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Coulomb integrals and model Hamiltonians for Cgg
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The effective on-site Coulomb interaction U and the nearest-neighbor interaction V for a Cegg solid
are calculated. We obtain U = 0.8 — 1.3 eV and V = 0.3 — 0.5 eV. The photoemission spectrum
for a finite Hubbard chain is calculated and an appreciable broadening of the spectrum is found for

these parameters, due to many-body effects.

Ceo has attracted much interest after it was found that
it can be produced in solid form! and that it becomes
superconducting.? It has been suggested that many-body
effects may play an important role for Cgg.3** The im-
portance of these effects depends on the relative size of
the on-site Coulomb interaction U minus the nearest-
neighbor interaction V' and the hopping energy or band-
width W, ie., (U — V)/W. An interesting aspect of
solid Cgg is that both these quantities are small. By
U we mean here the interaction between two electrons
in a t1,, orbital, which is delocalized over the whole Cgq
molecule. The value of U is therefore correspondingly
small. The bandwidth W is determined by the hopping
between the Cgo molecules, which are far apart, leading
to a small value of W ~ % eV. In this paper we focus
on the value of U and V' and we obtain Uy = 2.7 eV for
a free molecule and U = 0.8 — 1.3 eV for a solid. For
the nearest-neighbor interaction we find V' = 0.3 — 0.5
eV. The relevant parameter for the strength of the cor-
relation is then (U — V)/W ~ 1, suggesting appreciable
correlation effects. We also calculate the photoemission
spectrum for a Hubbard chain, using the calculated val-
ues of U and V, and find a substantial broadening of the
spectrum due to many-body effects, although the width
is smaller than the experimental width.

The simplest estimate of U is obtained from the
Coulomb integral

FO=/d3r/d3r'pT(:)Tp(l%, (1)

where p(r) is the charge density corresponding to one
occupied t1, orbital. This “unscreened” U has to be
renormalized, when used in a model Hamiltonian, to im-
plicitly take into account effects not included explicitly
in the model Hamiltonian. Such a renormalization can
be performed for “high-energy” (“fast”) processes, where
the energies involved are much larger than the excitation
energies of interest.® Here we are interested in a U appro-
priate for a Hubbard model describing the ¢;,, conduction
bands, where the corresponding excitation energies are of
the order 1 eV or less. Thus we include renormalizations
due to the fact that the occupied orbitals expand when
an additional electron is added, leading to a reduced ef-
fective U, since these processes involve excitations into
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high-lying molecular orbitals. We also take into account
that in a solid U is further reduced by the polarization
of surrounding molecules, since the polarization involves
excitations in the range from several eV up to ~ 30 eV.
Neither of these effects is included explicitly in a Hub-
bard model for the t;, bands. We do not, however, in-
clude screening due to intraband excitations in the ¢,
band, which corresponds to low-energy excitations (< 1
eV). This screening, which is very important, must be
included explicitly in the Hubbard model.

As a first estimate of the unscreened F° we assume
that p(r) forms a thin shell of charge on a sphere with
the radius R ~ 3.5 A. Then F° = e2/R = 4.1 eV.
If we, somewhat more realistically, assume that p(r)
forms a shell with the finite thickness §, we find that
F% =¢%(1-0.176/R +---)/R. Assuming that § = 1.42

(approximately the distance between two C atoms),
we obtain FO = 3.8 eV. Alternatively, we can approxi-
mate the charges on each C atom with point charges, and
calculate the interaction between these,

2
e

FO= (&> :——R‘j +60(g5)°F3, 2
i

where R;; is the separation between two C atoms, and F8
is an atomic on-site interaction. From atomic calculation
for a C atom, we estimate Fg ~ 12 eV, and obtain F° =
3.7 eV.

These calculations, apart from using a very simple
model of Cgp, neglect the relaxation of the charge den-
sity when an electron is added to the Cgp molecule.
To take this into account, we have performed density-
functional calculations for a free Cgp molecule, using the
local-density approximation.® To obtain Up, the U for a
free molecule, we perform two calculations for a free Cgg
molecule with a different number of electrons. Uy is then
the increase in the energy of the t;, orbital per electron
added to the system.”

