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Excitons in semiconductor superlattices: Heuristic description of the transfer
between Wannier-like and Frenkel-like regimes
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In this paper, we present a straightforward model calculation, based on a heuristic approach, which

gives a satisfactory description of excitons in quantum-confined heterostructures, varying continuously
from isolated quantum wells to superlattices. In particular, we show how it is possible to account for the
progressive crossing from a Wannier-like regime, for short periods, to a Frenkel-like behavior, when the

quantum wells become decoupled. We propose a comparison with previous variational approaches.

With recent developments in semiconductor technolo-

gy, the growth of systems consisting of alternate thin lay-
ers of two different semiconductors with controlled
thicknesses has become possible. Thus, during the past
few years, heterostructures such as heterojunctions,
quantum wells, and superlattices have stimulated new
research in semiconductor physics. In particular, a con-
siderable amount of work has been devoted to the optical
properties of such quantum-confined heterostructures.
The ability to produce a strong spatial localization of
electrons and holes between high-quality interfaces made
it possible to observe efficient intrinsic excitonic lines,
even at room temperature. It is now well established that
the size-quantization field deeply alters the binding ener-

gy and oscillator strength of free excitons. This point
was intensively studied from both the experimental'
and theoretical points of view. However, the
mathematical description of these systems was recently
submitted to a kind of "inflation" in the complexity, in
order to take account of more and more intimate details
of the band structure of the host materials. Consequent-
ly, the spectroscopist often finds himself in a comfortless
situation: properly unraveling intricate optical spectra
needs to estimate the total effect of confinement. First,
one needs to calculate the energies of subband-to-subband
transitions; this is rather straightforward using the en-
velope function formalism. But some difficulty may arise
from the correct inclusion of Coulombic effects. The
most accurate calculations are variational: they have
the advantage of providing a rigorous lower bound on the
binding energies as well as estimates for the oscillator
strengths. Nevertheless, such theories, although not real-
ly tedious, may fall outside the scope of some experimen-
talists. Leavitt and Little recently fitted to the dimen-
sionless result of a variational calculation by the ratio of
two polynomials, which is a valuable simplification.

In this Brief Report, we present a straightforward
model, based on heuristic considerations of dimensionali-
ty, which gives a satisfactory description of excitons in
quantum-confined heterostructures, varying continuously
from isolated quantum wells to superlattices.

It is well known that these systems are somewhere in

2
Eb =Eo

a —1

where Eo is the value of the 3D effective Rydberg. Set-
ting a=3, 2, or 1 allows us to obtain the well-known re-
sults for the integer-dimensional models. Of course, the
present formalism is only relevant when an anisotropic
medium surrounds the exciton, and not when a pertur-
bating potential breaks its internal structure, as could
occur in type-II systems. In previous works, ' we have
shown that, for a type-I single quantum well, very satis-
factory values for Eb could be obtained by just using a
model of the "compression" undergone by the unit vector
along the quantization axis of the quantum well. From
the consideration of the physical respective sizes of the
quantum well and of the 3D exciton, we can infer the
following expression for a:

—L /200Ex=3 e (2)

where L*=L +2/kb is the "effective width" of the
quantum well, i.e., the real width L„plus the spreading
of the carriers into the barriers at both sides of the well.
By a simple envelope function calculation of the electron
and hole confined states in the quantum well, we can esti-

between a bidimensional (2D) and a tridimensional (3D)
system, so that neither the 3D nor the 2D model is a
good one. As a result, the existing mathematical solu-
tions, which all use a 3D model, are tedious. The original
method proposed by He consists in stating that, because
the real problem is neither purely 3D nor purely 2D, a
fractional-dimensional space should be used to simplify
the mathematical treatments. In this model, the aniso-
tropic interactions in the 3D space are treated as isotro-
pic ones in an a-dimensional space, where the dimension
a is determined by the degree of anisotropy. In other
words, the fractional-dimensional model consists in solv-
ing the Schrodinger equation in an aD space where the
interactions actually experience an isotropic environ-
ment. Within this formalism, the exciton binding energy
is given by
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mate this spreading as twice the quantity 1/kb, where

kb '=kb '+kb ', k~ and kb being the "wave vectors"
e h e h

characteristic of the vanishing of electrons and holes, re-
spectively, in the barriers. This model can even be im-
proved by inclusion of additional ingredients (band non-
parabolicities, dielectric constant mismatch between host
materials, . . . ) and converges towards a unique 3D value
for light- and heavy-hole exciton binding energies on
both limits of infinitely wide and vanishingly narrow
quantum wells. In any case, our results compare very
favorably to those of other calculations and to experi-
mental findings.

