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We have investigated the relationship between the proportionality factor in the Lifschitz-Allen-Cahn
scaling relation and the microscopic kinetics of nonequilibrium transport in a Monte Carlo model of
domain growth in a two-dimensional, quenched, chemisorbed overlayer with a nonconserved order pa-
rameter and a zero-temperature equilibration fixed point. We have identified two components of the
proportionality factor, which reflect the two temperature dependences of domain growth in this system.
The primary temperature dependence arises from the rate of surface diffusion. In addition, we find a fac-
tor, a, which decreases with increasing temperature due to the influence of thermal fluctuations. We
also find that the proportionality factor has a time dependence, which arises from the rate of surface
diffusion. We have found that this time dependence can influence the apparent form of the growth law.
We discuss why the observed time dependence of diffusion should be a general phenomenon present in
both simulations and experiments of domain growth in quenched systems.

I. INTRODUCTION

There has been widespread interest in the time evolu-
tion of disordered systems which are quenched to temper-
atures below the order-disorder phase transition tempera-
ture.!73* 1In these systems, the development of long-
range order proceeds by the growth of ordered domains.
It has been well established that growth in the late stages
can be described by a simple power-law scaling of the
characteristic domain length with time, i.e.,

[(t) < (AL), (1)

where [(t) is a characteristic length of the domains at a
time ¢, x is the growth exponent, and 4 is a proportional-
ity factor. For systems which do not conserve the order
parameter, the scaling relation of Eq. (1) represents the
Lifschitz-Allen-Cahn  theory of  curvature-driven
growth,*> in which x =1. Both computer simula-
tions® ! and experiments?®~ 2> have verified the
Lifschitz-Allen-Cahn growth law in many such systems.
From a microscopic perspective, domain growth is
brought about by the complex, nonequilibrium diffusion
of self-organizing species. Since the physics of
curvature-driven growth is well understood from the
macroscopic level, the proportionality factor of Eq. (1)
can be taken as a measure of the transport phenomena
which mediate growth. Numerical investigations'¢ 192
of domain growth at temperatures approaching zero have
indicated that two types of behavior can exist in systems
with a nonconserved order parameter: freezing or equili-
brating. It is believed!®?* that freezing or nonfreezing be-
havior has its origin in the detailed form of the propor-
tionality factor and it has been suggested?* that systems
can be classified based upon the general form of 4. In
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the interest of gaining insight to possible generalities in
the transport physics which characterize domain growth
in freezing and nonfreezing systems, we have investigated
the relationship between the proportionality factor for
domain growth and the microscopic kinetics of transport
in two Monte Carlo models of quenched, chemisorbed
overlayers. One of these systems exhibits zero-
temperature freezing?® and, in the other, growth contin-
ues until thermal equilibrium is achieved. In this paper,
we discuss the behavior of the system which equilibrates
at 0 K. We find that the proportionality factor in this
system can be expressed as a product of three factors, i.e.,

A=kal . (2)

Here, « is a constant, @ models the effect of thermal fluc-
tuations, and T is the rate of adatom hopping.

II. MODEL

The model we consider is a two-dimensional, square-
lattice gas with equal and repulsive nearest- and next-
nearest-neighbor interactions and with conserved density.
At a fractional coverage of 1, the ground state of this sys-
tem has (2X1) ordering and is fourfold degenerate, as
shown in Fig. 1. To simulate the kinetics in our studies,
we adopted a model of precursor-mediated surface
diffusion which was first utilized by Kang and Wein-
berg.'* In a precursor-mediated surface diffusion, a chem-
isorbed particle is immobile until it is thermally excited
into a physically adsorbed precursor state. In the precur-
sor state, particles are less strongly bound than they are
in the chemisorbed state, are weakly coupled to the lat-
tice, and have a low-energy barrier to mobility. A parti-
cle which is physically adsorbed executes nearest-
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FIG. 1. The four, ordered (2 X 1) ground-state configurations
which are possible in a square-lattice gas with equal nearest-
and next-nearest-neighbor repulsion below T,.

neighbor hops from site to site (over both occupied and
vacant sites) until it eventually deexcites at a vacant site
into the chemisorbed state. The potential energy surface
of the physically adsorbed precursor is taken to be
periodic and uniform, in that locations above both chem-
isorbed species and vacant substrate sites are given equal
energies. By contrast, the energy difference between a
chemisorbed particle and its transition state is assumed to
be given by

Ec(n):Ec,o_n¢ y (3)

where E_, is the potential energy of an isolated, chem-
isorbed particle, ¢ is the pairwise-additive lateral interac-
tion strength, and »n is the total number of nearest- and
next-nearest-neighbors surrounding a chemisorbed
species. This feature of the model is intended to
represent the effect of adsorbate interactions in altering
the potential energy of chemisorbed species. Although,
in principle, physically adsorbed particles could also in-
teract with one another, we have chosen to model the sit-
uation in which the barrier to excitation is much greater
than the barrier to deexcitation. The concentration of
physically adsorbed precursors is negligible under these
circumstances and their mutual interaction can be omit-
ted.