The calculations are performed using the linear-muffin-
tin-orbital (LMTO) method in the atomic-sphere approx-
imation (ASA).® In this method each of the 60 C atoms
are surrounded by spheres, and there are also intersti-
tial spheres filling up the empty regions. Thus there is a
sphere in the center of the molecule, a shell of 32 spheres
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between the central sphere and the C shell, 32 spheres in
a layer outside the C shell, and finally 60 spheres in the
outermost layer. The spheres in the two shells next to
the C spheres are located above or below the centers of
the pentagons and hexagons, and the spheres in the out-
ermost layer are put in the same arrangement as the 60
C atoms. Normally, the choice of interstitial sphere po-
sitions and volumes is guided by the principles of having
a small overlap between the spheres and of having space
filling. To impose these principles for a molecule, we in-
troduce a fictitious Watson sphere surrounding all the
other spheres. Space filling then means that the volume
outside the Watson sphere plus the volumes of the other
spheres fill space. The radii and positions of the other
spheres are chosen so that space filling is obtained and
the overlaps between these spheres are small (13-20 %).
After having introduced the Watson sphere to put con-
straints on the packing and the overlap of the spheres, we
took into account that there is little charge outside the
Watson sphere, which was therefore not included explic-
itly in the calculation. The calculations were performed
using a program for periodic solids, with the Coulomb
interaction between different molecules suppressed and
the results extrapolated to infinite lattice parameter.

Using this approach for 240, 241, and 242 electrons,
we deduce a value U = bey,, (ne,,)/0nt,, = 2.7 eV.
This value is almost unchanged if we consider the dif-
ference between 241 and 240 electrons or between 242
and 241 electrons. We find that as the number of elec-
trons is increased, charge is shifted to the outer parts
of the molecule. Thus when an electron is added to the
molecule, about % to % of an electron is added to the shell
of C spheres. The remaining charge is about equally dis-
tributed between the first and second shells of interstitial
spheres outside the C spheres, and it is much larger than
the weight of a t1,, orbital in these spheres. This change
describes how the Coulomb interaction can be reduced
by distorting the already occupied orbitals by shifting
weight outwards as an electron is added to the system.
Slightly larger values of Uy (~ 3.0 eV) have been reported
by Pederson et al.,? de Coulon, Martins, and Reuse,'”
and Martin and Ritchie.!!

These results can be compared with experiment. Up
can be written as

Uo = Ip(Ceo ) — A(Ce0 7 )- (3)

Here the ionization potential I,(Cep ~) = 2.7 €V is known
experimentally.!? If the Cgo 2~ ion exists, it would fur-
ther follow that the affinity A(Cgo ~) > 0 and Up < 2.7.
Ceo 2~ has been observed experimentally,’? but the pos-
sibility that it is metastable could not entirely be ruled
out.!? These considerations suggest that Up may be close
to or slightly smaller than 2.7 eV. Alternatively, we can
obtain Uy from I,(Cep) = 7.6 eV,13 A(Cqp) = 2.7 eV,?
and the band gap Fy = 1.6 eV (Ref. 14) as measured by

photoabsorption,
U() = I(Cgo) - A(Cso) - Eg =3.3¢eV. (4)

The Up in (4) is larger than in (3), since Ey is reduced
because the states of the electron and the hole in the ab-
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sorption process can adjust so that they have maximum
interaction, while in (3) the two electrons in Cgg 2~ adjust
to have minimum interaction. Our calculation should
therefore be compared with (3), which should also be
most appropriate for the doped case.

So far we have considered a free molecule. We now
turn to a Cgg solid. In this case we expect U to be
strongly screened by the polarization of the surrounding
molecules. To this end we insert the Cgp molecules in a
fcc lattice and assign a polarizability a to each molecule.
We add an electron to the central molecule, and allow the
surrounding molecules to be polarized in a self-consistent
way, both by the electron on the central molecule and by
the polarization of the molecules themselves. This polar-
ization acts back on the electron and reduces the energy
increase of the ty, level by an amount §U. The sum-
mation over neighboring molecules is extended until it is
converged. The U for the solid is then

