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Direct observation of magnetoplasmon-phonon coupled modes
in the magnetophotoluminescence spectra of the two-dimensional electron gas

in In Gat „As/GaAs quantum wells
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Novel well-resolved emission lines in the spectral range of phonon replicas were observed in low-

temperature magnetoluminescence spectra of the two-dimensional electron gas in In Gal „As/GaAs
quantum wells. These lines were assigned to Landau-level transitions with an emission of coupled
magnetoplasmon —LO-phonon modes. The couplings were found to increase strongly near the reso-
nances between the energies of the LO phonon and multiples of the cyclotron energies.

In polar semiconductors, the electron interaction with
the electric field is associated with longitudinal-optical
(LO) phonons. This leads to a coupling between
plasmons and LO-phonons which is strongly enhanced if
the frequencies of the LO phonon coLO and plasmon co~

are comparable. Unlike the three-dimensional (3D) case
where co at zero wave number, q =0, is finite, in 2D plas-
mas' the dispersion of co (q) at q~0 varies as q'~ and
the resonance conditions are hardly accessible. In a
strong magnetic field perpendicular to the plane of the
2D electron gas (2DEG), the magnetoplasmon (MP) fre-
quency approaches the cyclotron frequency co, at q =0.
So the magnetic field can be used to sweep the electron
collective excitation frequency through coLO and achieve a
strong coupling between these modes.

Recently a strong 2D MP —LO-phonon coupling was
predicted to occur in weak polar semiconductor quantum
wells (QW's) and superlattices ' near the resonances
Neo, =coL&. However, there are only a few experimental
studies addressing this problem. 2D MP-phonon cou-
pling has been detected by cyclotron resonance (CR)
measurements in InSb inversion layers as well as in
In„Ga& „As/InP, In„Ga, „As/Air In, r As, and
GaAs/Al Ga& As heterojunctions ' only near the
main (N =1) resonance to, =co„o. The effect decreased
strongly in a high-mobility 2DEG with increasing elec-
tron density. The related problem of electron-phonon
coupling in the dilute electron gas has been extensively
investigated. This coupling was observed near
Nto, =coLo (N = 1 —4) in bulk GaAs (Ref. 10) (hot electron
CR), in a GaAs/AI„Ga, „As double-barrier system"
(tunnel spectroscopy) and was well described in the
framework of the one-magnetopolaron theory. '

In this paper we present a method to study the 2D
MP —LO-phonon coupling, namely, low-temperature
magnetoluminescence spectroscopy in the spectral range
of the optical phonon replicas. Contrary to CR measure-
ments, this method allows us to observe the 2D MP-
phonon coupling at large q. The photoluminescence was

investigated in a dense 2DEG [n, =(0.65—1.1)X10'
cm ] of an Ala zGaogAs/Inc, sGaoggAs/GaAs single
QW at H &14 T. The strong 2D MP —LO-phonon cou-
pling was clearly detected in the range 0=5-14 T for all
resonances, Nto, =coLo (N =2, 3,4).

Selectively doped single QW heterostructures were
grown by molecular-beam epitaxy using solid source
evaporation material. ' We used (001)-oriented substrates
of semi-insulating GaAs on which the layers were grown
in the following succession: a 0.5-pm GaAs buffer layer,
an undoped 12-nm-thick Inc &&Gap g5As QW, an undoped
10-nm Alo 2Gao 8As spacer, and a Si-doped 50-nm-thick
Alp 2Ga«As layer (Ns; —10"cm ').

Photoluminescence measurements were carried out
with the use of a cw He-Ne laser with A, =632.8 nm. The
sample was immersed in liquid helium in a cryostat with
a superconducting coil. The plane of the QW was orient-
ed normally to the magnetic field. A 0.6-mm quartz fiber
was used to transmit both the excitation and lumines-
cence light. The latter, after passing a grating monochro-
mator was detected by a cooled photomultiplier with an
S-1 photocathode.

