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The probability that an Auger electron, generated at a certain depth in a semi-infinite target, es-

capes &om the surface under a certain emission angle is described by the so-called depth distribution
function. The exact solution for this depth distribution function has been found in the transport ap-
proximation, employing transport theory. The results are in good agreement with data found in the
literature and emphasize that strong deviations from exponential behavior occur. These deviations
are most pronounced for oblique emission. To assess the validity of the transport approximation
two kinds of Monte Carlo calculations have been performed. In one case the realistic Mott cross
section for elastic scattering has been used while in the other the corresponding momentum transfer
cross section was used. The latter procedure exactly fits the transport approximation. A very good
agreement between the two approaches has been obtained. This indicates that the transport approx-
imation is an effective tool in transport problems provided the angular distribution of the particle
flux density varies slowly with the angle.

I. INTRODUCTION

Knowledge about the escape probability of Auger elec-
trons from solids is of paramount importance in quanti-
tative Auger electron spectroscopy (AES) for data inter-
pretation and quantification. In recent years the problem
has been studied extensively both theoretically and ex-
perimentally.

The experimental approach usually involves the over-

layer experiments and implies determination of the elec-
tron attenuation length (AL). There has been some con-
fusion regarding the definition of this quantity and the
committee E-42 of the American Society of Testing and
Materials recommends the following definition: "the av-

erage distance that an electron with a given energy trav-
els between successive inelastic collisions as derived from
a particular model in which elastic electron scattering is
assumed to be insignificant. " Unfortunately, the correct
interpretation of data obtained by this procedure is diffi-

cult for several reasons. Firstly, an exponential attenua-
tion law is assumed for the escape probability. Now it is
evident that this assumption is not true a priori and se-
rious deviations from exponential behavior can occur.
Without quantitative knowledge concerning the attenu-
ation law, it is difficult to extract reliable, unambiguous
AL values from an overlayer experiment. Secondly, mea-
surements of the AL by the overlayer experiment rarely
have the required accuracy as there are a lot of sources
of error that are not easy to evaluate properly. The stan-
dard deviation of the systematic error in independent
experiments made for the same material by difFerent au-
thors may be around a factor 1.5 or 2.3

In the simple theoretical model widely adopted it is as-

sumed that an electron moves in matter along a straight
line. According to this so-called straight line approxima-
tion the effective escape depth of particles should be fully

determined by the inelastic mean free path (IMFP). Thus
the effects of elastic scattering are assumed to be negli-

gible and the values of the AL and the IMFP will be the
same. However, investigations performed by a number

of authors4~ show that an AL measured experimentally
may be less than the IMFP by up to 30% owing to elastic
electron scattering.

Mathematically the escape probability is described by
the depth distribution function (DDF). This function
describes the probability that an electron generated at
a certain depth will escape from a semi-infinite sub-

strate without being inelastically scattered. The data
obtained by the Monte Carlo techniquem ii indicate that
the depth distribution function has a complex behavior.
For any emission angle the depth distribution function
exhibits a gradual change in slope as the depth increases.
The slope is small in the surface near region and reaches
a greater value at some larger depths for normal emission
while the opposite is true in the case of oblique emission

angles. Therefore it follows that elastic scattering may
essentially modify the simple exponential dependence of
the escape probability so that even the AL concept itself
becomes questionable.

Having thoroughly analyzed their Monte Carlo data,
Werner et at. have proposed an empirical formula for
the depth distribution function. It takes into account
the randomization of electrons, which is the dominant
effect at large depths, and the transition to an approxi-
mate straight line regime in the surface near region. This
empirical function is in good agreement with the Monte
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Carlo results for the depth distribution function. Never-
theless, some assumptions which had to be made in order
to derive this formula are dificult to substantiate rigor-
ously. In this connection the transport theory approach
is worth paying attention to.