U =U, - 68U, (5)

where Uy is the U for the free molecule. In this cal-
culation we have assumed that the radius of the Cgg
molecules is small compared with the intermolecular sep-
aration, assuming that the molecules have point dipoles.
We have estimated the error in this approach by perform-
ing the screening, using a model'® for the dielectric func-
tion where the Cgg molecules have the appropriate size.
We spread out an electron over a molecule and calculate
the screening of this charge from another, finite, polar-
izable molecule. For a given size of «, we find that the
finite size of the molecule increases §U by about 12%. We
have considered two values for . A quantum chemical
calculation gave the result a = 65 A3.1% Alternatively, we
can use an experimental value (4.4) (Ref. 17) for the di-
electric function together with the Clausius-Mossotti re-
lation. For the lattice parameter a = 14.04 A, this leads
to & = 90 A3. This value also contains contributions
from vibrations of the molecule, which should not be in-
cluded here, since the vibrations are not at high enough
energies to be renormalized away. The proper value of
« should therefore be between 65 and 90 A3, For these
values of a we deduce §U = 1.4 and 1.7 eV, respectively.
Taking into account the finite size of the molecules leads
to the estimates §U = 1.6 and 1.9 eV, respectively. To-
gether with Uy = 2.7 we obtain values for U between 0.8
and 1.1 eV, or between 1.0 and 1.3 eV if we do not cor-
rect for the finite molecular size. In the following we use
the estimate U = 0.8 — 1.3 eV. At the surface we expect
U to be about 0.3 eV larger, due to the reduced screen-
ing. This can be compared with experimental estimates
of U based on Auger electron spectroscopy, which gave
U=1.6+0.2¢eV (Ref. 4) and 1.4 £ 0.2.18

We next consider the nearest-neighbor interaction V,
which is obtained by calculating the increase of the en-
ergy of a ti, orbital on a molecule 1 when an electron
is added to a neighboring molecule 2. This leads to the
result V = e2/R — 6§V, where R is the nearest-neighbor
separation and —6V is the lowering of the t;, orbital on
molecule 1 due to the polarization of the surrounding
molecules when an electron is added to molecule 2. For
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a = 14.04 A, we find §V'=0.94 and 1.12 eV, resulting in
V = 0.5 and 0.3 eV for the polarizabilities =65 and 90
A3, respectively. In this case the effects of the finite size
of the molecules on the screening are small.

We now consider the implications of these values of
U and V on photoemission spectroscopy (PES). For this
purpose we study a Hubbard model

N
H = Zzatluniua +tzz¢2ua¢jw’

=1 vo (ij) vo
DD hobiuo + 3303 Uihivemyye'
(ij) v#u @ ij Ve go'

(6)
This model consists of a linear chain with N atoms and
periodic boundary conditions. On each atom there is a
level with orbital and spin degeneracy. To reduce the
size of the problem we consider the orbital degeneracy
2 instead of the more appropriate degeneracy 3. The
orbitals are connected by a hopping ¢ for the same or-
bital quantum number and ¢ for different quantum num-
bers, and (ij) indicates a summation over nearest neigh-
bors. The electrons on the same atom interact via the
Coulomb interaction U;; = U and electrons on different
atoms via U;; = V/|i — j|. A one-dimensional system
leads to certain pathological features, and the spectral
features obtained in the present calculations, therefore,
cannot be expected to be representative of the true three-
dimensional system. The calculations can, nevertheless,
give an indication of the magnitude of the many-body
effects on the spectrum.

In Fig. 1 we show the spectrum for N =5, U = 1.2
eV,V =0.5eV, and t = 2t' = —0.08 eV. For a noninter-
acting system with N large, this leads to the bandwidth
0.48 eV, which is close to the results of band-structure
calculations.!® For a half-filled band with noninteract-
ing electrons, one then expects to see a PES spectrum
which is 0.24 eV broad. In Fig. 1 the width is, however,
increased to about 0.6 €V due to the Coulomb interac-
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FIG. 1. The PES spectrum for a half-full Hubbard chain
with N = 5 atoms and orbital degeneracy 2. For a noninter-
acting system (with a large N) the width of the spectrum is
0.24 eV.
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tion. Modest variation of U (e.g., 0.7-2.0 eV) and V
(e.g., 0.0-1.5 eV) with U —V > 0.5 eV give similar spec-
tra with widths of 0.6-0.9 eV and a tendency to shift
weight towards higher energies as U is increased. For
a one-dimensional model without orbital degeneracy, it
is known that in the limit of a large U the PES width
is increased to 4t for the half-filled case.?’ Thus the PES
width is in this case equal to the full noninteracting band-
width, although the band is only half full. Here we find
that with orbital degeneracy, the PES width becomes
even larger than the full noninteracting bandwidth for
the strongly correlated system. This is related to the
fact that after a hole is created in the PES process, there
can be either hopping of a hole with the same or with a
different orbital quantum number than the hole created
in the PES process. The value of U (or U — V) in Fig.
1 is not quite large enough to take us into the large-U
limit, but the results, nevertheless, show features of this
limit.