Now, let us consider the case of superlattices. A super-
lattice is a kind of effective semiconductor with a strongly
anisotropic Brillouin zone, which one has the opportuni-
ty to vary at will, since the width of this zone along the
growth axis is inversely proportional to the period.
When the width of the Brillouin zone is large, comparing
with 1/ao (ao is the Bohr radius of the exciton), the
Coulombic potential is slowly varying relative to the
period of the superlattice. This corresponds to the cri-
terion for validity of the Wannier approximation. On
the other hand, when the well are decoupled, this cri-
terion is no longer fulfilled, and another type of treatment
is necessary. The variational calculation of Ref. 7, which
uses a rather simple trial function, nicely exhibits the
boundary between both regimes: both in-plane and on-
axis extension parameters present a discontinuity at this
point. Within our formalism, the dimensionality a
should account for the gradual crossing from a quasi-3D
case—for thin periods or, at least, thin barriers —to a
strongly anisotropic situation. We make the following
proposal:

a=3 —(1—P), (3)

where P is an anisotropy parameter defined as P=po, /p, .

po, and p, are the on-axis reduced effective masses in the
3D crystal and in the superlattice, respectively. The
latter is obtained by calculating the curvatures of the
electron and hole first minibands at the zone center. The
reason for this choice is the following: we need a varia-
tion of a from 3 for periods near zero (p~1), to 2 when
the period (or simply the barrier) becomes larger, i.e.,

when p, becomes infinite (p~O). This means that the
dispersion relations of the superlattice run from a 3D to a
2D situation. Then, from Eq. (1), the binding energy
should consequently vary from one time to four times the
effective 3D Rydberg.

Recently, Pereira et al. ' presented a theory which is,
in principle, comparable to ours. In this model, the su-

perlattice is considered as an effective semiconductor
with strongly anisotropic dispersion relations. The on-
axis reduced effective mass of the electron-hole pair is
compared to its analog for the in-plane motion, so that
the ratio of the two constitutes an anisotropy parameter
y. Figure 1 displays a comparison of the results of Ref.
19 with our calculation performed by using exactly the
same numerical parameters: the binding energy of the
confined exciton follows rather similar variations in both
models. However, a slight difference exists between their
respective slopes, our model giving a faster increase of
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FIG. 1. Plot of the binding energy of the 1s exciton involving
the first heavy-hole and electron subbands in a GaAs-
Gap pAlp 3As superlattice with equal well and barrier widths

(L =Lb ), vs the period. The result of our calculation using

Eqs. (1) and (3) is compared to the one of the model of Ref. 19.
Solid lines show the range of validity of these models, while

dashed lines allow comparison of their asymptotic behaviors for
wide periods, which explain the observed difference of slopes.

the binding energy versus the period. Note that p in our
model is different from y used in Ref. 19. Our choice is
motivated by the anisotropy of dispersion relations in

valence bands, which appears as soon as the fourfold de-

generacy is lifted, as in quantum wells. When reducing
the period down to zero, one should expect to recover a
three-dimensional isotropic medium, rather than an
artificially anisotropic one. In order to avoid such an ar-
tifact, we thus prefer to compare the effective mass in the
superlattice to what this mass would be in the 3D
equivalent alloy. This alloy corresponds to mixing both
semiconductors rather than making up a heterostructure,
keeping the same proportions. This should "naturally"
describe the threshold of occurrence of the coupling —or
decoupling —between the quantum wells, which controls
the anisotropy of the superlattice. Indeed, this way of
computing a takes advantage of characteristics of the
whole heterostructure, such as effective masses or poten-
tial discontinuities, in a global way. Thus the variation of
a from 3 to 2 should occur at the same "rate" as the con-
tinuous crossing from a situation with coupled quantum
wells to a situation with quasi-isolated ones.

In fact, the limit of validity of both models is similar to
the criterion for validity of the Wannier approximation in
bulk semiconductors; in the present case, the exciton
Bohr radius should be compared to the period of the su-
perlattice, rather than to that of the host crystal. This is

why we refer to a "Wannier-like" regime. Practically, for
superlattices with equal well and barrier thicknesses, and
for usual materials (e.g. , GaAs-Gao 7Alo 3As) this approx-
imation is only valid for periods lower than about 10 nm.
Increasing the period, at some value the quantum wells
become decoupled, which implies that the excitons which
could appear tend to be localized within one given well.
In other words, the "size" of the exciton becomes smaller
than the period of the superlattice. Then, we can no
longer consider that the exciton "sees" the superlattice as
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an effective medium, since the motion of the carriers
along the z axis is inhibited. In other words, decoupling
the quantum wells makes the system transfer from a
"Wannier-like" regime into a "Fr enkel-like" regime,
where the exciton only "sees" one elementary cell.