The dynamics of precursor-mediated surface diffusion
are modeled by 11 time scales of which 9 characterize ex-
citation of a chemisorbed species to the physically ad-
sorbed state,

—E (i)/kp T
-1 ¢ B
Tex — Viex€ ’

i=0,8; (4)

one characterizes deexcitation from the physically ad-
sorbed state to the chemisorbed state,
- —Eg4. /kpT
7-de)lg———'vl,dexe ¢ ’ ’ (5)
and one characterizes the migration of a physically ad-
sorbed precursor,

1

_ —E g /kpT
g .

Tmig = +V|€ (6)
We incorporated these time scales into a dynamical
Monte Carlo algorithm designed to simulate the system
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as a Poisson process.?® Similar algorithms have been used
in a few other studies of domain growth kinetics.!42"28
The key steps in the simulation algorithm are the follow-
ing.

(1) On trial k at time ¢;, the time scale of every possible
excitation event on the lattice is calculated and the num-
ber m,, ; of possible events with a time scale 7, ; (or rate,
Texi =Tex.:) is counted.

(2) The probability p., ; of conducting an event of type
i is determined as

mex,lrex,: ) (7)
Ejmex,jrex,j

(3) A group i is selected based on a comparison of its
probability of excitation, p., ;, to a generated uniform
random number R €(0,. . .,1).

(4) A particular excitation event in group i is selected
randomly and time is incremented utilizing the fact that
the mean interevent time in the simulated Poisson pro-
cess is given by?®

—_— (8)
Ejmex,jrex,j

Pex,i=

To strictly satisfy the requirement for simulating a Pois-
son process, the time increment at each step should be
selected from an exponential distribution with a mean
given by Eq. (8). We incremented time at each step with
the mean of the distribution. Over many trials and many
different runs, a mean time increment, as given by Eq. (8),
will arise in the more rigorous situation.

(5) Once a species has been excited to the physically ad-
sorbed state, it performs a random walk consisting of
nearest-neighbor hops until it deexcites at a vacant site.
The random walk and eventual deexcitation of the pre-
cursor is simulated as follows.

(a) A random number, R €(0,. . ., 1), is generated.

(b) If R is less than the probability of deexcitation, then
deexcitation is attempted and is successful if the particle
is above a vacant site. Otherwise, a nearest-neighbor site
(one of four possible for a square lattice) is chosen ran-
domly and the particle is moved to that site. The proba-
bility of deexcitation, p.,, is calculated via

T dex
Tgex T 47

mig

Pgex = ’ 9)

and the probability of migration is Pmig =1 = Pyex-

(c) If a deexcitation event occurs, then the algorithm
recommences with step (1). Otherwise, step (5) is repeat-
ed until deexcitation occurs.

Time in the algorithm is incremented only for excita-
tions, reflecting that the time scales for excitation are
significantly larger than those for deexcitation and migra-
tion. Compliance with the Poisson process would imply
that, once an excitation event is chosen, the time incre-
ment should be

_ 6
M—1
2j=l rex,j+rdex+4rmig

T ) (10

where M is the total number of particles in the system.
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However, if 74, t47y,, >> 37 ;, then the time incre-
ment once particles are in the excited state becomes very
small compared to the increment when no particles are
excited. In addition, the probability of exciting another
particle to the physically adsorbed state will be small,
motivating the sequence of alternating excitations and
deexcitations on a finite lattice.

Relevant parameters in this model are the activation
energies and preexponential factors for excitation, deexci-
tation, and migration, which were chosen to be E_,= 8¢,
Edex=¢:Emig7 and Vl,exzvl,dexzvu‘ With Edeszmig’
it can be shown that the statistical properties of the phys-
ically adsorbed random walker are independent of tem-
perature.14 Hence, in this work, the effect of the random
walker on the proportionality factor was identical at all
temperatures. Simulations were run at temperatures of
kg T=0.1¢, 0.25¢, 0.3325¢, 0.35¢, 0.404, and at a tem-
perature arbitrarily close to zero to verify the equilibrat-
ing behavior of the system. At each temperature, 15-20
runs were conducted on 400X400 and 512X512
(kgT/¢=0.10 0.25, and 0.40) square lattices with
periodic boundary conditions. The initial lattice was ran-
domly populated with particles at a fractional coverage of
1 in all simulations. At periodic intervals during a simu-
lation run, the average size of the domains was measured
and recorded. We found that, by including as part of a
domain only those particles having all eight nearest and
next-nearest neighbors consistent with the (2X 1) pattern,
fluctuations in the measured average domain area as a
function of time could be significantly reduced. In light
of previously reported difficulties with the quality of ran-
dom numbers in this application,?® special attention was
given to assure the effective randomness of the pseu-
dorandom numbers.