The Auger and photoelectron transport problem has
been investigated analytically by means of kinetic equa-
tion solutions found in the diffusion approximation.
Among the obtained results we note the following ones:
(1) in the case of weak absorption

A„&( A, ,

where Aq, and A; are the transport and inelastic mean
free path, respectively, the effective escape depth is pro-
portional to (At, A, ) ~; (2) the angular distribution of
escaping Auger electrons differs from a cosinoidal one
and is stretched out in the forward direction, i.e., along
the surface normal. iz One should keep in mind, however,
that the diffusion or Pi approximation is only valid pro-
vided condition (1) is true, which is rarely fulfilled in
the relevant Auger electron energy range. Besides, this
approximation does not allow one to solve a boundary
problem correctly since any limited set of Legendre poly-
nomials does not form a fundamental system of transport
equation solutions.

The boundary problem for a half-space can be solved
exactly by the integral equations technique 3 or the
singular eigenfunction method of Case. is For Auger elec-
trons reasonable results can be expected in the so-called
transport approximation (TA) when a realistic scattering
cross section is replaced by an isotropic one equal to the
transport cross section. Such replacement is justified if
the radiation fields corresponding to the exact and ap-
proximate solutions are similar. It is obvious that the
Auger electrons meet the latter requirement since their
initial angular distribution is isotropic. It should also

be emphasized that all the results obtained in the Pi
approximation follow from the corresponding transport
approximation expressions in limit (1).is is

The scope of the present paper will be as follows: Erst
the exact solution to the problem of the Auger electron
escape probability will be derived in the transport ap-
proximation. Although it is generally accepted that this
is a reasonable approximation for this specific problem,
the accuracy of this approximation is diEcult to assess
theoretically. Therefore a detailed comparison will be
presented of the transport approximation with a case in

which the realistic Mott cross section for elastic scatter-
ing is used. This comparison is performed employing the
Monte Carlo technique to model electron transport in

matter. The obtained results are then compared with
other data concerning the escape probability, as found in

the literature.

II. THE DEPTH DISTRIBUTION FUNCTION
IN THE TRANSPORT APPROXIMATION

Therefore, to find the depth distribution function ana-
lytically, one should solve the transport equation with a
unit source of electron emitters at a certain depth zo and
take into account the appropriate boundary conditions.

The exact solution of the transport equation with an
arbitrary cross section for elastic scattering is rather com-
plicated. However, in the case of the Auger emission
problem satisfactory results can be achieved by applying
the transport approximation. 4 In this approximation it
is assumed that the real elastic difFerential cross section
may be replaced by an isotropic one being equal to the
transport cross section. Such a replacement is justified
for the azimuthally averaged radiation field provided the
particle flux density is not highly anisotropic. The lat-
ter requirement is perfectly fulfilled for Auger electrons
whose initial angular distribution may be regarded as
isotropic. ~7

Let N(z, pi zp) denote the flux density of electrons mov-

ing at the depth z in the direction p, , where p, is the cosine
of the polar angle with respect to the positive z axis di-
rected inside the target. To indicate the source position,
we retain the parameter zo in the flux density notation.

Hence the depth distribution function is defined by the
following expression:

C'('p») = l&IN(z = o S «Izp) (2)

where we introduced the variable» = cos Q representing
the cosine of the emission angle with respect to the sur-
face normal. Although definition (2) is formally difFerent

from that adopted in Ref. 11 it can be easily proved by
means of the reciprocity theorem that both definitions
are identical.

In the transport approximation the one-velocity Boltz-
mann equation for the flux density N(z, pizp) in the case
of plane symmetry has the form

N(z, p, 'izp)dp'+ zb(z —zp). (3)

Here At, , and A, are the transport and inelastic mean free
paths, respectively. The nonuniform term containing the
6 function on the right hand side of Eq. (3) corresponds
to a unit source of Auger electrons.

The solution of Eq. (3) should satisfy the boundary
condition

N(z=0, p, ) Oizp) =0
stipulating that the Aux density of secondary electrons
entering the target be equal to zero.

Introducing the new dimensionless variable

The depth distribution function properly normalized

may be de6ned as the product of the lux density of
Auger electrons emerging from a solid without being in-

elastically scattered and the cosine of the emission angle.