We observe the difference from the case when there
is a noninteger number of strongly interacting electrons
per atom, as in, e.g., Ni with about 9.6 3d electrons
per atom. In such a case there is a satellite split off by
~ U from the main band, and the weight of this satellite
remains finite as U — 0o. The reason is that if there is
a noninteger number of electrons per atom, between M
and M — 1, the atoms in the initial state have different
occupancies M and M — 1, even for a large U. There is
then a finite probability to reach final states where one
atom has the occupancy M —2. On the other hand, with
an integer number M of electrons per atom, the proba-
bility of finding M — 1 electrons on an atom in the initial
state goes to zero as U — 0o. Therefore the coupling to
final states where an atom has M — 2 electrons also goes
to zero, and there is no satellite at U below the main
band.

Experimentally, the width of the PES spectrum is
found to be about 1.2 eV,?! i.e., larger than our calcu-
lated value. This is not surprising, since phonon satel-
lites are expected to contribute to the bandwidth. This
is illustrated by the spectrum for a free Cgy molecule,
where a substantial broadening is found for the h,, level.22
Since there is only one h,, hole in the final state, many-
body broadening effects are not expected to be impor-
tant, and it seems likely that this broadening is due to
vibration satellites.?? The occupied part of the t;, band
is, however, broader in K3Cgp than in KgCgp according
to PES.2! This is in agreement with the present calcu-
lations, since the many-body effects should be small for
KeCgo, where the t1, band is full. This suggests that
there may be both phonon satellites and many-body con-
tributions to the bandwidth of K3Cgq.

Doped Cgo (M3Cs0, with M=K,Rb) has generally been
assumed to be a metal, although the observation of a
pseudogap in photoemission and inverse photoemission
has been claimed.? For a Hubbard model, a Mott insu-
lator is expected if the energy cost, U — V, for an elec-
tron to hop to the nearest-neighbor site is larger than the
bandwidth W. According to our estimates of U and V'
and standard estimates of W,!1° (U — V)/W =~ 1. Re-
cent band-structure calculations, going beyond the ASA,
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show, however, a larger bandwidth of the order W ~ 0.65
eV for K3Cq in the fcc structure,?® which probably
makes (U—V)/W slightly smaller than unity. It would be
interesting to study a three-dimensional Hubbard model
with a long-range interaction, to find out the exact cri-
terion for a Mott transition for such a model.

We note that there are some indications of strong cor-
relation effects for other doped Cgp compounds. Thus it
has been suggested that K4Cgg is an insulator although
band theory predicts a metal,2425 and it has been re-
ported that Cgo TDAE is a ferromagnet.26

Finally, we remark that in a metallic system, the large
U obtained here is efficiently screened. Thus it has
been found that such a large value of U is not neces-
sarily inconsistent with an electron-phonon mechanism
for superconductivity.1®

The calculations here provide parameters for the
Coulomb interaction in a Hubbard-like model. Simple
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but realistic models for the hopping energy in different
lattice structure have been given elsewhere.®

In conclusion, we have estimated the on-site Coulomb
interaction U and the nearest-neighbor interaction V for
Cego and found the values Uy = 2.7 eV for a free molecule
and U =0.8—-13eVand V = 0.3 —0.5 eV for a solid.
These parameters were used for a Hubbard chain with
orbital and spin degeneracy. For doped Cgq it was shown
that the associated many-body effects lead to a substan-
tial increase in the width of the ¢, band seen in a pho-
toemission spectrum. The calculations and a comparison
of the experimental PES spectra for K3Cgp and KgCgo
(Ref. 21) suggest there may be both a phonon satellite
and a many-body contribution to the large PES band-
width for K3Cs().
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