heating as they are freed form the confining wells. How-
ever, the process of heating involves energy being re-
ceived from the microwave field by the absorbed particles
and handed over to the "sink, " viz. , the lattice. On an
average (over the microwave cycle), the absorber particle
does not retain the energy absorbed. The energy poured
into the lattice sink raises the temperature of the lattice
through (4.1). Acting as a reservoir, through stochastic
interactions described by the last term of (2.5), the lattice
then raises the temperature of the entire sample including
the absorber particles. On combining (4.1} and (4.2), we
obtain

dT abs So 4
P

dt pVC pVC
(4.3)

Comparison of (4.3) and (1.1) makes clear the meaning of
the quantities k„, kM, and o, . The absorbed power P,b,
is proportional to the absorption coefficient K" (imagi-
nary part of the dielectric constant), the volume V of the
sample, the energy density of the electromagnetic field

uEM =E /8~, and the frequency co of the microwave ra-
diation:

nAKAz
k A

P

nMKMz

pC
SoO1-

pVC

(4.6)

(4.7}

(4.8)
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APPENDIX

In the course of the application of the phase-space for-
mulas for the switching function, we have found the fol-
lowing reduction of (2.4) which is valid for the sinusoidal
potential (2.3). The complementary error function erfc
can be approximated by'

Here n „and nM are the numbers of the two kinds of ab-
sorber particles A and M (as explained in the Introduc-
tion and in Ref. 7) and K„" and EM are the respective ab-
sorption coefficients per particle. The quantities eA and

cM introduced in Ref. 7 are, obviously, zK„"/pC and
zK~/pC, respectively, and depend on the conditions of
the experimental setup through z as well as on the prop-
erties of the ceramic material through K",p, and C.

E2
P.„=E-V'

8m
(4.4)

erfc(x) =(a,y +a zy +a 3y ) exp( —x ),
where

(Al)

The power of the microwave field, E m/8m, is propor-.
tional to the incident power P of the source:

13'=
1+px

(A2)

E co =zP,
8m

(4.5)
and the numerical coefficients p, a1, a2, and a3 have the
values

where z is a parameter determined by geometrical and
propagational conditions of the experimental setup. On
combining the formulas (4.1)—(4.5) and comparing with
(1.1), we obtain the prescription for calculating the pa-
rameters of the temperature-time equation (1.1} from mi-
croscopic considerations:

p =0.47047, a1 =0.348 024 2,
a2 = —0.095 879 8, a3 =0.747 855 6 .

(A3)

With the substitution the integral in the numerator of the
right-hand side of (A6) reduces to a sum of elementary in-

tegrals:

f 7T

dx exp cosx erfc
jr 2kT

(1+ cosx )

1/2

= exp
n=1

' 1/2
X

cos
2

On carrying out these integrals, one obtains

f(T) 2exp( b/2kT~F( )—
BIO(h/2kT )

(A4)

where
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a2 2+a a —4 a
a, —

2 +a3 2 z G(a)+ a2+a3
a —1 2(a —1) 2(a —1) a —1

a, +—', a2+ —,', a3 for a =1

for a%1,
(A5)

and

arctan
( 1 2) I/2

1 —a
1+a

1/2

for a &1,
G(a)= '

1 v'a —1+&a+1
1n

(a —1)' +a —1 —+a +1 for a)1 .
(A6)

1n (A6), a is given as a =p&b, /kT. Equation (A4) is a useful representation of the switching function (2 4).
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