Figure 1 shows luminescence spectra from a QW filled
with electrons (n, =0.95X10' cm ) due to selective
doping in the Al, Ga& „As layer. The spectra were
recorded at 4.2 K for low excitation intensity, P =10
W/cm, and different magnetic fields. In order to simpli-
fy the figure, they are displayed only for energies below
the QW energy gap, in the spectral range corresponding
to optical phonon replicas. For higher energies the spec-
tra were similar to those from In„Ga& „As/GaAs QW's
studied earlier. ' ' They consist of a strong principal no-
phonon (NP) line 0, -0g corresponding to allowed transi-
tion between the zero electron and hole Landau levels
(LL), j=j„=,0, and a few weak NP lines j,-0&

(j, =1,2, .. . ) corresponding to forbidden transitions from
occupied electron LL's. The latter appear mainly due to
QW imperfections. ' '

The NP transition energies shown in Fig. 2 increase
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FIG. 1. Emission spectra from n-Alo 2 o sn-Al Ga As/
Ino. 1 s ao. ss6 As/GaAs single QW (n, =9.5 X 10" cm ') in the en-

ergy range of phonon replicas for different magnetic fie ds at
K and P=10 W/cm . The dashed lines are guides for the
eye. Inset: the emission spectrum a
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FIG. 2. Transition energies as a function

'
n of H for the main

and satellite lines. The size of the signs corresponds to the ex-
erimental error. The solid lines are linear extrapolations of the

LO-phonon replicas.
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FIG. 3. The magnetic-field dependence of the satellite line in-

tensities. The lines are guides for the eye.

near y inear y wi1 1 1 'th H. Minor deviations from the linear
s17 bdependence connected with many-particle effects can be

neglected in the first approximation. The dependence of
the satellite line energies is quite different from the expec-
tations for the LO-phonon replicas shown by the dashed
lines and indicates another origin of the observed lines.

To establish a unique relation between the satellite an
the NP j,-0& transitions we analyzed the change of their
energies and intensities as a function of both the magnetic
field and electron density. First, Fig. 1 shows that the in-
tensity ratio for the pairs of lines marked as
'-0' and '-0" strongly depends on H at fixed density (c .

Fig. 3). However at fixed H, this ratio is independent of
n, in different samples with various electron densities
(and, hence, filling factor v) (cf. inset in Fig. 4). Therefore
the lines j- an j-' 0' d '-0" are supposed to be satellites of the

~ ~

same NP transition j-0. The change of the satellite ine
intensities with v due to an increased magnetic field or
2DEG density is presented in Figs. 3 and 4. This analysis

bl d us to assign these lines as shown in Figs. 1 and 2.
Notice that the satellite line intensities followed t e

'

g
of the corresponding LL, however, the magnetic-field
values of the anticrossings (11, 7, and 5.5 T) are indepen-
dent of electron density.

The energies of the additional quasiparticles emitted at
the e-h recombination are shown in ig. 5 for several
transitions as a function of H. T es g'se ener ies were deter-
mine rom e sd f th pectra as the difference between the NP

k -0 and their replicas. The coincidence o t epea s j,-
& an

itionsemitte par ic ed t' 1 energies for the 1-0 and 2-0 transi
'

ed. Theindicates that the same quasiparticles are emitted. e
quasipar

'
rticle energies are compared in ig. 5 wit co„o

c clotron(horizontal dashed line) and multiples of the cyc o ron
energies (straight dashed lines). In the first approxima-

h 1 tt were determined from the emission spec-
tra as the energy difference, 6 0, between t e j- an
transitions.