~ = z(A, + At, )/A, At, ——z/A,

and the single scattering albedo

~ =A, (A, +A„) ', (6)
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we rewrite Eq. (3) and the boundary condition (4) in the
form

BN
p + N = — N(r, p, 'irp)dIJ, '+ —6(r —r()),

Br 2

N(r = 0, y, & Oirp) = 0.

In expression (5) A~,
A is the total mean free path in the

transport approximation. Applying Case's method of
solutionis to the problem, (7) and (8), we find

=1 ("p —1)e"p(—rp/») 0' ( p)9—(» ~)
N(r = 0 p ( O(re) = H( p—fd) —

( ) (
e + exp( re/r)d—e).

In the latter expression H(p, (d) is the H function of
Chandrasekhar s for an isotropically scattering medium,
vp is the positive root of the characteristic equation

a2(pp) = zg(yp, u) 1 — ln, (18)
4')(ip (1+pp) Vp

1 —pp

(dvp vp + 11= ln
2 vp —1' (10)

pp H(pp, 4J) vp —1

vp —pp H(vp, u)) 2[1+vp((u —1)]' (19)

P„(p,) is the eigenfunction of a continuous set (0 & v & 1)

1
P„(p) = A(v)b(v —p) + (u)v/2)P

V —P

and

p( ~) =eI I +i'(e))f~vrv')

2 (12)

1+v
A(v) = 1 —((dv/2) ln (13)

is used.
Putting pp = —p, and using definition (2) we obtain

C'(rp pp) = (pp/2)H(pp, (d)

(v() —1)exp( —rp/vp)

(vp —pp)H(vp, ~)[1+vp'(~ —1)]

+ '
exp( re/e)dr)—

'4 (~p)g(v ~)
p vH (dv

To analyze the depth behavior of the depth distribu-
tion function it is convenient to transform expression (14)
in the following way:

@(rp pp) = ai(rp pp) + a2(yp) exp( —rp/pp)
+(i (po)e p( —o/ o)

where

ppH(lip, ~) ' f(v, rp) —f(pp, rp)
d(ii rpe pp dv,

2 0 V —Pp

f(v, r) = '
exp( —rp/v),

~g(v, co)

2H Ve 4J
(17)

In expressions (11)and (12), P refers to the Cauchy prin-
cipal value and the definition

To derive Eq. (15) we used definition (11) for the eigen-
functions P (p) of the continuous set.

As follows from (15) the depth distribution function
consists of three terms. Each of them allows for a simple
physical interpretation. The function ai(rp, pp) equals
zero at rp = 0 and decreases at large depths rp )) 1
proportionally to Ei(7p) ~ exp( —rp)/rp, where Ei(rp)
is the integral exponential function. Therefore the first
term describes the electrons undergoing multiple elastic
scattering at arbitrary angles and escaping from the sur-
face layer with a thickness of the order of the total mean
free path Pg

The second term corresponds to the Auger electrons
leaving the solid without any elastic scattering (in the
framework of the transport approximation). The signal
intensity of these electrons is governed by the exponential
factor exp( —7p jpp). One should keep in mind that in
reality the second group of particles includes electrons
participating in multiple small angle scattering processes
which are neglected in the approximation considered.

The last term in (15) is represented as a product of
two functions. One of them depends only on the angular
variable pp while the other depends on the depth 7p. The
slope of the exponent in this case is determined by the
diffusion length

Au = vpA, Atp(A'+ Air)
' (20)

It is obvious that the third term describes the escape
probability of the fraction of randomized electrons. The
difFusion length A is greater than the total mean free
path A, since the quantity v0 is always larger than unity.

A thorough analysis of Monte Carlo data has shown
that the parameter A~ governs the attenuation of elec-
trons in solids. Therefore it was proposed to call this
quantity the attenuation parameter.