During a simulation run, time was incremented, upon
the excitation of a chemisorbed particle, in both ‘“real-
time” units [i.e., as given by Eq. (8)], and in units of “uni-
form interevent steps” (UIS), in which 1 UIS =1/N6
(N=400% or 512?). By incrementing time in uniform
units of UIS and only upon the realization of an event, we
eliminate all possible time and temperature dependencies
of domain growth which would arise in the simulated
rate of surface diffusion. In a previous study,'® we
showed that UIS could be used to overcome the influence
of “initial transients” in Monte Carlo simulations of
domain growth. Here, we use this method to provide a
resolution of the transport physics contained in A4.

III. RESULTS AND DISCUSSION

Figure 2 shows log-log plots of the average linear di-
mension of a domain, /), in units of the lattice constant,
A, as a function of UIS, U, for k3T /¢=0.10 [Fig. 2(a)]
and the highest [kzT /$=0.40, Fig. 2(b)] temperature
probed in this study. The results of all simulation runs at
these temperatures are shown. It can be seen in Fig. 2
that the slopes of the curves attain approximate values of

1 at long times. Measured slopes at all temperatures

were the following: 0.478+0.002 (kzT /¢$=0.10),
0.5004+0.001 (kzT/$=0.25), 0.482%0.002 (kzT /¢
=0.3325), 0.481+0.006 (kgT/¢$=0.35), and
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FIG. 2. Logarithmic plots of the average domain size (/) as
a function of UlIS-time, U, at (a) kzt/¢$=0.10 and (b)
kzT/$=0.40. Lines with slopes of % are included for compar-
ison. The results at times greater than those indicated by the ar-
rows were utilized to estimate the asymptotic values of the
growth exponents.

0.480+0.005 (kz T /¢=0.40). The uncertainties are one
standard deviation in a linear least-squares fit of the data.
At a given temperature, fits were obtained utilizing the
results of all runs as “one big run.” Graphs were
matched to a line with a slope of 1 and domain sizes
which reflected true asymptotic behavior were utilized in
the fit, as indicated by the arrows in Fig. 2. In some of
the simulation runs on 400 X 400 lattices, finite size effects
became prominent in the late stages of growth. Hence,
we excluded these results from the analysis.

It can be seen in Fig. 2 that the asymptotic scaling re-
gime was initially reached at smaller domain sizes as the
quench temperature was increased. In addition, more
UIS were necessary to achieve a domain of a given size at
high temperatures than at low temperatures. For exam-
ple, at kT /¢=0.10, approximately 400 UIS are neces-
sary to achieve an average domain size of SOA, while at
kg T /$=0.40, about twice as many UIS were required to
achieve the same average size. This trend is reflected in
the proportionality factors, which are scaled and shown
in Fig. 3. The error bars in Fig. 3 were derived from a
standard error propagation analysis utilizing the errors in
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FIG. 3. The factor a contains the temperature dependence of
domain growth which can be attributed to the effects of thermal
fluctuations. Here, we compare the values of a obtained from
our simulations to a theoretical form predicted by Grant and
Gunton (Ref. 31) (see text). The uncertainty in a was deter-
mined by a standard error propagation analysis given the errors
in the slopes and intercepts of the fitted logarithmic (/) vs U
curves at each temperature. The simulation values of a were
scaled by a factor of % to match the theoretical expression.
The simulation temperatures were also scaled by
kpT./$=0.525.

the slopes and intercepts of the fitted log{/) vs log U
curves.

