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We present numerical calculations of the quantum diffusion over an octagonal quasiperiodic tiling.
We have studied a one-parameter family of Hamiltonians including the pure hopping case, the Lapla-
cian, and a regime where atomic potentials prevail. We have found that unlimited diffusion occurs with
anomalous exponents both in the hopping regime, where the spectrum has a band structure, and in the
strong-coupling regime, where the spectrum has a Cantor structure. Upon introducing disorder in the
lattice through phasonic fluctuations, the diffusion exponent increases in the pure hopping regime, while
localization appears in the strong-coupling regime. The consequences on the conductivity of real quasi-

crystals are considered.

I. INTRODUCTION

The discovery of thermodynamically stable quasicrys-
tals,' together with the possibility of producing samples
with low density of defects, allows the exploration at the
experimental level of the physical properties associated
with quasiperiodicity, which have been the object of in-
terest in the scientific community since long ago.

The low density of states (DOS) at the Fermi level
could be at the origin of the anomalously high resistivity
observed.? In fact on the basis of Hume-Rothery rules a
pseudogap at the Fermi level was predicted,’ subsequent-
ly confirmed by numerical simulations,* and finally ob-
served® by means of x-ray absorption and emission exper-
iments. Contrary to what was expected, it was also ob-
served that pure samples are more resistive than disor-
dered ones. The conductivity increases in a dramatic way
as the temperature increases. It is then of fundamental
interest to understand such behavior on theoretical
grounds.

In spite of a large amount of work on one-dimensional
quasiperiodic Hamiltonians, electronic properties of
quasiperiodic tilings in two and three dimensions are un-
known. In one dimension it is by now an established fact
that the wave functions are neither extended nor local-
ized, but decay with power law at large distances, and
correspondingly the spectrum has a Cantor structure.

Some numerical works on finite clusters of two-
dimensional (2D) Penrose tilings gave interesting infor-
mation on the possible coexistence of localized and ex-
tended states but were unable to establish whether the
spectrum has a band structure or is Cantor-like as in the
one-dimensional case.’ Progress on this question has re-
cently been made by two of us’ in studying the two-
dimensional octagonal tiling. It was established without
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ambiguity that in the generic case the Lebesgue measure
of the spectrum is finite with a finite number of gaps and
that the wave functions may be extended on very large re-
gions. There is no reason to think that such a feature is
specific of the eightfold symmetry, but rather it is expect-
ed to hold in general, e.g., in 2D or 3D Penrose lattices.
Work in this direction is in progress.

While former approaches dealing with pure point spec-
tra did not allow one to locate the gaps, our approach
was based on scaling analysis over a sequence of periodic
tilings with increasingly large square unit cells.® Bloch
boundary conditions allowed us to determine pure band
spectra at each order.

In Ref. 7 it was also shown that when hopping dom-
inates over atomic potentials there is level repulsion, as in
quantum systems with a classically chaotic analog, while
in the opposite regime there is level attraction. Level at-
traction was previously observed in one-dimensional
quasiperiodic chains’ and in the quasiperiodic Harper
model at the metal-insulator transition.'® As we will il-
lustrate in the sequel, level attraction is an index of the
occurrence of Cantor-like spectra, so that the global pic-
ture obtained in Ref. 7 involves a transition from a pure
band spectrum to a Cantor-like spectrum in the regime of
strong local coupling and weak hopping amplitude. In
the following we extend our analysis to the degree of lo-
calization of the physical states in the various regimes,
and study the quantum diffusion. We shall discuss the
consequences of our results on the conductivity of real
materials.

II. MODEL HAMILTONIAN

The octagonal quasicrystal (see Fig. 1) is generated by
two elementary tiles, a square and a rhombus, and has six
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FIG. 1.