~ ~ ~

Figure 5 provides strong evidence that quasiparticles
emitted at the e-h recombination originate from two
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FIG. 4. The 1-0**satellite line intensities, normalized to the
0-0 line intensities, as a function of the 1, LL filling (different

samples) taken at H =9 and 12 T. Inset: the 1-0**to 1-0* line

intensity ratio vs 2DEG density taken at H =7.75 and 12 T.

branches of the coupled 2D MP —LO-phonon modes.
First, every j,-0& transition has only one string replica'
far from the crossing points between the LO-phonon and
cyclotron harmonics, e.g., at H-6. 5 and -9.5 T. At
these fields the energy gap between the NP line and its
replica is approximately equal to Ace„z in accordance
with the weak 2D MP —LO-phonon coupling far from the
resonance condition. With increasing H, the phonon-
like satellite line moves from the LO phonon to MP
branch near every Neo, =m„o resonance. In addition, a
new satellite line appears near the crossover point which
corresponds to the second, Mp-like, mode (cf. also Fig.
1). Its appearance is due to an increased admixture of the
phonon weight in this mode. With increasing H the re-
plica transforms into the phononlike mode and then back
again into an MP-like mode but now corresponding to
(N —1)fico, rather than Nhco, . Note that the anticrossing
behavior cannot be connected with Landau levels cross-
ing the Fermi energy as the magnetic-field values of the
crossings are independent of electron density in a wide
range of n, = (0.5 —l. 1)X 10' cm

The anticrossing behavior of the j-0* and j-0**satellite
lines at the resonance fields can also be observed from the
magnetic-field dependence of their intensities, shown in
Fig. 3. The line intensity is mainly determined by the
phonon weight in the corresponding coupled mode.
Therefore, the LO-phonon-like replica is strong whereas
the MP-like replica is absent far from the resonance mag-
netic fields (e.g., at H-6. 5 and 9.5 T). In the region of
the resonance the phononlike mode gradually transforms
into a MP-like one whose intensity decreases in accor-
dance with the reduced phonon weight whereas the MP-
like mode transforms into phononlike and becomes dom-
inating in the spectrum. The reduction of the 2-0 * line
intensity at H=8. 25 —9 T (cf. Fig. 3) is connected with
depopulation of the second electron LL occurring at
H=6. 5 —9.75 T.
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FIG. 5. The measured energy of the quasiparticles, emitted

at the e-h recombination, as a function of the magnetic field for
the 1,-0& (open circles) and 2, -0I, (filled triangles) transitions.
The horizontal dashed lines represent the energies of the GaAs
LO and TO phonons. The cyclotron frequency harmonics are
marked 5,0. The latter were taken as a linear extrapolation of
the difference between the j,-OI, and 0, -0& transition energies
(experimental values are shown by the small filled circles).

The resonant MP-phonon coupling arises from the
singularities in the 2DEG contribution to the dielectric
function. These correspond to electron excitations
with transition of electrons from an occupied n level to
an unoccupied n'=n +N level. Since the matrix element
decreases with increased difference N =n' —n the cou-
pling weakens for higher harmonics, which is in agree-
ment with our experimental data [cf. the splitting of the
linesj 0" andj 0' fo-r N=2, 3-, and 4 (H-ll, 7, and 5.5
T, respectively) in Fig. 5].

The MP-phonon coupling in the 2DEG observed in
our measurements at (2—3)co, =coLo considerably exceeds
the coupling detected in CR measurements at the
main co, =co„~ resonance. This can be explained as fol-
lows. In general, the MP-phonon coupling in the 2DEG
depends on the wave vector and disappears at q =0 in
the dense 2DEG. This means that the weak coupling ob-
served in CR measurements has to be mainly due to the
admixture of the finite-momentum MP states to the q =0
one (e.g. , by impurity scattering). A reduction of this
mixing of states with carrier density and reduced disorder
in the system explains the strong reduction of the MP-
phonon coupling effect in CR of 2DEG. On the con-
trary, in magnetoluminescence spectroscopy we measure
MP-phonon coupling directly at large q. This follows
from the fact that the j,Wj& Landau transitions accom-
panied by emission of an additional quasiparticle become
allowed when the quasiparticle carries away mornenturn
of the order of an inverse magnetic length. This is a
range of q where the 2D MP-phonon coupling is
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effective even at high multiples of the cyclotron fre-
quency.
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