As clearly demonstrated in earlier works, ' progres-
sively increasing the barrier widths in the superlattice, or
the period, leads to a situation similar to the one of single
quantum wells. As stated above, our model has proven to
give a correct description of excitonic features, in this
case. In fact, the really questionable point is again how
to predict the exact threshold between the "Wannier-
like" and "Frenkel-like" regimes and the shape of the
corresponding onset. The variational approach proposed
by Dignam and Sipe, ' using a basis of "two-well" exci-
ton states predicts a sensitive effect of interwell coupling
for periods belo~ 15 nm, in the model case of symmetri-
cal GaAs-Gao 7A10 3As superlattices. An excellent agree-
ment is found with available experimental data down to
about 6 nm of period, below which the calculated Ryd-
berg becomes vanishingly small. Although this model is
very accurate, it is clear, from the reading of Ref. 18, that
it needs the use of quite tedious calculations and thus of
computational facilities, which may not be at the disposal
of every spectroscopist. Figure 2 illustrates the principle
of our method: we propose to combine, by a simple mul-
tiplication, the reductions of dimensionality obtained
from Eqs. (2) and (3). The resulting expression is then

—L */2aoa=3 —(1—P)e (4)
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FIG. 2. The same as Fig. 1, but the dashed line labeled 8'
corresponds to the application of Eq. (3) (Wannier approxima-
tion), i.e., the interwell effect. The dashed line labeled I' is ob-
tained via Eq. (2) (single-well approximation) and rather
represents the intrawell effect. The solid line shows the result of
superimposing both regimes as in Eq. (4). Note that both effects
show competing contributions for periods between 5 and 20 nm.

In Fig. 2 we have plotted the calculated binding energy of
the 1s exciton in symmetrical GaAs-Gao 7A10 3As super-
lattices, versus the period. Two dashed lines labeled W
and I' correspond, respectively, to the application of Eq.
(3) ("Wannier-like" ) and Eq. (2) ("Frenkel-like" ), and the
full line is the result of Eq. (4). Curve W is discussed
above, while curve Fjust accounts for the variation of the
well width, ignoring the effect of the barrier thickness.
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FIG. 3. Comparison between our calculation and the ones by
Pereira et al. (Ref. 19), and by Dignam and Sipe (Ref. 18). Rec-
tangles represent experimental data obtained by Chomette
et al. (Ref. 7) via temperature-dependent photoluminescence
excitation spectroscopy.

We see that two fundamental conditions are fulfilled by
the calculation via Eq. (4): (i) convergence of the Ryd-
berg to 3D values at infinitely wide (value for the bulk
well material) and vanishingly narrow (bulk equivalent al-
loy) layer thicknesses, (ii) appearance of the efFect of in-
terwell coupling at 15 nm of period. The most remark-
able observation is that a purely "Wannier-like" approxi-
mation only stands for very short periods (lower than 5

nm), while the "single-well" regime is only valid for very
wide periods (larger than 20 nm). An intermediate re-
gime rules the major part of the figure, i.e., the most com-
monly encountered values of the period.

In order to check the adequacy of our model, we pro-
pose, in Fig. 3, a comparison between our calculation and
the ones of Refs. 18 and 19, taking exactly the same
values for basic parameters (we took the ones from Ref.
18). We have also plotted the experimental data from
Ref. 7. We notice that our results nicely fit the ones of
both other theories in their respective zone of maximum
validity: the difference between them never exceeds 0.7
meV. Now concerning the comparison with experimen-
tal results, the agreement is excellent since our evaluation
rarely falls outside the error bars, corresponding to the
experimental uncertainty. A better agreement could be
found by using another set of parameters or by including
some of the effects quoted above, but this is not really
the purpose of this work. At last, we remark that the
variation of the Rydberg predicted in Ref. 19 is very
different from the one experimentally measured, especial-
ly for periods larger than 10 nm, which considerably
shortens the range of validity of this theory.

We have presented a simple method for calculating the
properties of excitons in semiconductor superlattices,
from an estimation of the noninteger dimensionality.
This estimation is based on a careful analysis of the vari-
ous physical ingredients which rule the behavior of elec-
trons and holes in such systems. Other elaborate models,
of reasonable accuracy, present finite domains of validity
and often remain out of the scope of most experimental-
ists. We have demonstrated that our formalism allows us
to avoid such problems. In particular, we have proposed
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a successful way of accounting for the superimposition of
interwell and intrawell effects, which together rule the be-
havior of anisotropic excitons. Although we do not in-
tend to compete with more elaborate theories, we wish to
point out that our model is based on a heuristic physical

reasoning and that it may be really convenient when no
computational facilities are available. Moreover, the sim-
plicity of this approach should allow a rather straightfor-
ward extension to systems of still lower dimensionality,
such as quantum wires or quantum dots.
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