At this stage it seems advisable to point out that for
the most relevant Auger electron energy range (200—2000
eV), the single scattering albedo (d is relatively small ~ &
0.4 and the eigenvalue v0 only slightly differs from unity:

vp 1+ 2e = ((d & 0.4).
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The typical vp values are such that vp —1 ~ (10 —10 s)
and the total mean free path A, practically coincides
with the attenuation parameter A . The quantity A may
significantly exceed the total mean free path %+A only for
low energies (E & 100 eV) in materials with a high value
for the secondary electron emission coefficient (e.g. , alkali
halides and oxides of certain metals).

The function O(rp, pp) reaches the maximum value

@(ro = 0, eo) = —,'H(eo, ~)
at the surface and decreases monotonically while the
depth rp increases. The Chandrasekhar H function de-
pends on p,p weakly and for small u & 0.4 is close to unity.
This is clearly seen from the approximate expression for
the H function

Thus taking into account (16), (24), and (25), we find

C'(rp, 1) = 2H(l, u)e 0 [rp « (vp —1) ]. (26)

From the obtained result it follows that the escape prob-
ability in the direction along the surface normal is de-
scribed by a simple exponential law. Moreover, in the
most important depth region the ratio 24(rp, 1)/H(v, ur)
is a universal function of the reduced depth ~p. The above
is a special case of the more general statement that in
the limit of small u the straight line regime is attained.
Considering that for ur ~ 0 we have Ag ~ oo, vp ~ 1,
A, —+ A„ it is immediately seen that Eq. (15) reduces to
the conventionally used exponential depth distribution
function which does not account for the effects of elastic
scattering:

we may put
—1

%42 2 (d -2
g(v ~) =

2 . 2
+ 1 ——(ln 2+ z) . (23)

On the other hand, to avoid overestimation of the integral

by a slightly increased contribution of small v values and

to fit the correct surface value of the depth distribution
function we put H(v, u) = H(1, u) = 1 in the integrand.
After performing these operations and integrating over x
we get

(
ai(ro, 1) = —H(l, cu)

~

1 ——
~

e

On the assumption vp —1 « 1 we have for the coefBcient
as(Vo = 1)

a (po) = H(1 ~)/~. (25)

H(p, ~) = (21)1+p/3(1 —ur)

The accuracy of expression (21) is within 1.5—2.0% in
the range 0 & p, & 1 and ~ & 0.4. The mentioned weak
dependence of the H function on p,p partly justifies the
semiempirical assumption made in Ref. 11 according to
which 4(rp = 0, /Lp) is independent of pp.

Further analysis concentrates on two limiting cases

pp = 1 and pp (( 1 that permit one to follow the main
features of the depth distribution function.

First we consider the case pp = 1 assuming for simplic-
ity that the single scattering albedo is suKciently small.
Substituting pp = 1 into (15) we find that the second
term is zero while the first one reduces to

1
a, (ro, po) = —-H(l, ~)(cu/2)

2

x '
exp( —rp/v). (22)

dv g(v, (u)

p 1 —vH

vied

For small ~ & 0.1 the function g(v, u) exhibits a sharp
maximum at v 1/vp so that the integration in (22)
may be performed analytically. To show this we note
that the main contribution to integral (22) is supplied

by the integration region near the point v (1/vp) = l.
Introducing the new variable

x = —ln(1 —v)

C(z, pp) =
2 exp( —z/A, po). (27)

&(up) = poH(po ~)
4(rp, p,p)drp =

2 1 —(d
(28)

Due to the weak dependence of the H function on pp
the angular distribution (28) is practically cosinusoidal

for a & 0.5. In the case of intensive scattering Aq, « A,

and cu = 1 the angular distribution (28) is somewhat

stretched forward along the surface normal. However,

for Auger electrons the assumption made in Ref. 11 that

For the medium single scattering albedo values ~
(0.3 —0.5), the simple exponential law (26) is reached
at larger depths. In this case the slope of the depth
distribution function near the surface is gentler (usually
20% less) than that deep inside the target. It should be
emphasized that this region of u is of main interest for
AES and x-ray photoemission spectroscopy (XPS).