Unit cell of the periodic approximant of the octago-
nal tiling with 1393 sites.

types of vertices, respectively with coordination z=3, 4,
5, 6, 7, and 8. Each type of vertex occurs with a given
frequency Vi=w, v4—2w , vs=2w?, ve=2w* v;=w?>,
vg=w* with w=Vv2—1. In our model the particle occu-
pies the vertices of the tiling and is described by the para-
metric Hamiltonian
ZI
(HY);=t 3 ¢, +(1=t)z;¢; (0<t=1), (1)

j=1

where the sum extends over the nearest neighbors j of the
site i. Notice that as ¢ varies from O to 1, one goes from a
strong-coupling regime to a pure hopping regime. When
t =1, (1) coincides with the Laplacian over the lattice.

In Ref. 7 we obtained that the Lebesgue measure of the
spectrum is certainly larger than zero when ¢ >0.2, and
that when ¢, <t, (¢,~0.35) there is level repulsion, while
in the complementary regime there is level attraction.
Due to finite-size effects, it was impossible to establish
whether indeed the Lebesgue measure is zero when ¢ is
small enough. On qualitative grounds, one then expects
extended states above t, and possibly coexistence of ex-
tended states and critical states below ¢.. The topology of
the lattice also allows strictly localized (with compact
support) energy eigenstates: this feature, first noticed in
the Penrose tiling,° does not seem to be physically
relevant. Indeed, it strongly depends on the form of the
Hamiltonian.
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FIG. 2. Absolute value of the wave packet in the pure hop-
ping regime t =1 at 7=12.

We study the time evolution of a wave function initial-
ly concentrated at a given site (see Fig. 2), and in particu-
lar determine the spread of the wave packet for large
times 7:

Ax(r)={((x —(x))?)*=Dr*. )

We average by sampling over different initial environ-
ments (typically of the order of 200) weighted by taking
into account the relative frequencies of the various types
of vertices, and truncate the regression when the wave
function reaches a fixed distance from the boundary of
the unit cell. We consider periodic approximants with
239, 1393, 8119, and 47 321 sites. We have computed the
spread both by directly integrating in time and by di-
agonalizing the operator with periodic boundary condi-
tions. The obtained exponents are given in Table I. The
order of the approximants examined gave a satisfactory
degree of convergence in the estimates.

III. HOPPING REGIME

When t =1 the spectrum reduces to a single band,’
that one would expect a ballistic diffusion: we obtained
instead ¢=0.78. A second quite unexpected feature is
that Ax(r) is strongly sensitive to initial conditions, more
precisely, all plots referring to homologous (with equal z)
initial sites cluster together, and the different clusters
never intersect (see Fig. 3). For this reason we computed
the exponents for the different ensembles. Notice that a

TABLE 1. (a) Diffusion exponents a for the deterministic case. (b) Diffusion exponents a for the
disordered case.
t a a; a, as a, ay ag

(a)

1.0 (app.5) 0.781 0.754 0.786 0.807 0.809 0.826 0.840

0.5 (app.5) 0.734 0.752 0.717 0.678 0.646 0.581 0.573

0.35 (app.4) 0.620 0.696 0.564 0.510 0.484 0.486

0.1 (app.4) 0.359 0.529 0.179 0.047
(b)

1.0 (app.5) 0.815 0.798 0.820 0.841 0.842

0.5 (app.5) 0.628 0.656 0.615 0.602 0.603
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FIG. 3. Time evolution of Ax for initial conditions with
coordination numbers z =3,4,5,6,7,8 (t =1).

increases with z. A partial explanation of this behavior
can be given by noticing that the energy eigenfunctions at
the band edges are in this case more extended than the
corresponding ones at the band center, and furthermore
that for energies around the band center the particle is
more likely to stay on a small z site, while for energies at
the band edges it is more likely to stay on a large z site.
In order to convince oneself of the first property, one is
led to examine the inverse participation ratio (IPR) (Ref.
11) of the eigenfunction ¢z: I(E)=3;|¢, |*

We recall that for a lattice having N sites, if ¥ is a
plane wave I=1/N, if ¢ is localized at a site I =1, so
that the larger the I the stronger the localization. Here,
we have found that the eigenfunctions at the band edges
are more extended (see Fig. 4).