It should be stressed that, by incrementing time in UIS,
as described above, we simulate a system in which the
rate of excitation is a constant and independent of tem-
perature. Hence, the variation of the proportionality fac-
tor with temperature reflects a change in the efficiency of
growth. It is expected”®3%3! that thermal fluctuations in
domain growth should become increasingly prominent at
temperatures approaching 7,. These fluctuations slow
the rate of growth and, eventually, prevent it above T.,.
Theories of domain growth which include thermal fluc-
tuations have been developed for the antiferromagnetic
Ising model.”3*3! These theories predict that the slowing
of domain growth arises through the proportionality fac-
tor, which can be expressed by the form given in Eq. (2).
Considering thermal fluctuations as the origin of the ob-
served slowing down of growth, we compared the propor-
tionality factors from our simulations to an expression
derived by Grant and Gunton®' for the temperature
dependence of a [cf. Eq (2)] in the antiferromagnetic Is-
ing model. This expression has the analytical form

a=1—(kzT/Vmow)n , (1

where the Onsager solution for the surface tension, o, is
given by

26 ncot

9

oA=2¢ |1— (12)
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Here, w is the thickness of the interface, A is the lattice
constant, and n is a parameter with a value close to unity.
For comparison to our results, we chose the ratio n / in
this expression to be V' /2A. This value of n /o gave a
satisfactory fit of our results to Eq. (11) and it is a physi-
cally reasonable estimate of the width of a domain bound-
ary with n on the order of unity. Larger values of n /w in
Eq. (11) yield a steeper slope in the low-temperature re-
gion of the curve. In addition, the theoretical expression
of Eq. (11) goes to zero at lower temperatures for larger
ratios of n /w. The proportionality factors shown in Fig.
3 were multiplied by a factor of J; to scale our results to
those of Grant and Gunton. This factor should be equat-
ed to « in Eq. (2). To scale the temperatures, we utilized
the value kzT,/¢$=0.525, as indicated by Binder and
Landau.’?> Although Egs. (11) and (12) were derived for
the Ising model with nearest-neighbor interactions, we
observed reasonable agreement between our results and
the expression of Grant and Gunton at temperatures
below approximately 0.65T,.

In Fig. 4, the average domain sizes, {/), as a function
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FIG. 4. Logarithmic plots of the average domain size (I ) as
a function of real-time, t, at (a) kpT/¢$=0.10 and (b)
kpT/$=0.40. Lines with known slopes of } are included for
comparison. The results at times greater than those indicated

by the arrows were utilized to estimate the asymptotic values of
the growth exponents.
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of real time, #, are shown for k5 T /¢=0.10 [Fig. 4(a)] and
the highest [Fig. 4(b)] temperature probed in this study.
As in Fig. 2, the results of all runs at these temperatures
are shown. A comparison of Figs. 2(a) and 4(a) reveals
that, while the slopes of the log(!) vs log U curves de-
crease to an asymptotic value of I from an initially
higher value, the slopes of the log{!) vs logt curves in-
crease with time toward a value of 1. This behavior was
characteristic of the runs conducted at lower tempera-
tures. As the quench temperature of the system ap-
proached T., we found that there was less disparity be-
tween the UIS- and real-time plots. A comparison of
Figs. 2(b) and 4(b) shows that, at k3T /¢$=0.40, the UIS-
time and real-time plots are very similar. This effect
arises from the time and temperature dependence of our
simulated rate of surface diffusion.

An appraisal of the time dependence of the simulated
rate of excitation at varying temperatures can be ob-
tained through examination of the relationship between
the UIS- and real-time increments, given by!°

I'(t)dt=dU . (13)

In Fig. 5, we show two log-log plots of the derivative of
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FIG. 5. The derivative of UIS time, U, with respect to real
time, t, shown for two representative runs at (a) kz T /¢$=0.10
and (b) k3 T /$=0.40. The time dependence of the rate of parti-
cle excitation, I'(z), is given by these curves, as indicated by Eq.
(13).
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UIS time with respect to real time as a function of real
time for representative runs at kg7 /¢=0.10 [Fig. 5(a)]
and kzT /$=0.40 [Fig. 5(b)]. The time dependence of
the rate of particle excitation, I, is given by these curves.
At kyT /$=0.10, T" decreases by over three orders of
magnitude and appears to reach an effectively constant
value at long times. The decrease in I' was not nearly so
dramatic—less than one order of magnitude—at
kpT /$=0.40. The time dependence of I' can be under-
stood in terms of a change in the distribution of particle
energies (i.e., excitation rates) with time. Immediately
subsequent to the quench, the system is at an energy con-
sistent with an infinite temperature and the rate of parti-
cle excitation is large. As the system approaches thermo-
dynamic equilibrium, its energy decreases and there is a
corresponding decrease in the rate of particle excitation
[cf. Eq. (8)]. Differences in the time dependence of I at
different temperatures occur because the rates of excita-
tion have more distinct values at low temperatures than
at high temperatures. Although surface diffusion is not
represented explicitly in most Monte Carlo studies of
domain growth, these simulations implicitly include some
form of a time-dependent spin-flip/exchange rate which
arises through the use of Monte Carlo steps (MCS). The
MCS is a time increment measuring transition attempts.
Initially, when the energy of the system is high, transi-
tions occur relatively frequently and the relative success-
to-attempt ratio is high. As the system approaches
thermal equilibrium, an increasing number of attempts
are necessary to achieve a successful transition. The as-
sociated decrease in the rate of domain growth should be
equated with a time dependence of the rate of mass
transfer.

