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Temperature dependence of the linewidth of the first-order Raman spectrum of a MgF2 crystal
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The first-order Raman spectrum of a MgF2 crystal was measured at various temperatures from 300 to
903 K. In addition, the linewidth was calculated theoretically with inclusion of the cubic and quartic
anharmonic terms of the repulsive part in the crystal-potential energy. These theoretical results are
found to be in reasonably good agreement with experiment. The temperature dependence of the
linewidth of the Raman spectrum for MgF2 was found to arise from both the quartic and the cubic
anharmonic terms; the contribution of the former was seen to become dominant at higher temperatures.

I. INTRODUCTION

Many measurements' of the temperature depen-
dence of the linewidth and frequency of normal-mode vi-
brations have been carried out for various crystals. The
temperature dependence of the linewidth and frequency
has been studied with inclusion of the cubic or the cubic
and quartic anharmonic terms in the crystal-potential en-
ergy. Skryabinskii and Ukhanov have shown that the
linewidth of GaSb with zinc-blende structure is due only
to the cubic harmonic term, while Bairamov et al.
found the linewidth of GaP with the same structure is
due to both the cubic and quartic terms. A similar be-
havior has been demonstrated by Jasperse et al. ' for
MgO and LiF crystals with the NaC1 structure. Howev-
er, in many of these experimental investigations' little
or no physical justification were given in the choice of the
frequencies used to analyze the linewidths. On the other
hand, theoretical calculations have been performed by
Ipatova, Maradudin, and Wallis' and Monga, Jindal,
and Pathak" on NaC1 and LiF crystals, and by Elliott
et al. ' on some crystals with CaF2 structure. A compar-
ison of their theoretical results' ' with experiment
shows good agreement. For the case of silicon, Balkan-

ski, Wallis, and Han have obtained a satisfactory fit to
experimental data by including the cubic and quartic
anharmonic terms. However, these theoretical calcula-
tions' ' have been performed mainly in the high-
temperature limit and only for a few crystals. At the
present time, no clear trend has been found in the re)ative
contributions to the linewidth due to the cubic anhar-
monic term or the quartic term. In the hope of shedding
some light on the relative contribution of these terms, we
have carried out theoretical calculations and experiments
at near room temperature and at higher temperatures on
a MgF2 single crystal, with rutile structure.

II. EXPERIMENT

The unit cell of the rutile structure is shown in Fig. 1,
with atoms labeled according to the scheme of Porto
et al. ' Cations magnesium are located at the corners
and body centers of the tetrahedron, and anions (fluorine)
are displaced from them by +(ua, ua, O) and
+(ua, —ua, O), respectively, where a, c, and u are lattice
parameters.

As has been mentioned, MgF2 belongs to the space
group D4& (P42/mmm) of which the normal-mode lattice

~ua

FIG. 1. Tetragonal unit cell
for D4& materials. Shaded and
open circles represent positive
and negative ions, respectively.
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vibrations at the I point of the Brillouin zone are given
by group theory (Porto et al. '

) as

1 ~ )g + 1 ~ 2g + 1 ~ 2„+1B)g + 1B2g +2B )„+1Eg +3E„

Among these, the Raman-active modes are B, ( I 3+ ),
Eg(I 5 ), Ag(I &+), and B2 (I &+). Consequently, four
first-order Raman spectra are to be observed, but Raman
intensities for the B,g Eg and B2g modes are weak In
the present work, the A

&g
mode was measured.

The specimen used in the present work is a transparent
crystal (prepared by Oyo Koken Co.), cut perpendicularly
to the a, b, and c axes, optically polished and measured
4X4X5 (c axis) mm with a purity over 99.99%. The
4880-A beam of an argon-ion laser was used as the light
source for Raman excitation. The laser beam was in-
cident on the (100) plane of the specimen in a nichrome
furnace with an internal diameter of 15 mm and a length
of 100 mm and the scattered light from the (010) plane
was measured with a laser Raman spectrophotometer
(Ul-UV produced by Nippon Denshi Co.) equipped with

a photon-counting system. The observed Raman intensi-
ty is the convolution of a Lorentzian shape of the actual
Raman intensity function with the response function of
the spectrometer. We have done the deconvolution using
the above-mentioned function. The calibration of the
wavelength was carried out with a plasma line of the Ar-

0
ion tube. The accuracy of the wavelength was +0.5 A
(=+2 cm ').

