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Cohesive properties of iron obtained by use of the generalized gradient approximation
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Cohesive and magnetic properties of bcc, fcc, and hep Fe are calculated by use of the generalized gra-
dient approximation proposed by Perdew and Wang [Phys. Rev. B 33, 8800 (1986)] and Perdew [Phys.
Rev. B 33, 8822 (1986)]. Calculated results reproduce most of the fundamental cohesive properties found
experimentally. For example, the pressure-induced phase transition between bcc ferromagnetic and hcp

nonmagnetic phases can be successfully described.

The local-density approximation (LDA) in the
density-functional theory' has enjoyed considerable suc-
cess during the last few decades.? From its high feasibili-
ty and overall reliability, the importance of its role in the
calculation of ground-state properties seems to remain al-
most unchanged. It is, however, well known that the
LDA sometimes gives unsatisfactory results compared
with experimental ones. For example, it predicts over-
bound cohesive quantities for 3d metals with cohesive en-
ergies that are larger by about 10% and interatomic dis-
tances that are smaller by a few percent. More seriously,
it cannot give the correct ground state of the bcc-
ferromagnetic (FM) phase for Fe.?

Improvement of the LDA has been undertaken from
several standpoints. Among them, the gradient correc-
tion method introduces corrections by adding effects
from the electron-density gradient (hopefully from higher
derivative terms also). Belonging to a family of the gen-
eralized local approximation,* this method has great ad-
vantages in scarcely destroying the virtue of feasibility of
the LDA. Following this line, Perdew and Wang® and
Perdew® proposed a formalism named the generalized
gradient approximation (GGA). They showed that for
atoms the new functional could correct most of the errors
in the exchange and correlation energies by LDA. The
first application of the GGA to solids was done by Bagno,
Jepsen, and Gunnarsson.” Strikingly, they showed that
the new functional could reproduce correctly the bec-FM
phase for the ground state of Fe. Kong et al.® calculated
cohesive properties of Al, C, and Si with sizable improve-
ments especially in cohesive energy. Later Barbiellini,
Moroni, and J arlborg9 carried out an extensive test of the
functional to find out its consequences on cohesive, mag-
netic, and Fermi surface properties on a wider variety of
metals. Contrary to the favorable findings of the former
two, they found that the GGA results were sometimes in-
ferior to those of the LDA, especially for 4d and 5d met-
als. The effects of the new functional, a distinguished one
of which is its inclination for expanding lattice spacing,
worked too much for 4d and 5d metals, whose lattice
constants had already been given more or less satisfacto-
rily well by the LDA.

In spite of the negative features found by Barbiellini,
Moroni, and Jarlborg,” the improvements achieved for
cohesive properties of 3d metals!® or lighter elements
should be properly appreciated. The purpose of the
present paper is to clarify the extent to which the GGA
can claim its success for Fe by a thorough search on its
fundamental structures of lattices and magnetic phases
and thus to contribute to a refinement of GGA. We lim-
ited lattices to bcc, fce, and ideal hcp and magnetic
phases to nonmagnetic (NM), FM, and antiferromagnetic
(AF)."! The results presented here were ¢alculated by the
linear muffin-tin orbital (LMTO) method!? in the atomic
sphere approximation (ASA) with the so-called combined
correction. Relativistic effects were taken into account
by the scalar form'> for both core and valence states.
The basis consisted of spdf-LMTO’s. We employed the
linear tetrahedron method!'* for sampling k points and
each eigenstate was weighted by the Fermi distribution
function with a broadening factor of 1 mRy. For the NM
or FM phase of bce (fcc) lattice, we employed a unit cell
which contained two atoms, i.e., simple cubic (sc) [body-
centered tetragonal (bct)] unit cell, the one for the AF
phase, in order to avoid possible errors of ~1 mRy intro-
duced in handling different unit cells for different mag-
netic phases. The numbers of irreducible k points were
220 for sc and 216 for bct, and 180 for the hcp lattice.
Common lower-cutoff radii for the radial integrations
were chosen for all calculations since the total energy by
the GGA does not converge with respect to the cutoff ra-
dius. The c¢/a was chosen to be ideal (=1.633) for the
hcp lattice. The Ceperley-Alder exchange-correlation
functional'® was employed for LDA. The effect of the
zero-point motion is not taken into account for simplici-
ty. Quantities such as the equilibrium Wigner-Seitz ra-
dius Ryg, cohesive energy E ., and bulk modulus B,
were obtained by the least-mean-squares fitting of the cal-
culated total energies to the Murnaghan equation of
state.!® Since the value of the magnetic moment was not
fixed in the self-consistent field iterations, the iterations,
sometimes for the case of possible appearance of two spin
states, became very intractable for either one or both of
two spin states. Branches shown in this paper are those
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whose convergences were strictly achieved. The small
spin states were identified as NM if values of the magnet-
ic moment u were effectively zero (less than ~0.05up)
throughout a certain Ryyg range. In this paper we call a
small spin branch the low-spin (LS) branch only when it
is judged to be discontinuously connected to the high-
spin (HS) branch in the R wg —p diagram.