In the opposite limiting case pp (( 1, (vp —1 « 1)
one should distinguish three regions. Near the surface
(rp & pp ln —) the second term in Eq. (15) plays a lead-

ing role. The slope of the depth distribution function at
these depths is very steep as the escape probability is de-
termined by electrons leaving the target without elastic
scattering (or suffering only small angle scattering). The
first and second terms are small owing to the factor pp.

As the depth rp increases the second term diminishes
rapidly. The first term becomes dominant in the depth
interval pp ln —& rp « (vp —1) while the third term

po
remains small on the assumption vp —1 « 1. The ran-
domized fraction of electrons begins to play a role at very
large depths rp )) (vp —1) ~ )) l. It should be empha-
sized that this situation changes radically if the diKer-
ence vp —1 ) l. In the latter case the diffusion region

is reached already for 7p + vp and the main contribution
to the total Auger electron yield is given by diffusively
scattered particles.

Hence it follows from the above considerations that for
small values of the cosine of the emission angle the depth
distribution function should exhibit a rapid decline near

the surface and a much gentler slope at greater depths.
In conclusion we consider some integral characteristics

of the escape probability. Integrating the depth distri-
bution function over the depth we obtain the angular
distribution of signal electrons
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the angular distribution is cosine shaped is valid to a
good approximation.

Let A denote the amount of Auger electrons generated
in a unit volume of matter per unit time. Multiplying
(28) by AA~TA and integrating the resulting expression
over the emission angle, we find for the total Auger emis-
sion yield

t' ~~p, lY = AAt, vo —1+ — arctan
~ ldu .

o (2A(p) j (29)

The quantity Y represents the amount of electrons es-
caping from a unit area of the target surface in a unit
time.

For the most interesting case u & 0.4 we may ne-
glect the difFerence vo —1 in the large square brackets in
Eq. (29) and replace the function arctan(x) by its value
at small arguments

arctan
2A(p) 2

(30)

Substitution of (30) into (29) gives the following expres-
sion for the total yield:

Y = 4iAAt, A;(At, + A, ) (31)

The accuracy of this expression is about 20% in the worst
case of a = 0.4.

Prom (31) it follows that in the limiting case At, )) A;
the total yield Y is proportional to the inelastic mean
free path, in accordance with the straight line approxi-
mation, which neglects elastic scattering. Therefore we
emphasize that the transport approximation provides a
correct quantitative description of the escape probability
even if A«)) A;.

The opposite limiting case At, « A; seems to be less
important because of the corresponding electron energy
range extending from few to hundred electronvolts. Nev-
ertheless we note that for At, « A; the total yield depends
on the mean geometrical of At, and A, ,

the elastic mean free path and At, is given by

' do,
1/NoAt, —at, —2z '(p)(1 —p)dp.

—1 dp'
(34)

The factor (1—p, ) in Eq. (34) emphasizes backscattering
and the choice of the parameters in Eq. (33) preserves
the correct total elastic scattering strength.

It is obviously very simple to incorporate a scatter-
ing process of the form Eq. (33) into a Monte Carlo
algorithm for electron transport. It sufFices to replace
the elastic mean free path by the transport mean free
path (stipulating that forward scattering be the dom-
inant feature in the cross section for elastic scatter-
ing) and, furthermore, to assume that the cosine of the
scattering angles is uniformely distributed in the range

[
—1, lj. The details of the employed algorithm can be

found elsewhere, ii we merely note here that the rela-
tivistic difFerential Mott cross sections calculated with
the partial wave expansion methodzi were used for the
calculation of the exact depth distribution function.