III. ANHARMONIC FORCE CONSTANTS

Lattice-dynamical perturbative treatments of anhar-
monicity have been described in several papers; ' here
we recall the expressions utilized for the calculations of
the linewidths. According to Wallis, Ipatova, and Mara-
dudin, ' the Raman linewidth 2I due to the cubic and
quartic anharmonic terms can be expressed as follows:

r(o,j;n) =r"'(O, j;n)+r"'(o, j;D)
where the cubic anharmonic term I' ' and quartic anhar-
monic term I' ' are defined by

I' '(0,j;0)= 18 g g l
V' '(0, j;q,j, ;

—q, j2 ) l [ [n (q,j, ) + n ( —q, jz )+ 1]
q Jl Jq

X [5(Q—co(q,j, )
—co( —q, j~))—5(A+co(q, j, )+co( —q, j2))]

+2[n (q, j, ) n( —q, j2)]5(Q——co(q, j, )+co( —q, j2))), (2)

I
V"'(0,j;q&,j&,q2j2, q3j3) I' [[n (q&, j& )+1][n (q&, j&)+1][n(q3,J3)+1]

q& q»q3 j& j2 j3

n(q„—j, )n (q2, jz )n (q3 j3) ]

X
I &( fl —co( q&,j &

)
—co( q2, j2 )

—co( q3,j3

—5(A+co(q„j, )+co(qz, jz)+co(q3, j3))]

+3[n(q),j( )[n (q2, j2)+1][n (q3,j, )+1]
—

I (qi A)+ ] (q»J2 (q»J3

X [6(A+co(q&, j& )
—co(qz j2)—co(q3, j3 ))

—5(Q —co(q, ,j, )+co(q2, j2)+co(q3, j3))] (3)

where V' ' and V' ' are the cubic and quartic anharmonic
coupling coefficients, co(q, j) is the harmonic frequency at
wave vector q, n (q,j) is the thermal average of the pho-
non occupation number, and 6 is the Dirac 6 function. '

In this section we obtain an expression for the
Fourier-transformed anharmonic force constants needed
in the evaluation of the Raman-active phonon self-
energy. Ipatova, Maradudin, and Wallis' derived the
following equation for the Fourier-transformed anhar-
monic force coefficients:

V~'(q, ,J„.. . , q„J, )

s/2
1 1

2 S! 2N
L

Xa(qi+ ' +qs)

X [co(q&,ji) co(qs j )]

XCs(q, ,j, , . . . , qs, js) . (4)

When the potentials between magnesium and fluorine
and between fluorine and fluorine are expressed as
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p;(r, );. , 2 and p;(r, ); z4, respectively, the short-range
force constants are given as' ' 128 M) +

4M
1 1

2vA;= e' gr

2vB;=
r,- Br,.

0

0

(5)

[c /4+2( 1 u)2a2]l/2

r [(a2+b2)/4+(2u 1 )2a2]1/2

r =4&2 a(1 —u) .

(6)

0
Values used for the lattice parameters are a, 4.621 A,
c =3.052 A, and u =0.303. In the present calculations,
only the interactions between two types of nearest-
neighbor magnesium and fluorine atoms are taken into
consideration, and interactions other than those between
fluorine and fluorine are neglected. The cubic and quar-
tic anharmonic potential is obtained from the third- and
fourth-order derivatives of repulsive potentials, respec-
tively.