Relevant experimental facts to be compared with the
present calculation are summarized as follows.

(1) Under zero pressure, the ground state of Fe is bcc-
FM, with Ryg=2.66 a.u., B=1.68 kbar, E_, =0.317
Ry, and p=2.12u5."” Next follows the hcp phase. The
fcc (NM or AF) phase seems to exist above the hcp
phase. '8

(2) Under an increasing pressure , bcc-FM to hcp-NM
phase transition occurs at a pressure of ~ 150 kbar (Ref.
19) at low temperature. At the transition point Ry is
~2.61 a.u. on the bcc-FM phase and ~2.56 a.u. at the
hcp-NM (Ref. 20) phase with ¢ /a ~1.60.

(3) For the fcc phase, two experimental observations
under bulk environments have been made on precipitates,
ie, one’! in Cu is AF with Ryg=2.65 a.u. and
pu~0.7up, and the other?? in CuAu alloys is FM with
Ryg~2.78 a.u.

First we show in Fig. 1 the total energy E,,, and u as a
function of Ry, calculated by the LDA. The overall
features are essentially the same as those by earlier calcu-
lations.>”2* The HS branch for the fcc-FM phase was not
obtained in the region searched. Except for bcc-FM, the
stable HS branches obtained collapse at a certain critical
Ryg. The small-spin solutions often went finally to NM
states after careful and sufficient iterations. Only one LS
solution for fcc-FM was obtained. The difficulties in ob-
taining both HS and LS solutions in the fcc-FM phase,
the absence of the LS branch in the hcp-FM phase, and
the behavior of the u change in the fcc-AF phase can be
understood by the help of earlier fixed-spin-moment
method calculations.?* Though the LDA gives rather
correctly mutual locations of the NM phase of three lat-
tice structures in the Ryg— E |, diagram, it is difficult to
seek agreement with the experimental facts stated above,
because the LDA, along with its inclination for giving
smaller lattice constants, produces magnetic energy gains
that are insufficient or too small. From Fig. 1 we observe
that the LDA predicts a false ground state of the hcp-
NM with no possibility of the pressure-induced bce-hep
transition nor of the existence of any stable (or metasta-
ble) AF or FM phases in the required R g range of the
fcc lattice.