The most interesting Auger electron energy range cor-
responds to the region 0.1 & u & 0.5, while typically

0.3. In Fig. 1 an example for a low u case, viz. ,
1000-eV electrons in Be is shown as a semilogarithmic
plot of the depth distribution function versus the reduced
depth, for different emission angles (0', 60', and 80'). All
curves shown have been normalized to unity at 7s = 0.
The values for the IMFP were calculated from the for-
mula of Tanuma, Powell, and Penn. zz Since this case is
close to the straight line approximation limit ~ ~ 0, the
agreement between the transport approximation and the
exact approach is very good, as expected. For small emis-
sion angles (p = 1,0.5) the agreement is almost perfect,
while for p, = 0.174 the transport approximation results
are slightly higher than the exact values for rp & 1 while
the opposite is observed for larger depths. The depth
distribution function for normal emission supports the
universal exponential relation for the depth distribution

Y ~ g(At A )i~z (32)

since the eigenvalue of a discrete set increases propor-
tionally to (At, A;) i~z.

III. COMPARISON WITH OTHER
CALCULATIONS

10 — 8
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The applicability of the results in the previous sec-
tion depends on the accuracy of the considered approx-
imation, i.e., the transport approximation. Since it is
difficult to analyze the accuracy of this approximation
analytically, we have performed a numerical comparison
between the exact case and the approximate one, em-
ploying the Monte Carlo technique.

In the transport approximation, the exact cross section
is replaced by a pseudoisotropic transport cross section:

(1 1) 1
No«. (V) =

l

——
I
b(1 —V)+

A, A~, ) 2k~,
'

where No is the atomic density of the material, A, denotes
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FIG. 1. The depth distribution function for 1000-eV elec-
trons in Be (u = 0.10), calculated by means of a Monte
Carlo algorithm for the transport of electrons in matter, us-
ing (o), the relativistic Mott cross section for elastic scattering
(Ref. 21) and (o), the corresponding transport cross section.
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function in the transport approximation Eq. (26), valid
for small cu.

A case with a relatively high value of u = 0.42 is shown
in Fig. 2, i.e., the depth distribution function for 250-eV
electrons in Co. Here the differences between the trans-
port approximation and the exact calculation are more
pronounced, although still far from severe. For 80' the
same effect is seen as in Fig. 1, viz. , the transport ap-
proximation depth distribution function is slightly higher
than the exact one for ~o & 1 and vice versa for larger
depths. For the other emission angles the transport ap-
proximation depth distribution function is slightly lower
than the exact one over the entire depth range consid-
ered. The universal relation Eq. (26) does not hold for
this rather large value of ~, since as can be seen, the
depth distribution function at normal emission deviates
from an exponential form.

An example for a typical value of u = 0.32 is shown
in Fig. 3, for 1000-eV electrons in Ag. The same effects
as in the previous example can be seen, although less
pronounced. As regards the validity of the transport ap-
proximation we conclude that it is a very accurate and
effective approximation in the case of Auger electrons
(0.1 ( a ( 0.5).

The exact solution of the depth distribution function in
the transport approximation Eq. (15), calculated numer-

ically, is also shown in this figure as dashed lines. The
agreement between this exact solution and the Monte
Carlo data using the transport cross section is excellent.
The solid lines in this figure represent the empirical depth
distribution function of Werner et al. ,

ii derived from a
detailed analysis of their Monte Carlo results. A closer
comparison of this empirical depth distribution function
with the present results seems interesting at this point.

These authors performed a detailed statistical analy-
sis of the depth distribution function calculated by the
Monte Carlo technique and by imposing certain normal-
ization conditions they found a semiempirical analyti-
cal expression for the depth distribution function which
reads (in the present notation)ii

10

10

10

e
10

10

0

N&.174

3 4 5

C'(7o~ po) = —ai exp( —«A, /ppAg)

+a&(po) e"p(—«/poi'o)
+as (pp) exp( —«/vp),

where

(36)

az(po) = 1 + ai as(lao) (37)

~.b~. ) = '
I

—'
l

l

' ')""' -1-„,(A, ) ( A.

Moreover, these authors found that the total yield Y is
given by

(38)

Y /'A, 1—= A, +2i —i(A, —A ).
A

' tA) (39)

FIG. 3. Same as Fig. 1 for 1000-eV electrons in Ag (~ =
0.32). The dashed lines represent the theoretical depth dis-
tribution function in the transport approximation Eq. (15),
the solid lines are the empirical depth distribution function
Eq. (35) (Ref. 11).
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FIG. 2. Same as Fig. 1 for 250-eV electrons in Co (w =
0.42).