After we performed tedious calculations according to
Ipatova, Maradudin, and Wallis' from Eq. (4) the
coefficient ~C3~ due to the cubic anharmonic term was
given by

1
C2M [csc+2C3C ~

coj(0)S3

Similarly
~ C4 ~

due to the quartic anharmonic term was
given by

1IC41'=, [C4MC4~c+C4M [C4c+6C4c
n1J(0)S4

+2(C4c+6C4c)l] ~

(8)

where each atom's distances r; are expressed as follows

r, =&2ua,

C4C=2tt „+fE+8$C+6$D+12$E+12QF,
2

C =32 1 1 1

M& M2 M] M2

CB1 r 8 A 2 +96r4B '2 +333CI2

C4BC2
—3r6~A ~B ~

+4r4~A ~C~ +50r2~B

C =r A
' +48r2B' +45C'

C4& =2r2A 2B2+r2A 2C2+10r2B2C2 .

Furthermore, we set

1)'~ =(4~1+20~2)' PE =(PE1+24E2)'

l C (1 Cl+ PC2) & 4D (PD1+24D2)

4E (PE1+ PE2) ~ PF (%F1+ PF2)

t)/»= —,'(r, A', +12r,B', +12C', ), l(E, =3C', ,

pz2 —t, r2A 2+6t1r2B2+3C2,

QE2 t2r2A 2+6t—2r2B2+3C2,

PC1= 4 (r1A 1+6"1B1)

QD, = ,'(r, A', +12r1B',—+28C',),
Pc2 t, r2A 2

——3t1r2B2

QD2= t, r 2 A 2+2t, r 2B'2+ C2,

x $0

12—

10—

(10)

where S3 and S4 are defined by

Ss =—gga1 (q, j)u1 (q,j'),~ =1
q jj'

1S = g g h(q, +q2+q3)n1 (qt j1)
ql q2 q3J1 J2 J3

X co (q2, j2 )a1 (q3, J'3 ) .

The prime on the sum S3 means that the terms with

j =j' are omitted.
Other terms are expressed as follows:

C 32 M)+M2
(M, M )

C~~=r B' +6r)B)C)+15r C'

C3& =r2B2 +6r2B2C2+15r2C2

0—
I

0.0 0.1 0.2 0.3 0.4 0.5

Aq(r & g)

FIG. 2. Phonon dispersion curves in the direction of
q(g, g, j), calculated using the rigid-ion model according to Ka-
tiyar and Krishnan (Ref. 15) and Katiyar (Ref. 16).
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TABLE I ~ Parameters used to calculate the phonon disper-
sion curves (Ref. 16).

Short-range force constants (units of e /2U)

c4 l =71.596 A2 =72.356 A3 =4. 172 A4: 16.91
B& = 9.022 B2 = 7 ~ 356 B3=0.030 B4 = 1.54

f ) f f

yIII( ) yII( ) + yI( )
f2 f2

(12)

gMg /I 1 58

EA'ective charge (units of e)

qF/I = —0.79

C', = —, p"(rI ) — p'(—r I )
f ) f&

C2 =—
2

p"(r2) — p'(—r2)
f2 f2

WEI $(r 1BI +2C1 ) WFI 2r IB 1

QE2 t1t2r2—A &+(t I +I 2 )r&B& +C2,
2 2 4 t 2 2/F2= —t1t2r2A z

—t Ir2Bz,

where t, =(1/r2)a (
—

—,'+u) and t2 =(a/r&)( —c/2a) are
dimensionless parameters that satisfy 2t &+tp =1~ The
coefficients A'„A2', 8'„82, C'„and C,' involve deriva-
tives of repulsive potentials up to second, third, and
fourth order. These can be obtained in terms of our mod-
el for the anharmonic forces as

yIV( ) yIII( )
1 6

f )

$11( ) $1( )
f) f)

yIV( ) yIII( )

f2 "2

+
2

1I) (r~) —
3 p (r2)

1

f2 f2

By using these above equations, the Raman linewidths
due to the anharmonic terms were calculated.