The second property emerges from examining the
probability f,(E) of the sublattice with coordination z be-
ing occupied at energy E. In Fig. 5, notice that f; is con-
centrated at the band center while f; is concentrated at
the band edges. One can conclude that a state concen-
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FIG. 4. Inverse participation ratio for t =1.
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FIG. 5. Occupation probabilities f3;(E) (down) and f3(E)
(up) (see text).

trated at a large z site predominantly selects the faster
high |E| eigenstates. We also studied the effect of
phasonic disorder, generated upon flipping within the
hexagons the position of the squares (see Fig. 6). The
IPR in this case indicates that the relative weight of the
“less extended” portion of the eigenfunctions is reduced.
A clearer signature of phasonic disorder comes from the
integrated density of states N (E) (see Fig. 7). We believe
that the irregular behavior of N(E) in the deterministic
case reveals a singular continuous spectrum; several pseu-
dogaps can be found, notice in particular the large ones
at |E|=2. The discontinuity at E =0 comes from local-
ized eigenstates. The phasons produce a smoothing of
N (E), so that the pseudogaps practically disappear: this
implies a tendency towards a faster diffusion. Corre-
spondingly, we obtain higher diffusion exponents (see
Table I). This confirms on qualitative grounds the experi-
mental results on resistivity, although the observed effect
seems to be a stronger one. Of course, other disordering
mechanisms should be taken into account in a more de-
tailed modeling.

IV. STRONG-COUPLING REGIME

When ¢ is small on qualitative grounds the standard ar-
guments of Anderson localization hold: one actually is
dealing with perturbation of the E =z degenerate levels.
Tunneling between homologous sites placed at a given
distance will produce a splitting of some order; the fur-
ther the sites, the smaller the splitting. The underlying
scale invariance of the lattice is expected to induce a

<F==>

FIG. 6. Elementary operation including disorder in the til-
ing.
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FIG. 7. Integrated density of states ( =1) for deterministic
and disordered tiling.

hierarchy in the splittings as can be found from a renor-
malization group analysis.'* This property implies a time
evolution regulated over various time scales. More clear-
ly, we observed that when starting from high z sites the
wave function is at later times concentrated practically
only on homologous sites and that diffusion appears as an
intermittent process in the form of tunneling between
metastable stationary states. Each such state is concen-
trated over a given pattern of homologous sites. Again
one can determine a diffusion exponent for the various
“bands” of the spectrum, with the result that here, oppo-
site to the previous case, a decreases with z. This fact is
an obvious consequence of the larger relative distance of
the high z sites. The exception of the z =7 sites, more
diffusive than the z =8 sites in spite of being rarer, can be
easily explained by examining the second order correc-
tion in ¢. Even if we are not able to give a direct proof
that when ¢ is close to zero the spectrum is fractal,
nonetheless various arguments can be put forward in
favor of this hypothesis.

We first mention an extension of the argument given in
Ref. 12 that allows us to relate the information dimension
B (B=dy= Hausdorff dimension) of the spectrum with
the diffusion exponent'? in terms of a lower bound, which
in two dimensions is

7~
logr

172
(3)

Ax(1)=

From (3) it follows that if  <0.5 the spectrum has a di-
mension smaller than one. In fact this is the case for
each “band” at ¢ =0.1 (see Table I). Presumably, the
spectrum is a multifractal, each “band” having a different
dimension. As t increases a increases, and correspond-
ingly at some critical value ¢, the dimension reaches the
value of dy=1. From (3), one finds that 3<2a. Note
that in our case the inequality is found to be strict (e.g.,
t=0.1, B=0.5, and a=0.36), contrary to the 1D case
where one has B=a.