In Eqs. (36)—(39) Aq denotes the total mean free path
Ag

——I/Np(cr, + cr, ) where o, is the inelastic cross section.
Remembering that for the relevant electron energy range
we have 0 & a & 0,5, implying that 1.00 & vo ( 1.04,
it is easily seen that the angular dependence of Eq. (38)
and Eq. (19) and the depth dependence of the latter two
terms of Eq. (35) and Eq. (15) practically coincide. It
is clear that the subtle difference between the total mean
free path and the diffusion length (by a factor vo = 1.00),
which also causes the slight difference in the angular de-
pendence of a3, could not have been extracted from an
analysis of Monte Carlo data. The first term in Eq. (35)
is difficult to substantiate with the aid of the present re-
sults. The depth region where the first term contributes
depends on the quantity A++/Aq which is in the range
(1.1 —3.0) for Auger electrons. The empirical depth dis-
tribution function Eq. (35) is also shown in Fig. 3 for
comparison. The features in the exact depth distribu-
tion function are reproduced with good accuracy by Eq.
(35), and the differences between the exact and the trans-
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TABLE I. The ratio of the electron yield for an emission angle po ——0.78 with and without

elastic scattering for a few pronounced Auger transitions (see text).

Transition

C KLL
Al KLL
Si KLL
Cr LMM
Fe LMM
Ni LMM
Cu LMM
Ge LMM
Zr LMM
Nb LMM
Mo LMM
Zr MNN
Nb MNN
Mo MNN
Pd MNN
Ag MNN
La M1V1V

Ta M1VN
W MNN
Pt MNN
Au M1VN

Energy (eV)

272.00
1396.00
1618.00
529.00
703.00
848.00
920.00
1147.00
1845.00
1944.00
2044.00
147.00
167.00
186.00
330.00
356.00
625.00
1680.00
1736.00
1967.00
2024.00

0.28
0.23
0.20
0.33
0.32
0.31
0.29
0.22
0.20
0.22
0.23
0.33
0.38
0.41
0.30
0.29
0.28
0.33
0.34
0.34
0.33

qJablonsbi (Ref. 23)

0.96
0 99
0.99
0.91
0.93
0.92
0.92
0.94
0.97
0.94
0.95
0.90
0.89
0.89
0.87
0.89
0.91
0.92
0.90
0.90
0.91

Eq. (39)

0.97
1.00
1.00
0.89
0.89
0.88
0.89
0.94
0.95
0.93
0.92
0.93
0.89
0.86
0.87
0.88
0.92
0.85
0.83
0.83
0.85

Eq. (28)

0.97
0.98
0.98
0.92
0.92
0.92
0.93
0.95
0.96
0.97
0.96
0.89
0.92
0.86
0.89
0.89
0.93
0.92
0.92
0.90
0.91

port approximation Monte Carlo results correspond ac-
curately to the difFerences between the empirical depth
distribution function Eq. (35) and the theoretical depth
distribution function Eq. (15). This result suggests that
the first term in Eq. (35) refiects the differences between
the exact and the transport approximation cases.

As a final result we present a comparison of an integral
characteristic, viz. , the total electron yield, as predicted
by the depth distribution function Eq. (15) with the
empirical depth distribution function Eq. (35) and Monte
Carlo results from Jablonski.

In Table I the ratio of the yield in the direction
po ——0.78 in the presence of elastic scattering and with-
out it is shown for a few pronounced Auger transitions.
The theoretical values were calculated with Eq. (28) us-
ing the values of the H function tabulated in Ref. 18.
The values for the IMFP were the same as the ones used
by Jablonski, i.e. , the values of Seah and Dench. 24 The
transport mean free path was calculated by the quasiclas-
sical formula of Tilinin, zs while the necessary total mean
free paths were interpolated from the values tabulated by

sterner.
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The agreement between Jablonski's Monte Carlo re-
sults and the semiempirical formula Eq. (35) for the
electron yield is reasonable for all cases studied except
for the high energy MNN transitions of Ta, W, Pt, and
Au. The transport theory results, Eq. (28), are in ex-
cellent agreement with Jablonski's results for all cases
studied. The slight discrepancies with Jablonski's results
and the other results do not seem to be correlated with
the value of u.