Figure 2 shows the GGA results of E,,, and u as a
function of Ryg. The HS branches were stably obtained
for FM and AF phases of all three structures. The LS
branch was obtained only for the hcp-AF phase. Com-
pared with Fig. 1, we can list characteristic features of
GGA as follows: (1) it has an inclination to produce
larger interatomic distances, and (2) its magnetic energy
gain is significantly larger than the one by LDA. These
two features come mostly from the functional form of the
GGA used to evaluate the exchange-correlation energy.?’
Owing to these features, the total energy diagram shifts
toward larger Ryyg and total energies of magnetic phases
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lower a great deal by formation of magnetic moment. As
seen in Fig. 2, the ground state of the GGA is correctly
bce-FM  and  corresponding  equilibrium values are
Rys=2.683 a.u., B=1.58 kbar, and p=2.32up and
E_ is 0.359 Ry. These values are essentially the same as
those by Bagno, Jepsen, and Gunnarsson.” Compared
with the experimental values listed above, Rysg is larger
by 0.8%, E_,, is larger by 13%, and p is larger by 9%.
The discrepancy in the magnetic moment seems to come
from the present treatment by ASA and the inclusion of
the nonspherical potential will amend most of the er-
rors.! We next discuss the relation between the total en-
ergy curves of bcc-FM and hcp-NM phases, which con-
cerns the pressure-induced bcc-hep transition at low tem-
perature. From Fig. 2 we can expect the transition in the
direction observed experimentally. The transition pres-
sure is estimated to be 149 kbar and the critical Ryyg at
the bcc-FM side is 2.62 and 2.54 a.u. at the hcp side.
The agreements of the pressure and the Ryyg’s with the
corresponding experimental values of ~150 kbar, 2.61
a.u., and 2.56 a.u.,?’ respectively, seem quite satisfactory.
As for the fcc lattice, Fig. 2 predicts one stable AF phase
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FIG. 1. Total energy E,, and magnetic moment u of Fe as a
function of the Wigner-Seitz radius Rys, calculated by the
LDA of Ceperley and Alder. The solid curve corresponds to
the bcc, the dotted to the fcc, and the dashed to the hcp. The
circles indicate NM, the triangles FM, and the squares AF, and
the filled (open) symbols are for the high-spin (low-spin) state
solutions of the corresponding magnetic phase.
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FIG. 2. Total energy E,, and magnetic moment u of Fe as a
function of the Wigner-Seitz radius Rys, calculated by the
GGA of Perdew and Wang, and Perdew. The solid curve corre-
sponds to the bcc, the dotted to the fcc, and the dashed to the
hep. The circles indicate NM, the triangles FM, and the
squares AF, and the filled (open) symbols are for the high-spin
(low-spin) state solutions of the corresponding magnetic phase.

with p=1.21up at Ryg=2.62 a.u. and one FM with
u=2.56up at Ryg = 2.72 a.u. The values of the Ryg’s,
2.65 and 2.78 a.u., observed on microprecipitates in Cu
(Ref. 21) and CuAu alloys?? seem to correspond to these
equilibrium values. Their agreements seem to be rather
good, though the theoretical magnetic moment 1.21up is
too large compared with the experimental value of
~0.7up.2! Finally, we mention some possibility that the
electronic structure by GGA might be favorable for a
description of finite-temperature behaviors of Fe. The to-
tal energy difference between the equilibrium values of
fcc-AF and hcp-AF phases is 4.6 mRy, and the one be-
tween those of hcp-AF and bee-FM phases is 7.6 mRy by
the present calculation. These values correspond to 1.0
and 7.3 mRy, respectively, which were used by Hasegawa
and Pettifor®® as energy separations at absolute zero tem-
perature in their semiquantitative treatment of the phase
transition of Fe at finite temperature based on the spin-
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FIG. 3. Comparison of the exchange-correlation potential
V.. by the GGA with that by the LDA for the majority spin of
the bcc Fe. The —1/r divergence of the GGA exchange-
correlation potential is clearly observed and makes a striking
contrast to the rather flat behavior of the LDA potential.

fluctuation mechanism. Taking their success into ac-
count, the quantitative agreement in these values con-
vinces us that the GGA might provide a sound starting
point for treating the finite-temperature behaviors of Fe.

So far we have shown that the GGA can reproduce
satisfactorily most of the fundamental facts related to the
cohesive property of Fe, i.e., quantities related to (1) the
ground-state properties, (2) the pressure-induced bcc-hep
phase transition, and (3) the two equilibrium fcc phases.
Therefore we believe the present calculation firmly sub-
stantiates the success of GGA shown so far by earlier
workers.””1 It should be mentioned, however, that the
Kohn-Sham exchange-correlation potential of the GGA,
or generally of the gradient correction method, has —1/r
divergence with » —0 as illustrated in Fig. 3. It comes
from terms containing V’p with p the electron density,
which is generated by taking the functional derivative of
the gradient terms in the exchange-correlation energy
density. Though this divergence little affects integrated
values such as the total energy, it seems to be fatal for
treating the hyperfine field: By the divergence, the wave
function near the nucleus is severely affected and the
hyperfine field is disturbed very much from the value by
LDA with, e.g., an unphysical positive contribution from
the 1s orbital for Fe. Removal of this divergence, togeth-
er with the undesirable aspect of overestimating lattice
spacings noticed particularly in 4d and 5d metals, is
strongly required.
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