A second, independent check of this picture comes
from level statistics, where as was already stated, a transi-
tion between a level attraction regime and a level repul-
sion regime occurs at t.=~0.35. If the number P(s) of
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a

level spacings larger than s behaves as s~ ¢ when s —0,
one can conclude heuristically that a portion of the spec-
trum has dimension dy =a. In fact, if ¥ is the dimen-
sion, such portion is covered by N,=(1/s)" intervals
with spacing s. N; also counts the number of level spac-
ings smaller than s, so that the number of spacings of or-
der s diverges as (1/s)"*!. This implies P(s)=(1/s)". In
general we will have ¢/ <t_, in that when ¢ > ¢, the spec-
trum has no fractal portions. We have also explored the
effect of phasonic disorder at t =0.1. Upon destroying
the recurrences in the tiling related with its scale invari-
ance, the effects of resonance of homologous sites become
frustrated. We verified this effect and the result is locali-
zation. Work is in progress on the disordered tiling in or-
der to locate the transition to anomalous diffusion.

V. CONDUCTIVITY

In this section we will summarize our results and make
some comparison with other works on the conductivity
properties of quasicrystals. Octagonal tilings are charac-
terized by anomalous diffusion with nonuniversal ex-
ponents: we believe this to be true in general for 2D
quasiperiodic tilings with a generic Hamiltonian. Propa-
gation is strongly influenced by quasiperiodicity in the
strong and intermediate coupling regimes, in the form of
tunneling between metastable stationary states, concen-
trated over clusters of homologous atoms. In the regime
of weak local coupling there is pure band spectrum, but
again anomalous diffusion occurs: this is compatible with
(3), while in the one-dimensional case the diffusion ex-
ponent is bounded from below by the dimension of the
spectrum, so that this anomaly never occurs.

In the strong-coupling regime the phasonic disorder in-
duces localization; in the hopping regime, it enhances the
propagation. The latter behavior confirms the experi-
ments on conductivity, where apparently a stronger effect
was observed. In terms of our parametric Hamiltonian
everything goes as if disorder would produce a ¢ larger
than the parameter ¢ associated with the deterministic til-
ing: this implies stronger local potentials for defect-free
materials.

In real materials (say Al-Cu-Fe), besides the aforemen-
tioned increase of the conductivity o with disorder, a
strong enhancement of o with temperature is also ob-
served. It seems that the naive scheme where o is simply
proportional to the DOS at the Fermi energy [p(Ey)] is
not consistent with this behavior. One could try to ex-
plain the fact that ¢ has stronger variation than p(E) by
the nonsphericity of the pseudo-Fermi surface' or by a
Mott-like behavior o ~p(E)%.'® Even if these effects
should be considered, on the basis of the results presented
here we propose an alternative explanation.

In a more realistic electronic model for quasicrystals,
the Al-Cu atoms are described by an effective s band, the
transition atoms (Fe here) by a narrow d band, with some
hybridization!” between them. The on-site potential on
transition atoms is chosen such that the narrow d band
falls close to Ep of the unperturbed effective s band.
Thus it may be quite different from the potential associat-
ed with the s band. Of course p(E) in such models can
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be set quite low but still not low enough to explain the
weak conductivity observed, except by considering un-
physical very strong couplings.

We propose that the states around the Fermi level are
poorly conducting ones (because the density of transition
atoms is low) and will resemble the states already de-
scribed in our 2D model, localized on (many) similar re-
gions (“quasilocalized” in the following). However, they
are not localized in the usual sense, and will not contrib-
ute to the specific heat like localized states would do.
Thus, even if p(Eg) is not so low, conductivity might be
much smaller than expected. Upon increasing the tem-
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perature, conduction will be allowed by these states
through inelastic scattering. Works are in progress to
test the conjecture of “quasilocalization” of states near
Ej. for a realistic 3D model of Al-Cu-Fe.'®
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FIG. 2. Absolute value of the wave packet in the pure hop-
ping regime t =1 at 7=12.