Strictly speaking, I' will decrease continually until
thermal equilibrium is achieved. However, it is possible,
in the very late stages of growth, that I changes very
slowly and can be considered to be effectively constant.
If this condition is achieved, then Monte Carlo simula-
tions will conform to theories of domain growth, which
assume that I is constant. In our studies, we found that
" did not reach a constant value at all of the tempera-
tures for the times that we were able to follow. More-
over, in many of the runs, I' became effectively constant
only at very long times, leaving an inadequate time inter-
val for reliable statistics. Both of these aspects are
reflected in the measured slopes of the log{!) vs log?

curves, which were 0.4551+0.002 (kzT /¢$=0.10),
0.4311+0.002 (kzT/$=0.25), 0.4621+0.003 (kpzT /¢
=0.3325), 0.466+0.004 (kgT /$=0.35), and

0.470+0.001 (kzT/$=0.40). Analysis of the real-time
curves was conducted in the same way as for the UIS-
time results. The low values of the slopes arise from the
time dependence of our simulated adatom hopping mech-
anism.!°

Interestingly, we found that some of the logarithmic
(1) vs t curves attained slopes of 1 at short times. These,
then, exhibited a decline in the slope followed by an even-
tual increase in the slope towards an asymptotic value of
This was prevalent at temperatures above
kT /$=0.25, and can be seen in Fig. 4(b). We view the
early slope of 1 as a “false slope” because it arises as a

o=
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balance of the initial, transient acceleration of the growth
rate [cf. Fig. 2] and the initial, transient decrease in the
rate of adatom hopping (cf. Fig. 5). A similar effect has
been noted by others!® and has been attributed to “initial
transients.” We have shown!? that these initial transients
arise from the time dependence of simulated mass
transfer kinetics.

It is possible that the type of behavior we have ob-
served in this model is prevalent in experimental studies
of domain growth in chemisorbed overlayers. Although
it is debatable whether the exact mechanism of diffusion
which we have simulated is widespread in chemisorbed
overlayers, our model does capture the essential physics
of an initially disordered, quenched, chemisorbed over-
layer approaching thermal equilibrium. It is reasonable
to expect a decrease in the rate of adatom hopping with
time in this situation because experimental systems also
conform to the detailed balance criterion which links ki-
netics with energy. As a quenched system reaches
thermal equilibrium and decreases its energy, the overall
rate of adatom hopping must also decrease. Our studies
have shown that the rate at which the rate of adatom
hopping decreases with time can significantly alter the
apparent form of the asymptotic growth law.!® In a mod-
el having the same Hamiltonian as this study, but utiliz-
ing a vacancy-mediated mechanism of surface diffusion,
we found that I" decreased very slowly with time.!° We
showed that the time dependence of T led to apparent
growth laws of the Lifschitz-Slyozov®? form [in which
1(t)~t'3] when, in fact, Lifschitz-Allen-Cahn growth
was occurring.’® It is certainly possible that the low
growth exponents measured in experimental systems,’*
where the order parameter is presumably nonconserved,
could reflect this influence. Since measured values of the
growth exponents could reflect the time dependence of T,
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it is also unclear whether intercepts resulting from the
analysis of logarithmic plots will provide a reliable mea-
sure of the energy barrier to surface diffusion.

IV. CONCLUSIONS

In summary, we have investigated and obtained a de-
tailed resolution of the proportionality factor for domain
growth in a Monte Carlo model of a two-dimensional,
quenched, chemisorbed overlayer with a nonconserved
order parameter and a zero-temperature equilibration
fixed point. We have determined that the proportionality
factor is comprised of two temperature-dependent fac-
tors: one, I', arising from the kinetics of surface diffusion
and another, a, from the effects of thermal fluctuations.
Hence, the proportionality factor in our system is of the
form given by Eq. (2). We find that the rate of surface
diffusion decreases with time in this model and we con-
clude that this should be a general phenomenon, pre-
valent in both simulations and experimental studies of
domain growth in quenched systems. We also conclude
that the time dependence of surface-diffusion kinetics
could be responsible for the low-growth exponents which
have arisen in experimental studies of nonconserved sys-
tems.>* It will be interesting to see whether our results
for this system are of a general nature for nonfreezing,
nonconserved systems and to contrast our findings to re-
sults for a freezing system.
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