IV. DISCUSSION

The results presented in this study reveal an interest-
ing possibility of the application of the transport ap-

proximation to the intermediate scattering parameters
A, ( A; ( Ai, and may prove to be useful also in astro-
physical and neutron transport problems.

It is usually appreciated that the transport approxi-
mation provides good results in the case of very strong
absorption A, (( A„At, and for the quasiconservative
medium A, &) A„A~, . The former case corresponds to
the trivial situation where elastic scattering is negligi-
ble and the rectilinear motion model may be used. The
justification for the transport approximation for nearly
conservative scattering is based on the so-called radia-
tive field similarity principle. i It implies that the ap-
proximate solution correctly describes the radiative field
at large distances from a source and is expressed mathe-
matically by the similarity relationships, In the transport
approximation case these relationships are reduced to the
simple equation

g~=v Ag, (40)

and A, = A, A, (A, + A, )
i is the total mean free path.

In fprmuia (41) ~* is the usual single scattering albedo
~~ = A;(A; + A, )

i w}ule x; is the ith coefficient in the
Legendre polynomial expansion of the normalized differ-

ential elastic scattering cross section. The quantity v'Aq

where v' is the biggest root of the general characteristic
equation:

(1/~')'
(2/~')'

(3/~')'
5 —cu'xg—

7 Q) Q3 0 ~ ~

(41)
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is equal to the characteristic length governing the exact
distribution function slope far away from the source.

The calculations show that relationship (40) holds
only approximately in the relevant Auger electron en-
ergy range. However the electron transfer is fairly well
described in the framework of the transport approxima-
tion. The main reason is that the similarity of the exact
and the approximate solutions can be achieved not only
in the case of weak absorption but also in problems with
slowly varying particle angular distribution. To elucidate
this we note that the main disadvantage of the transport
approximation is that the speci6c features of electron
scattering concerning the path lengths s (( Aq, are not
taken into account properly. The particles that have trav-
eled such small path lengths are deflected mainly through
small angles. They continue to move along directions
close to the initial one since large angle scattering events
are less probable due to the strong forward peak in the
elastic cross section. Therefore it is obvious that the
broad initial emission angular distribution is not consid-
erably affected by these small angle scattering processes
and also that these small angle scattering processes will
not significantly influence the electron transport in the
target. Therefore the shortcoming of the transport ap-
proximation mentioned above becomes unessential if the
condition

clearly indicate that this qualitative argument also yields
quantitatively correct results. The other way of check-
ing the transport approximation is a direct comparison
with the exact solution of the Auger electron transport
problem. Such a comparison is beyond the scope of the
present paper. Nonetheless the present preliminary re-
sults show that the error made by using the transport
approximation is relatively small for both the depth and
the angular dependence of the emission characteristics
(cf. Fig. 3 and Table I).

V. CONCLUSIONS

We have presented a study of the Auger electron es-
cape probability from noncrystalline solids comprising
both an analytical and a Monte Carlo approach. Sim-
ple analytical expressions have been derived for several
characteristics of Auger electron emission on the basis of
the transport approximation. The theoretical results are
in good agreement with corresponding Monte Carlo cal-
culations. It should be emphasized that the latter have
been performed for realistic Mott cross sections as well as
for isotropic (transport) cross sections. Thus it has been
proved that the transport approximation is an efFective
tool in transport problems when the particle angular dis-
tribution at the source is a slowly varying function of the
angle. The important point is that no limitations are
imposed on the scattering parameters in this case.

is fulfilled. In inequality (42) N is the typical value of
the particle flux density. The Auger electrons meet the
latter requirement perfectly as their initial angular dis-
tribution is isotropic. The Monte Carlo simulation data
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