IV. RESULTS

For the calculation of the Raman linewidth I of MgF2,
the phonon dispersion curves must be calculated. Our
calculations were carried out according to the method de-
scribed by Katiyar and Krishnan' and Katiyar. ' There-
fore, the phonon disperson curves were calculated with
the rigid-ion model using the parameters given by Kati-
yar. ' The typical dispersion curves along q(g, g, g) from
these values are shown in Fig. 2. The force constants and
effective charges used for the calculation of the dispersion
curves are according to Table I.

The numerical values of
~ C3 ~

and
~ C4 ~

are
2.251X10' erg ' and 1.912X10 erg, respectively.
Both the calculated and observed values of I vs T for
the 3, mode are represented in Fig. 3, and the dotted
curve gives the theoretical expression due to the cubic
anharmonic term and slow change with temperature.
Therefore, the observed curve cannot be explained using
only this expression.

However, as may be evident in Fig. 3, the experimental
results cannot be explained completely by the theoretical
calculation described in Sec. III, but the tendency of an
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FIG. 3. Calculated curves of
the cubic and quartic terms in

Eqs. (2) and (3) are represented
by dashed curves, and the plot of
the observed values 2I is

represented by solid circles.
The dashed curve gives the cal-
culated 2I "'+2I ' '.
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FIG. 4. The solid curve gives
the theoretical fit (Ref. 7) includ-

ing the cubic and quartic anhar-
monic terms in Eq. (13). The
dashed curves represent only the
cubic and quartic anharmonic
contribution to the Ram an
linewidth. The solid circles have
the same significance in Fig. 3
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I (T)= A 1+
e —1

+81+ ' +
e —1 (e —1)

(13)

where A and 8 are adjustable parameters, and
x =ficool2k&T, y =A'coo/3k&T, and firoo=410 cm '. We
apply the above equation to the experimental result in
Fig. 4 by suitably choosing constants A and 8. The best
values for A and 8 are 0.9450 and 0.2649 cm ', respec-
tively. In Fig. 4, the solid curve gives the resulting plot
of Eq. (13) and the dashed curve corresponding to only a
cubic or quartic anharmonic contribution to the
linewidth arising from the first or second term of Eq. (13).

It is clear from Fig. 4 that the experimental points and
the solid curve agree well but the dashed curves seem to
be an inadequate fit at higher temperatures. These indi-

increased linewidth with increasing temperature and its
order are reproduced very well. This demonstrates the
necessity of including the quartic anharmonic term.

Now we discuss in more detail the problem of the
anharmonic contribution to the linewidth as a function of
temperature. With inclusion of the cubic and quartic
anharmonic terms, Balkanski, Wallis, and Haro derived
the following equation of the extended Klemens-Hart-
Aggarwal Lax m-odel ' for the linewidth 2I ( T):

cate the necessity of the inclusion of the cubic and quar-
tic anharmonic terms.

V. CONCLUSION

In summary, the Raman spectrum for the A, mode of
a MgFz single crystal has been measured at temperatures
from 300 to 903 K. The values of the linewidth have
been obtained at various temperatures. A theory of the
Raman linewidth was derived with inclusion of the cubic
and quartic anharmonic terms of the repulsive part of the
crystal-potential energy. As may be seen in Fig. 3, the
experimental and calculated values for the A, g mode
show reasonable agreement. In addition, the treatment of
Balkanski, Wallis, and Haro has provided us with a very
useful tool to detect the cubic or quartic anharmonic con-
tribution to the linewidth from experiment. The applica-
tion of this approach shows good agreement to experi-
ment for the Raman linewidth in this temperature range
with inclusion of the cubic and quartic anharmonic
terms. The ratio 8/A is found to be 0.28, and so the
contribution of the quartic anharrnonic term is smaller
than that of the cubic one. For silicon, 8/A is 0.08 (Ref.
17). In view of these results, we conclude that the tem-
perature dependence of the linewidth of the A Ig mode of
MgFz crystals can be completely explained with inclusion
of the cubic and quartic anharrnonic terms of the
crystal-potential energy as governed by the phonon occu-
pation number. '
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